Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2022; 99: 362-371

Детерминанты устойчивости Francisella tularensis к стрессовым условиям окружающей среды

Борисова С. В., Волох О. А.

https://doi.org/10.36233/0372-9311-219

Аннотация

В обзоре обобщены современные данные литературы об основных структурах и антигенах туляремийного микроба, ответственных за адаптацию внутри теплокровного макроорганизма-хозяина (чувствительные животные, человек). Для успешного выживания Francisella tularensis в условиях стресса требуется взаимодействие всех клеточных структур микроба. Несмотря на активные исследования, проводимые в области изучения детерминант и механизмов устойчивости F. tularensis, причина высокой адаптационной способности при низкой изменчивости возбудителя туляремии не установлена. Эти исследования важны для понимания механизмов персистенции и вирулентности F. tularensis, а также для дальнейшей разработки вакцин и диагностических препаратов.

Список литературы

1. Попова А.Ю., Мефодьев В.В., Степанова Т.Ф., Ежлова Е.Б., Демина Ю.В., Марченко А.Н. Эпидемиология и профилактика туляремии на эндемичных территориях России: монография. Тюмень; 2016.

2. Олсуфьев Н.Г., Дунаева Т.Н. Природная очаговость, эпидемиология и профилактика туляремии. М.: Медицина; 1970.

3. Hennebique A., Peyroux J., Brunet C., Martin A., Henry T., Knezevic M., et al. Amoebae can promote the survival of Francisella species in the aquatic environment. Emerg. Microbes Infect. 2021; 10(1): 277–90. https://doi.org/10.1080/22221751.2021.1885999

4. Мещерякова И.С. Туляремия. В кн.: Природная очаговость болезней: Исследования института им. Н.Ф. Гамалеи РАМН. М.; 2003: 137–60.

5. Telford S.R. 3rd, Goethert H.K. Ecology of Francisella tularensis. Annu. Rev. Entomol. 2020; 7(65): 351–72. https://doi.org/10.1146/annurev-ento-011019-025134

6. Thelaus J., Andersson A., Broman T., Bäckman S., Granberg M., Karlsson L., et al. Francisella tularensis subspecies holarctica occurs in Swedish mosquitoes, persists through the developmental stages of laboratory-infected mosquitoes and is transmissible during blood feeding. Microb. Ecol. 2014; 67(1): 96–107. https://doi.org/10.1007/s00248-013-0285-1

7. Романова Л.В., Мишанькин Б.Н., Пичурина Н.Л., Саямов С.Р., Водопьянов С.О. Некультивируемые формы Francisella tularensis. Журнал микробиологии, эпидемиологии и иммунобиологии. 2000; 77(2): 11–5.

8. Celli J., Zahrt T.C. Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb. Perspect. Med. 2013; 3(4): a010314. https://doi.org/10.1101/cshperspect.a010314

9. Radlinski L.C., Brunton J., Steele S., Taft-Benz S., Kawula T.H. Defining the metabolic pathways and host-derived carbon substrates required for Francisella tularensis intracellular growth. mBio. 2018; 9(6): e01471-18. https://doi.org/10.1128/mbio.01471-18

10. Forestal C.A., Malik M., Catlett S.V., Savitt A.G., Benach J.L., Sellati T.J., et al. Francisella tularensis has a significant extracellular phase in infected mice. J. Infect. Dis. 2007; 196(1): 134–7. https://doi.org/10.1086/518611

11. Yu J.J., Raulie E.K., Murthy A.K., Guentzel M.N., Klose K.E., Arulanandam B.P. The presence of infectious extracellular Francisella tularensis subsp. novicida in murine plasma after pulmonary challenge. Eur. J. Clin. Microbiol. Infect. Dis. 2008; 27(4): 323–5. https://doi.org/10.1007/s10096-007-0434-x

12. Bradford M.K., Elkins K.L. Immune lymphocytes halt replication of Francisella tularensis LVS within the cytoplasm of infected macrophages. Sci. Rep. 2020; 21(10): 12023. https://doi.org/10.1038/s41598-020-68798-2

13. Мокриевич А.Н., Кравченко Т.Б., Фирстова В.В., Титарева Г.М., Дятлов И.А., Тимофеев В.С., ред. Туляремия: состояние проблемы и методы исследования. М.: Династия; 2019.

14. Freudenberger Catanzaro K.C., Inzana T.J. The Francisella tularensis polysaccharides: What is the real capsule? Microbiol. Mol. Biol. Rev. 2020; 84(1): e00065-19. https://doi.org/10.1128/MMBR.00065-19

15. Golovliov I., Baranov V., Krocova Z., Kovarova H., Sjöstedt A. An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect. Immun. 2003; 71(10): 5940–50. https://doi.org/10.1128/IAI.71.10.5940-5950.2003

16. Cherwonogrodzky J.W., Knodel M.H., Spence M.R. Increased encapsulation and virulence of Francisella tularensis live vaccine strain (LVS) by subculturing on synthetic medium. Vaccine. 1994; 12(9): 773–5. https://doi.org/10.1016/0264-410x(94)90284-4

17. Bandara A.B., Champion A.E., Wang X., Berg G., Apicella M.A., McLendon M., et al. Isolation and mutagenesis of a capsule-like complex (CLC) from Francisella tularensis, and contribution of the CLC to F. tularensis virulence in mice. PLoS One. 2011; 6(4): e19003. https://doi.org/10.1371/journal.pone.0019003

18. Larsson P., Oyston P.C., Chain P., Chu M.C., Duffield M., Fuxelius H.H., et al. The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat. Genet. 2005; 37(2): 153–9. https://doi.org/10.1038/ng1499

19. Marshall L.E., Nelson M., Davies C.H., Whelan A.O., Jenner D.C., Moule M.G., et al. An O-antigen glycoconjugate vaccine produced using protein glycan coupling technology is protective in an inhalational rat model of tularemia. J. Immunol. Res. 2018; 2018: 8087916. https://doi.org/10.1155/2018/8087916

20. Klimentova J., Rehulka P., Pavkova I., Kubelkova K., Bavlovic J., Stulik J. Cross-species proteomic comparison of outer membrane vesicles and membranes of Francisella tularensis subsp. tularensis versus subsp. holarctica. J. Proteome Res. 2021; 20(3): 1716–32. https://doi.org/10.1021/acs.jproteome.0c00917

21. Rasmussen J.A., Post D.M., Gibson B.W., Lindemann S.R., Apicella M.A., Meyerholz D.K., et al. Francisella tularensis Schu S4 lipopolysaccharide core sugar and O-antigen mutants are attenuated in a mouse model of tularemia. Infect. Immun. 2014; 82(4): 1523–39. https://doi.org/10.1128/IAI.01640-13

22. Raynaud C., Meibom K.L., Lety M.A., Dubail I., Candela T., Frapy E., et al. Role of the wbt locus of Francisella tularensis in lipopolysaccharide O-antigen biogenesis and pathogenicity. Infect. Immun. 2007; 75(1): 536–41. https://doi.org/10.1128/IAI.01429-06

23. Lindemann S.R., Peng K., Long M.E., Hunt J.R., Apicella M.A., Monack D.M., et al. Francisella tularensis Schu S4 O-antigen and capsule biosynthesis gene mutants induce early cell death in human macrophages. Infect. Immun. 2011; 79(2): 581–94. https://doi.org/10.1128/IAI.00863-10

24. Freudenberger Catanzaro K.C., Champion A.E., Mohapatra N., Cecere T., Inzana T.J. Glycosylation of a capsule-like complex (CLC) by Francisella novicida is required for virulence and partial protective immunity in mice. Front. Microbiol. 2017; 8: 935. https://doi.org/10.3389/fmicb.2017.00935

25. Haurat M.F., Elhenawy W., Feldman M.F. Prokaryotic membrane vesicles: new insights on biogenesis and biological roles. Biol. Chem. 2015; 396(2): 95–109. https://doi.org/10.1515/hsz-2014-0183

26. Yoon H. Bacterial outer membrane vesicles as a delivery system for virulence regulation. J. Microbiol. Biotechnol. 2016; 26(8): 1343–7. https://doi.org/10.4014/jmb.1604.04080

27. McCaig W.D., Koller A., Thanassi D.G. Production of outer membrane vesicles and outer membrane tubes by Francisella novicida. J. Bacteriol. 2013; 195(6): 1120–32. https://doi.org/10.1128/JB.02007-12

28. Sampath V., McCaig W.D., Thanassi D.G. Amino acid deprivation and central carbon metabolism regulate the production of outer membrane vesicles and tubes by Francisella. Mol. Microbiol. 2018; 107(4): 523–41. https://doi.org/10.1111/mmi.13897

29. Pierson T., Matrakas D., Taylor Y.U., Manyam G., Morozov V.N., Zhou W., et al. Proteomic characterization and functional analysis of outer membrane vesicles of Francisella novicida suggests possible role in virulence and use as a vaccine. J. Proteome Res. 2011; 10(3): 954–67. https://doi.org/10.1021/pr1009756

30. Case E.D.R., Samuel J.E. Contrasting lifestyles within the host cell. Microbiol. Spectr. 2016; 4(1). https://doi.org/10.1128/microbiolspec.VMBF-0014-2015

31. Pavkova I., Klimentova J., Bavlovic J., Horcickova L., Kubelkova K., Vlcak E., et al. Francisella tularensis outer membrane vesicles participate in the early phase of interaction with macrophages. Front. Microbiol. 2021; 12: 748706. https://doi.org/10.3389/fmicb.2021.748706

32. Klimentova J., Pavkova I., Horcickova L., Bavlovic J., Kofro nova O., Benada O., et al. Francisella tularensis subsp. holarctica releases differentially loaded outer membrane vesicles under various stress conditions. Front. Microbiol. 2019; 10: 2304. https://doi.org/10.3389/fmicb.2019.02304

33. Siebert C., Lindgren H., Ferré S., Villers C., Boisset S., Perard J., et al. Francisella tularensis: FupA mutation contributes to fluoroquinolone resistance by increasing vesicle secretion and biofilm formation. Emerg. Microbes Infect. 2019; 8(1): 808–22. https://doi.org/10.1080/22221751.2019

34. Hazlett K.R., Caldon S.D., McArthur D.G., Cirillo K.A., Kirimanjeswara G.S., Magguilli M.L., et al. Adaptation of Francisella tularensis to the mammalian environment is governed by cues which can be mimicked in vitro. Infect. Immun. 2008; 76(10): 4479–88. https://doi.org/10.1128/IAI.00610-08

35. Travis B.A., Ramsey K.M., Prezioso S.M., Tallo T., Wandzilak J.M., Hsu A., et al. Structural basis for virulence activation of Francisella tularensis. Mol. Cell. 2021; 81(1): 139-152.e10. https://doi.org/10.1016/j.molcel.2020.10.035

36. Baron G.S., Nano F.E. MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol. Microbiol. 1998; 29(1): 247–59. https://doi.org/10.1046/j.1365-2958.1998.00926.x

37. Binesse J., Lindgren H., Lindgren L., Conlan W., Sjöstedt A. Roles of reactive oxygen species-degrading enzymes of Francisella tularensis SCHU S4. Infect. Immun. 2015; 83(6): 2255– 63. https://doi.org/10.1128/IAI.02488-14

38. Mohapatra N.P., Balagopal A., Soni S., Schlesinger L.S., Gunn J.S. AcpA is a Francisella acid phosphatase that affects intramacrophage survival and virulence. Infect. Immun. 2007; 75(1): 390–6. https://doi.org/10.1128/IAI.01226-06

39. Hoang K.V., Chen C.G., Koopman J., Moshiri J., Adcox H.E., Gunn J.S. Identification of genes required for secretion of the Francisella oxidative burst-inhibiting acid phosphatase AcpA. Front. Microbiol. 2016; 7: 605. https://doi.org/10.3389/fmicb.2016.00605

40. Llewellyn A.C., Jones C.L., Napier B.A., Bina J.E., Weiss D.S. Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence. PLoS One. 2011; 6(9): e24201. https://doi.org/10.1371/journal.pone.0024201

41. Sen A., Imlay J.A. How microbes defend themselves from incoming hydrogen peroxide. Front. Immunol. 2021; 12: 667343. https://doi.org/10.3389/fimmu.2021.667343

42. Карцева А.С., Калмантаева О.В., Силкина М.В., Комба рова Т.И., Павлов В.М., Мокриевич А.Н. и др. Характеристика иммуногенных и протективных свойств модифицированных вариантов штамма Francisella tularensis 15 НИИЭГ. Проблемы особо опасных инфекций. 2020; (3): 62–9. https://doi.org/10.21055/0370-1069-2020-3-62-69

43. Alharbi A., Rabadi S.M., Alqahtani M., Marghani D., Worden M., Ma Z., et al. Role of peroxiredoxin of the AhpC/TSA family in antioxidant defense mechanisms of Francisella tularensis. PLoS One. 2019; 14(3): e0213699. https://doi.org/10.1371/journal.pone.0213699

44. Clemens D.L., Lee B.Y., Horwitz M.A. Francisella tularensis enters macrophages via a novel process involving pseudopod loops. Infect. Immun. 2005; 73(9): 5892–902. https://doi.org/10.1128/IAI.73.9.5892-5902.2005

45. Wehrly T.D., Chong A., Virtaneva K., Sturdevant D.E., Child R., Edwards J.A., et al. Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell. Microbiol. 2009; 11(7): 1128– 50. https://doi.org/10.1111/j.1462-5822.2009.01316.x

46. Kramer J., Özkaya Ö., Kümmerli R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 2020; 18(3): 152–63. https://doi.org/10.1038/s41579-019-0284-4

47. Ramakrishnan G., Pérez N.M., Carroll C. Citryl ornithine is an intermedi

Journal of microbiology, epidemiology and immunobiology. 2022; 99: 362-371

Determinants of resistance of Francisella tularensis to environmental stress

Borisova S. V., Volokh O. A.

https://doi.org/10.36233/0372-9311-219

Abstract

The review summarizes current literature data on the main structures and components of the tularemia microbe responsible for adaptation to the warm-blooded host macroorganism (susceptible animals, humans). According to scientific data, the successful survival of Francisella tularensis under stress conditions requires the interaction of all cellular structures of the microbe. Despite active research carried out in the field of studying the determinants and mechanisms of F. tularensis resistance, the reason for the high adaptive capacity with low variability of the tularemia pathogen has not been established. These studies are important for understanding the mechanisms of persistence and virulence of F. tularensis, as well as for further development of vaccines and diagnostic tests.

References

1. Popova A.Yu., Mefod'ev V.V., Stepanova T.F., Ezhlova E.B., Demina Yu.V., Marchenko A.N. Epidemiologiya i profilaktika tulyaremii na endemichnykh territoriyakh Rossii: monografiya. Tyumen'; 2016.

2. Olsuf'ev N.G., Dunaeva T.N. Prirodnaya ochagovost', epidemiologiya i profilaktika tulyaremii. M.: Meditsina; 1970.

3. Hennebique A., Peyroux J., Brunet C., Martin A., Henry T., Knezevic M., et al. Amoebae can promote the survival of Francisella species in the aquatic environment. Emerg. Microbes Infect. 2021; 10(1): 277–90. https://doi.org/10.1080/22221751.2021.1885999

4. Meshcheryakova I.S. Tulyaremiya. V kn.: Prirodnaya ochagovost' boleznei: Issledovaniya instituta im. N.F. Gamalei RAMN. M.; 2003: 137–60.

5. Telford S.R. 3rd, Goethert H.K. Ecology of Francisella tularensis. Annu. Rev. Entomol. 2020; 7(65): 351–72. https://doi.org/10.1146/annurev-ento-011019-025134

6. Thelaus J., Andersson A., Broman T., Bäckman S., Granberg M., Karlsson L., et al. Francisella tularensis subspecies holarctica occurs in Swedish mosquitoes, persists through the developmental stages of laboratory-infected mosquitoes and is transmissible during blood feeding. Microb. Ecol. 2014; 67(1): 96–107. https://doi.org/10.1007/s00248-013-0285-1

7. Romanova L.V., Mishan'kin B.N., Pichurina N.L., Sayamov S.R., Vodop'yanov S.O. Nekul'tiviruemye formy Francisella tularensis. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2000; 77(2): 11–5.

8. Celli J., Zahrt T.C. Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb. Perspect. Med. 2013; 3(4): a010314. https://doi.org/10.1101/cshperspect.a010314

9. Radlinski L.C., Brunton J., Steele S., Taft-Benz S., Kawula T.H. Defining the metabolic pathways and host-derived carbon substrates required for Francisella tularensis intracellular growth. mBio. 2018; 9(6): e01471-18. https://doi.org/10.1128/mbio.01471-18

10. Forestal C.A., Malik M., Catlett S.V., Savitt A.G., Benach J.L., Sellati T.J., et al. Francisella tularensis has a significant extracellular phase in infected mice. J. Infect. Dis. 2007; 196(1): 134–7. https://doi.org/10.1086/518611

11. Yu J.J., Raulie E.K., Murthy A.K., Guentzel M.N., Klose K.E., Arulanandam B.P. The presence of infectious extracellular Francisella tularensis subsp. novicida in murine plasma after pulmonary challenge. Eur. J. Clin. Microbiol. Infect. Dis. 2008; 27(4): 323–5. https://doi.org/10.1007/s10096-007-0434-x

12. Bradford M.K., Elkins K.L. Immune lymphocytes halt replication of Francisella tularensis LVS within the cytoplasm of infected macrophages. Sci. Rep. 2020; 21(10): 12023. https://doi.org/10.1038/s41598-020-68798-2

13. Mokrievich A.N., Kravchenko T.B., Firstova V.V., Titareva G.M., Dyatlov I.A., Timofeev V.S., red. Tulyaremiya: sostoyanie problemy i metody issledovaniya. M.: Dinastiya; 2019.

14. Freudenberger Catanzaro K.C., Inzana T.J. The Francisella tularensis polysaccharides: What is the real capsule? Microbiol. Mol. Biol. Rev. 2020; 84(1): e00065-19. https://doi.org/10.1128/MMBR.00065-19

15. Golovliov I., Baranov V., Krocova Z., Kovarova H., Sjöstedt A. An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect. Immun. 2003; 71(10): 5940–50. https://doi.org/10.1128/IAI.71.10.5940-5950.2003

16. Cherwonogrodzky J.W., Knodel M.H., Spence M.R. Increased encapsulation and virulence of Francisella tularensis live vaccine strain (LVS) by subculturing on synthetic medium. Vaccine. 1994; 12(9): 773–5. https://doi.org/10.1016/0264-410x(94)90284-4

17. Bandara A.B., Champion A.E., Wang X., Berg G., Apicella M.A., McLendon M., et al. Isolation and mutagenesis of a capsule-like complex (CLC) from Francisella tularensis, and contribution of the CLC to F. tularensis virulence in mice. PLoS One. 2011; 6(4): e19003. https://doi.org/10.1371/journal.pone.0019003

18. Larsson P., Oyston P.C., Chain P., Chu M.C., Duffield M., Fuxelius H.H., et al. The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat. Genet. 2005; 37(2): 153–9. https://doi.org/10.1038/ng1499

19. Marshall L.E., Nelson M., Davies C.H., Whelan A.O., Jenner D.C., Moule M.G., et al. An O-antigen glycoconjugate vaccine produced using protein glycan coupling technology is protective in an inhalational rat model of tularemia. J. Immunol. Res. 2018; 2018: 8087916. https://doi.org/10.1155/2018/8087916

20. Klimentova J., Rehulka P., Pavkova I., Kubelkova K., Bavlovic J., Stulik J. Cross-species proteomic comparison of outer membrane vesicles and membranes of Francisella tularensis subsp. tularensis versus subsp. holarctica. J. Proteome Res. 2021; 20(3): 1716–32. https://doi.org/10.1021/acs.jproteome.0c00917

21. Rasmussen J.A., Post D.M., Gibson B.W., Lindemann S.R., Apicella M.A., Meyerholz D.K., et al. Francisella tularensis Schu S4 lipopolysaccharide core sugar and O-antigen mutants are attenuated in a mouse model of tularemia. Infect. Immun. 2014; 82(4): 1523–39. https://doi.org/10.1128/IAI.01640-13

22. Raynaud C., Meibom K.L., Lety M.A., Dubail I., Candela T., Frapy E., et al. Role of the wbt locus of Francisella tularensis in lipopolysaccharide O-antigen biogenesis and pathogenicity. Infect. Immun. 2007; 75(1): 536–41. https://doi.org/10.1128/IAI.01429-06

23. Lindemann S.R., Peng K., Long M.E., Hunt J.R., Apicella M.A., Monack D.M., et al. Francisella tularensis Schu S4 O-antigen and capsule biosynthesis gene mutants induce early cell death in human macrophages. Infect. Immun. 2011; 79(2): 581–94. https://doi.org/10.1128/IAI.00863-10

24. Freudenberger Catanzaro K.C., Champion A.E., Mohapatra N., Cecere T., Inzana T.J. Glycosylation of a capsule-like complex (CLC) by Francisella novicida is required for virulence and partial protective immunity in mice. Front. Microbiol. 2017; 8: 935. https://doi.org/10.3389/fmicb.2017.00935

25. Haurat M.F., Elhenawy W., Feldman M.F. Prokaryotic membrane vesicles: new insights on biogenesis and biological roles. Biol. Chem. 2015; 396(2): 95–109. https://doi.org/10.1515/hsz-2014-0183

26. Yoon H. Bacterial outer membrane vesicles as a delivery system for virulence regulation. J. Microbiol. Biotechnol. 2016; 26(8): 1343–7. https://doi.org/10.4014/jmb.1604.04080

27. McCaig W.D., Koller A., Thanassi D.G. Production of outer membrane vesicles and outer membrane tubes by Francisella novicida. J. Bacteriol. 2013; 195(6): 1120–32. https://doi.org/10.1128/JB.02007-12

28. Sampath V., McCaig W.D., Thanassi D.G. Amino acid deprivation and central carbon metabolism regulate the production of outer membrane vesicles and tubes by Francisella. Mol. Microbiol. 2018; 107(4): 523–41. https://doi.org/10.1111/mmi.13897

29. Pierson T., Matrakas D., Taylor Y.U., Manyam G., Morozov V.N., Zhou W., et al. Proteomic characterization and functional analysis of outer membrane vesicles of Francisella novicida suggests possible role in virulence and use as a vaccine. J. Proteome Res. 2011; 10(3): 954–67. https://doi.org/10.1021/pr1009756

30. Case E.D.R., Samuel J.E. Contrasting lifestyles within the host cell. Microbiol. Spectr. 2016; 4(1). https://doi.org/10.1128/microbiolspec.VMBF-0014-2015

31. Pavkova I., Klimentova J., Bavlovic J., Horcickova L., Kubelkova K., Vlcak E., et al. Francisella tularensis outer membrane vesicles participate in the early phase of interaction with macrophages. Front. Microbiol. 2021; 12: 748706. https://doi.org/10.3389/fmicb.2021.748706

32. Klimentova J., Pavkova I., Horcickova L., Bavlovic J., Kofro nova O., Benada O., et al. Francisella tularensis subsp. holarctica releases differentially loaded outer membrane vesicles under various stress conditions. Front. Microbiol. 2019; 10: 2304. https://doi.org/10.3389/fmicb.2019.02304

33. Siebert C., Lindgren H., Ferré S., Villers C., Boisset S., Perard J., et al. Francisella tularensis: FupA mutation contributes to fluoroquinolone resistance by increasing vesicle secretion and biofilm formation. Emerg. Microbes Infect. 2019; 8(1): 808–22. https://doi.org/10.1080/22221751.2019

34. Hazlett K.R., Caldon S.D., McArthur D.G., Cirillo K.A., Kirimanjeswara G.S., Magguilli M.L., et al. Adaptation of Francisella tularensis to the mammalian environment is governed by cues which can be mimicked in vitro. Infect. Immun. 2008; 76(10): 4479–88. https://doi.org/10.1128/IAI.00610-08

35. Travis B.A., Ramsey K.M., Prezioso S.M., Tallo T., Wandzilak J.M., Hsu A., et al. Structural basis for virulence activation of Francisella tularensis. Mol. Cell. 2021; 81(1): 139-152.e10. https://doi.org/10.1016/j.molcel.2020.10.035

36. Baron G.S., Nano F.E. MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol. Microbiol. 1998; 29(1): 247–59. https://doi.org/10.1046/j.1365-2958.1998.00926.x

37. Binesse J., Lindgren H., Lindgren L., Conlan W., Sjöstedt A. Roles of reactive oxygen species-degrading enzymes of Francisella tularensis SCHU S4. Infect. Immun. 2015; 83(6): 2255– 63. https://doi.org/10.1128/IAI.02488-14

38. Mohapatra N.P., Balagopal A., Soni S., Schlesinger L.S., Gunn J.S. AcpA is a Francisella acid phosphatase that affects intramacrophage survival and virulence. Infect. Immun. 2007; 75(1): 390–6. https://doi.org/10.1128/IAI.01226-06

39. Hoang K.V., Chen C.G., Koopman J., Moshiri J., Adcox H.E., Gunn J.S. Identification of genes required for secretion of the Francisella oxidative burst-inhibiting acid phosphatase AcpA. Front. Microbiol. 2016; 7: 605. https://doi.org/10.3389/fmicb.2016.00605

40. Llewellyn A.C., Jones C.L., Napier B.A., Bina J.E., Weiss D.S. Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence. PLoS One. 2011; 6(9): e24201. https://doi.org/10.1371/journal.pone.0024201

41. Sen A., Imlay J.A. How microbes defend themselves from incoming hydrogen peroxide. Front. Immunol. 2021; 12: 667343. https://doi.org/10.3389/fimmu.2021.667343

42. Kartseva A.S., Kalmantaeva O.V., Silkina M.V., Komba rova T.I., Pavlov V.M., Mokrievich A.N. i dr. Kharakteristika immunogennykh i protektivnykh svoistv modifitsirovannykh variantov shtamma Francisella tularensis 15 NIIEG. Problemy osobo opasnykh infektsii. 2020; (3): 62–9. https://doi.org/10.21055/0370-1069-2020-3-62-69

43. Alharbi A., Rabadi S.M., Alqahtani M., Marghani D., Worden M., Ma Z., et al. Role of peroxiredoxin of the AhpC/TSA family in antioxidant defense mechanisms of Francisella tularensis. PLoS One. 2019; 14(3): e0213699. https://doi.org/10.1371/journal.pone.0213699

44. Clemens D.L., Lee B.Y., Horwitz M.A. Francisella tularensis enters macrophages via a novel process involving pseudopod loops. Infect. Immun. 2005; 73(9): 5892–902. https://doi.org/10.1128/IAI.73.9.5892-5902.2005

45. Wehrly T.D., Chong A., Virtaneva K., Sturdevant D.E., Child R., Edwards J.A., et al. Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell. Microbiol. 2009; 11(7): 1128– 50. https://doi.org/10.1111/j.1462-5822.2009.01316.x

46. Kramer J., Özkaya Ö., Kümmerli R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 2020; 18(3): 152–63. https://doi.org/10.1038/s41579-019-0284-4

47. Ramakrishnan G., Pérez N.M., Carroll C. Citryl ornithine is an intermedi