Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2022; 99: 231-243

Роль цианотоксинов в патологии человека и животных (обзор)

Поляк Ю. М., Поляк М. С.

https://doi.org/10.36233/0372-9311-230

Аннотация

Цианобактерии (ЦБ) являются древнейшей и широко распространённой формой жизни на Земле. Некоторые представители этих микроорганизмов образуют токсины, опасные для человека и животных. В работе приводятся данные о распространении токсинообразующих ЦБ, патогенезе действия токсинов на клетки и ткани человека, сельскохозяйственных, домашних и диких животных. Уделено серьёзное внимание нейротоксическому действию цианотоксинов (ЦТ), наиболее часто являющихся причиной гибели животных. ЦТ способны вызывать тяжёлые поражения центральной и периферической нервной системы, печени, почек, репродуктивной системы и пищеварительного тракта. Приводятся данные о гепатотоксическом, нефротоксическом, кардиотоксическом, иммунотоксическом действии ЦТ. Рассматривается их роль в возникновении тяжёлых дегенеративных процессов в мозге человека. Оценивается возможность влияния ЦТ на канцерогенез, особенно в печени, толстом кишечнике и прямой кишке. Отмечена ограниченность существующих данных о болезнетворности ЦБ и той помощи, которая необходима при вызванных ими поражениях. Обсуждается необходимость дальнейших исследований клинических проявлений патологических процессов, вызванных ЦТ, разработки методов диагностики и специфической терапии отравлений.

Список литературы

1. Панкратова Е.М. Становление функциональных особенностей цианобактерий на путях их сопряжённой эволюции с биосферой. Теоретическая и прикладная экология. 2010; (3): 4–11.

2. Vachard D. Cyanobacteria. In: Encyclopedia of Geology. Academic Press; 2021: 446–60. https://doi.org/10.1016/B978-0-12-409548-9.11843-3

3. Gaysina L.A., Saraf A., Singh P. Cyanobacteria in diverse habitats. In: Mishra A.K., Tiwari D.N., Rai A.N., eds. Cyanobacteria: From Basic Science to Applications. Academic Press; 2019: 1–28. https://doi.org/10.1016/B978-0-12-814667-5.00001-5

4. Андреева Н.А., Мельников В.В., Снарская Д.Д. Роль цианобактерий в морских экосистемах. Биология моря. 2020; 46(3): 161–73. https://doi.org/10.31857/S013434752003002X

5. Капков В.И., Васильева С.Г., Лобакова Е.С. Сукцессии цианобактерий в водоемах бореальной зоны. Журнал микробиологии, эпидемиологии и иммунобиологии. 2018; (4): 100–7. https://doi.org/10.36233/0372-9311-2018-4-100-107

6. Шлегель Г.Г. История микробиологии. М.: Едиториал УРСС; 2002.

7. Поляк Ю.М., Сухаревич В.И. Токсичные цианобактерии: распространение, регуляция синтеза токсинов, способы их деструкции. Вода: химия и экология. 2017; (11-12): 125–39.

8. Mancini M., Rodriguez C., Bagnis G., Liendo A., Prosperi C., Bonansea M., et al. Cianobacterial bloom and animal mass mortality in a reservoir from Central Argentina. Braz. J. Biol. 2010; 70(3 Suppl.): 841–5. https://doi.org/10.1590/s1519-69842010000400015

9. Chernoff N., Hill D., Lang J., Schmid J., Le T., Farthing A., et al. The comparative toxicity of 10 microcystin congeners administered orally to mice: clinical effects and organ toxicity. Toxins (Basel). 2020; 12(6): 403. https://doi.org/10.3390/toxins12060403

10. Chichova M., Tasinov O., Shkodrova M., Mishonova M., Sazdova I., Ilieva B., et al. New data on cylindrospermopsin toxicity. Toxins (Basel). 2021; 13(1): 41. https://doi.org/10.3390/toxins13010041

11. McLellan N.L., Manderville R.A. Toxic mechanisms of microcystins in mammals. Toxicol. Res. (Camb). 2017; 6(4): 391–405. https://doi.org/10.1039/c7tx00043j

12. Zhang S., Du X., Liu H., Losiewic M.D., Chen X., Ma Y., et al. The latest advances in the reproductive toxicity of microcystinLR. Environ. Res. 2021; 192: 110254. https://doi.org/10.1016/j.envres.2020.110254

13. He J., Li G., Chen J., Lin J., Zeng C., Chen J., et al. Prolonged exposure to low-dose microcystin induces nonalcoholic steatohepatitis in mice: a systems toxicology study. Arch. Toxicol. 2017; 91(1): 465–80. https://doi.org/10.1007/s00204-016-1681-3

14. Welten R.D., Meneely J.P., Elliott C.T. A comparative review of the effect of microcystin-LR on the proteome. Exposure and Health. 2020; 12(2): 111–29. https://doi.org/10.1007/s12403-019-00303-1

15. Chen L., Giesy J.P., Xie P. The dose makes the poison. Sci. Total Environ. 2018; 621: 649–53. https://doi.org/10.1016/j.scitotenv.2017.11.218

16. Buratti F.M., Manganelli M., Vichi S., Stefanelli M., Scardala S., Testai E., et al. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017; 91(3): 1049–130. https://doi.org/10.1007/s00204-016-1913-6

17. Ra D., Sa B., Sl B., Js M., Sj M., Da D., et al. Is exposure to BMAA a risk factor for neurodegenerative diseases? A response to a critical review of the BMAA hypothesis. Neurotox. Res. 2021; 39(1): 81–106. https://doi.org/10.1007/s12640-020-00302-0

18. Martin R.M., Stallrich J., Bereman M.S. Mixture designs to investigate adverse effects upon co-exposure to environmental cyanotoxins. Toxicology. 2019; 421: 74–83. https://doi.org/10.1016/j.tox.2019.04.013

19. Metcalf J.S., Codd G.A. Co-occurrence of cyanobacteria and cyanotoxins with other environmental health hazards: impacts and implications. Toxins. 2020; 12(10): 629–36. https://doi.org/10.3390/toxins12100629

20. Massey I.Y., Yang F., Ding Z., Yang S., Guo J., Tezi C., et al. Exposure routes and health effects of microcystins on animals and humans: A mini-review. Toxicon. 2018; 151: 156–62. https://doi.org/10.1016/j.toxicon.2018.07.010

21. Foss A.J., Aubel M.T., Gallagher B., Mettee N., Miller A., Fogelson S.B. Diagnosing microcystin intoxication of canines: Clinicopathological indications, pathological characteristics, and analytical detection in postmortem and antemortem samples. Toxins. 2019; 11(8): 456. https://doi.org/10.3390/toxins11080456

22. Svirčev Z., Lalić D., Bojadžija Savić G., Tokodi N., Drobac Backović D., Chen L., et al. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 2019; 93(9): 2429–81. https://doi.org/10.1007/s00204-019-02524-4

23. Codd G.A., Pliński M., Surosz W., Hutson J., Fallowfield H.J. Publication in 1672 of animal deaths at the Tuchomskie Lake, northern Poland and a likely role of cyanobacterial blooms. Toxicon. 2015; 108: 285–6. https://doi.org/10.1016/j.toxicon.2015.10.005

24. Белов А.Б., Панин А.Л. Теория сапронозных инфекций: история развития и пути совершенствования в системе медико-биологических наук. Журнал микробиологии, эпидемиологии и иммунобиологии. 2020; 97(1): 91–101. https://doi.org/10.36233/0372-9311-2020-97-1-91-101

25. Otten T.G., Paerl H.W. Health effects of toxic cyanobacteria in U.S. drinking and recreational waters: our current understanding and proposed direction. Curr. Environ. Health Rep. 2015; 2(1): 75–84. https://doi.org/10.1007/s40572-014-0041-9

26. Svirčev Z., Drobac D., Tokodi N., Mijović B., Codd G.A., Meriluoto J. Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Arch. Toxicol. 2017; 91(2): 621–50. https://doi.org/10.1007/s00204-016-1921-6

27. Trevino-Garrison I., DeMent J., Ahmed F.S., Haines-Lieber P., Langer T., Ménager H., et al. Human illnesses and animal deaths associated with freshwater harmful algal blooms–Kansas. Toxins. 2015; 7(2): 353–66. https://doi.org/10.3390/toxins7020353

28. Vidal F., Sedan D., D'Agostino D., Cavalieri M.L., Mullen E., Parot Varela M.M., et al. Recreational exposure during algal bloom in Carrasco Beach, Uruguay: A liver failure case report. Toxins. 2017; 9(9): 267. https://doi.org/10.3390/toxins9090267

29. Vilariño N., Louzao M.C., Abal P., Cagide E., Carrera C., Vieytes M.R., et al. Human poisoning from marine toxins: Unknowns for optimal consumer protection. Toxins. 2018; 10(8): 324. https://doi.org/10.3390/toxins10080324

30. Plaas H.E., Paerl H.W. Toxic cyanobacteria: a growing threat to water and air quality. Environ. Sci. Technol. 2021; 55(1): 44–64. https://doi.org/10.1021/acs.est.0c06653

31. Hu Y., Chen J., Fan H., Xie P., He J. A review of neurotoxicity of microcystins. Environ. Sci. Pollut. Res. Int. 2016; 23(8): 7211–9. https://doi.org/10.1007/s11356-016-6073-y

32. Metcalf J.S., Souza N.R. Cyanobacteria and their toxins. In: Ahuja S., ed. Separation Science and Technology. Academic Press; 2019; 11: 125–48. https://doi.org/10.1016/B978-0-12-815730-5.00006-5

33. Попова А.А., Кокшарова О.А. Нейротоксичная небелковая аминокислота — βN-метиламин-L-аланин и ее роль в биологических системах (обзор). Биохимия. 2016; 81(8): 1021–33.

34. Hinojosa M.G., Gutiérrez-Praena D., Prieto A.I., Guzmán-Guillén R., Jos A., Cameán A.M. Neurotoxicity induced by microcystins and cylindrospermopsin: A review. Sci. Total Environ. 2019; 668: 547–65. https://doi.org/10.1016/j.scitotenv.2019.02.426

35. Testai E., Scardala S., Vichi S., Buratti F.M., Funari E. Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Crit. Rev. Toxicol. 2016. 46(5): 385–419. https://doi.org/10.3109/10408444.2015.1137865

36. Sini P., Dang T.B.C., Fais M., Galioto M., Padedda B.M., Lugliè A., et al. Cyanobacteria, cyanotoxins, and neurodegenerative diseases: Dangerous Liaisons. Int. J. Mol. Sci. 2021; 22(16): 8726. https://doi.org/10.3390/ijms22168726

37. Patocka J., Gupta R.C., Kuca K. Anatoxin-a(s): natural organophosphorus anticholinesterase agent. Mil. Med. Sci. Lett. 2011; 80: 129–39.

38. Florczyk M., Łakomiak A., Woêny M., Brzuzanet P. Neurotoxicity of cyanobacterial toxins. Environ. Biotechnol. 2014; 10(1): 26–43. https://doi.org/10.14799/ebms246

39. Silva D.F., Candeias E., Esteves A.R., Magalhães J.D., Ferreira I.L., Nunes-Costa D., et al. Microbial BMAA elicits mitochondrial dysfunction, innate immunity activation, and Alzheimer's disease features in cortical neurons. J. Neuroinflammation. 2020; 17(1): 332. https://doi.org/10.1186/s12974-020-02004-y

40. Delcourt N., Claudepierre T., Maignien T., Arnich N., Mattei C. Cellular and molecular aspects of the β-N-Methylamino-l-alanine (BMAA) mode of action within the neurodegenerative pathway: Facts and controversy. Toxins (Basel). 2017; 10(1): 6. https://doi.org/10.3390/toxins10010006

41. Soto T., Buzzi E.D., Rotstein N.P., German O.L., Politi L.E. Damaging effects of BMAA on retina neurons and Müller glial cells. Exp. Eye Res. 2021; 202: 108342. https://doi.org/10.1016/j.exer.2020.108342

42. Azevedo S.M., Carmichael W.W., Jochimsen E.M., Rinehart K.L., Lau S., Shaw G.R., et al. Human intoxication by microcystins during renal dialysis treatment in Caruaru — Brazil. Toxicol. 2002; 181-182: 441–6. https://doi.org/10.1016/S0300-483X(02)00491-2

43. Badar M., Batool F., Khan S.S., Khokhar I., Qamar M., Yasir Ch. Effects of microcystins toxins contaminated drinking water on hepatic problems in animals (cows and buffalos) and toxins removal chemical method. Buffalo Bulletin. 2017; 36(1): 43–56.

44. Li Y., Chen J.A., Zhao Q., Pu C., Qiu Z., Zhang R., et al. A cross-sectional investigation of chronic exposure to micro- cystin in relationship to childhood liver damage in the Three Gorges Reservoir Region, China. Environ. Health Perspect. 2011; 119(10): 1483–8. https://doi.org/10.1289/ehp.100241

45. Zhang Y., Zhu P., Wu X., Yuan T., Su Z., Chen S., et al. Microcystin-LR induces NLRP3 inflammasome activation via FOXO1 phosphorylation, resulting in interleukin-1β secretion and pyroptosis in hepatocytes. Toxicol. Sci. 2021; 179(1): 53–69. https://doi.org/10.1093/toxsci/kfaa159

46. Cao L., Massey I.Y., Feng H., Yang F. A review of cardiovascular toxicity of microcystins. Toxins. 2019; 11(9): 507. https://doi.org/10.3390/toxins11090507

47. Milutinović A., Zorc-Pleskovic R., Petrovic D., Zorc M., Suput D. Microcystin-LR induces alterations in heart muscle. Folia Biol. (Praha). 2006; 52(4): 116–8.

48. Kubickova B., Babica P., Hilscherová K. Effects of cyanobacterial toxins on the human gastrointestinal tract and the mucosal innate immune system. Environ. Sci. Europe. 2019; 31(1): 1–27. https://doi.org/10.1186/s12302-019-0212-2

49. Sieroslawska A., Rymuszka A. Assessment of the cytotoxic impact of cyanotoxin beta-N-methylamino-L-alanine on a fish immune cell line. Aquatic. Toxicol. 2019; 212: 214–21. https://doi.org/10.1016/j.aquatox.2019.05.012

50. Zhong Y., Shen L., Ye X., Zhou D., He Y., Li Y., et al. Neurotoxic anatoxin-a can also exert immunotoxicity by the induction of apoptosis on Carassius auratus lymphocytes in vitro when exposed to environmentally relevant concentrations. Front. Physiol. 2020; 11: 316. https://doi.org/10.3389/fphys.2020.00316

51. Lone Y., Bhide M., Koiri R.K. Microcystin-LR induced immunotoxicity in mammals. J. Toxicol. 2016; 2016: 8048125. https://doi.org/10.1155/2016/8048125

52. Duan Y., Xiong D., Wang Y., Dong H., Huang J., Zhang J. Effects of Microcystis aeruginosa and microcystin-LR on intestinal histology, immune response, and microbial community in Litopenaeus vannamei. Environ. Pollut. 2020; 265(Pt. A): 114774. https://doi.org/10.1016/j.envpol.2020.114774

53. Rymuszka A., Sieroslawska A., Bownik A., Skowronski T. Immunotoxic potential of cyanotoxins on the immune system of fish. Central Eur. J. Immunol. 2008; 33(3): 150–2.

54. Xu S., Yi X., Liu W., Zhang C., Massey I.Y., Yang F., et al. A review of nephrotoxicity of microcystins. Toxins. 2020; 12(11): 693. https://doi.org/10.3390/toxins12110693

55. Sitprija V., Sitprija S. Marine toxins and nephrotoxicity: Mechanism of injury. Toxicon. 2019; 161: 44–9. https://doi.org/10.1016/j.toxicon.2019.02.012

56. Wang Z., Li G., Wu Q., Liu C., Shen J., Yan W. Microcystin-LR exposure induced nephrotoxicity by triggering apoptosis in female zebrafish. Chemosphere. 2019; 214: 598–605. https://doi.org/10.1016/j.chemosphere.2018.09.103

57. Lin H., Liu W., Zeng H., Pu C., Zhang R., Qiu Z., et al. Determination of environmental exposure to microcystin and aflatoxin as a risk for renal function based on 5493 rural people in southwest China. Environ. Sci. Technol. 2016; 50(10): 5346–56. https://doi.org/10.1021/acs.est.6b01062

58. Zhou Y., Xu X., Yu B., Yu G. Characterization of in vitro effects of microcystin‐LR on intestinal epithelial cells. Environ. Toxicol. 2017; 32(5): 1539–47. https://doi.org/10.1002/tox.22375

59. Wu J.X., Huang H., Yang L., Zhang X.F., Zhang S.S., Liu H.H., et al. Gastrointestinal toxicity induced by microcystins. World J. Clin. Cases. 2018; 6(10): 344–54. https://doi.org/10.12998/wjcc.v6.i10.344

60. Harris N., Harvey K.V., Gordon S.C., Alderman P., Esposito D., Reif J.S., et al. Algal bloom–related illness: Improving health outcomes in primary care. J. Nurse Practitioners. 2020; 16(9): 679–82. https://doi.org/10.1016/j.nurpra.2020.06.019

61. Thuan N.H., An T.T., Shrestha A., Canh N.X., Sohng J.K., Dhakal D. Recent advances in exploration and biotechnological production of bioactive compounds in three cyanobacterial genera: Nostoc, Lyngbya, and Microcystis. Front. Chem. 2019; 7: 604. https://doi.org/10.3389/fchem.2019.00604

62. Vankova D., Pasheva M., Kiselova-Kaneva Y., Ivanov D., Ivanova D. Mechanisms of cyanotoxin toxicity—carcinogenicity, anticancer potential, and clinical toxicology. In: Pınar E., Tomohisa O., eds. Medical Toxicology. Rijeka, Croatia: IntechOpen; 2021. https://doi.org/10.5772/intechopen.88016

63. Hernandez B.Y., Zhu X., Sotto P., Paulino Y. Oral exposure to environmental cyanobacteria toxins: Implications for cancer risk. Environ. Int. 2021; 148: 106381. https://doi.org/10.1016/j.envint.2021.106381

64. Zegura B., Straser A., Filipič M. Genotoxicity and potential carcinogenicity of cyanobacterial toxins — a review. Mutat. Res. 2011; 727(1-2): 16–41. https://doi.org/10.1016/j.mrrev.2011.01.002

65. Ren Y., Yang M., Chen M., Zhu Q., Zhou L., Qin W., et al. Microcystin-LR promotes epithelial-mesenchymal transition in colorectal cancer cells through PI3-K/AKT and SMAD2. Toxicol. Lett. 2017; 265: 53–60. https://doi.org/10.1016/j.toxlet.2016.11.004

Journal of microbiology, epidemiology and immunobiology. 2022; 99: 231-243

The role of cyanotoxins in human and animal pathology (а review)

Polyak Yu. M., Polyak M. S.

https://doi.org/10.36233/0372-9311-230

Abstract

Cyanobacteria are the oldest and most widespread form of life on Earth. Many of them produce toxins that are dangerous to humans and animals. The review presents data on the distribution of toxin-producing cyanobacteria, the pathogenesis of the action of toxins on human and animal cells and tissues. A significant consideration is given to the neurotoxic effect of cyanotoxins, which is most common cause of animal death. Cyanotoxins can cause severe damage to the central and peripheral nervous systems, as well as the liver, kidneys, reproductive system and digestive tract. Data on hepatotoxic, nephrotoxic, cardiotoxic, immunotoxic effects of cyanotoxins are presented. Their role in the human brain degenerative diseases is considered. The possible influence of cyanotoxins on carcinogenesis, especially in the liver, large intestine and rectum, is evaluated. The limitations of the existing data on the pathogenicity of cyanobacteria and medical care necessary for cyanotoxin-induced diseases are noted. The necessity for further studies of clinical manifestations of pathological processes caused by cyanotoxins, the development of diagnostic methods and specific therapy of poisoning is discussed.

References

1. Pankratova E.M. Stanovlenie funktsional'nykh osobennostei tsianobakterii na putyakh ikh sopryazhennoi evolyutsii s biosferoi. Teoreticheskaya i prikladnaya ekologiya. 2010; (3): 4–11.

2. Vachard D. Cyanobacteria. In: Encyclopedia of Geology. Academic Press; 2021: 446–60. https://doi.org/10.1016/B978-0-12-409548-9.11843-3

3. Gaysina L.A., Saraf A., Singh P. Cyanobacteria in diverse habitats. In: Mishra A.K., Tiwari D.N., Rai A.N., eds. Cyanobacteria: From Basic Science to Applications. Academic Press; 2019: 1–28. https://doi.org/10.1016/B978-0-12-814667-5.00001-5

4. Andreeva N.A., Mel'nikov V.V., Snarskaya D.D. Rol' tsianobakterii v morskikh ekosistemakh. Biologiya morya. 2020; 46(3): 161–73. https://doi.org/10.31857/S013434752003002X

5. Kapkov V.I., Vasil'eva S.G., Lobakova E.S. Suktsessii tsianobakterii v vodoemakh boreal'noi zony. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2018; (4): 100–7. https://doi.org/10.36233/0372-9311-2018-4-100-107

6. Shlegel' G.G. Istoriya mikrobiologii. M.: Editorial URSS; 2002.

7. Polyak Yu.M., Sukharevich V.I. Toksichnye tsianobakterii: rasprostranenie, regulyatsiya sinteza toksinov, sposoby ikh destruktsii. Voda: khimiya i ekologiya. 2017; (11-12): 125–39.

8. Mancini M., Rodriguez C., Bagnis G., Liendo A., Prosperi C., Bonansea M., et al. Cianobacterial bloom and animal mass mortality in a reservoir from Central Argentina. Braz. J. Biol. 2010; 70(3 Suppl.): 841–5. https://doi.org/10.1590/s1519-69842010000400015

9. Chernoff N., Hill D., Lang J., Schmid J., Le T., Farthing A., et al. The comparative toxicity of 10 microcystin congeners administered orally to mice: clinical effects and organ toxicity. Toxins (Basel). 2020; 12(6): 403. https://doi.org/10.3390/toxins12060403

10. Chichova M., Tasinov O., Shkodrova M., Mishonova M., Sazdova I., Ilieva B., et al. New data on cylindrospermopsin toxicity. Toxins (Basel). 2021; 13(1): 41. https://doi.org/10.3390/toxins13010041

11. McLellan N.L., Manderville R.A. Toxic mechanisms of microcystins in mammals. Toxicol. Res. (Camb). 2017; 6(4): 391–405. https://doi.org/10.1039/c7tx00043j

12. Zhang S., Du X., Liu H., Losiewic M.D., Chen X., Ma Y., et al. The latest advances in the reproductive toxicity of microcystinLR. Environ. Res. 2021; 192: 110254. https://doi.org/10.1016/j.envres.2020.110254

13. He J., Li G., Chen J., Lin J., Zeng C., Chen J., et al. Prolonged exposure to low-dose microcystin induces nonalcoholic steatohepatitis in mice: a systems toxicology study. Arch. Toxicol. 2017; 91(1): 465–80. https://doi.org/10.1007/s00204-016-1681-3

14. Welten R.D., Meneely J.P., Elliott C.T. A comparative review of the effect of microcystin-LR on the proteome. Exposure and Health. 2020; 12(2): 111–29. https://doi.org/10.1007/s12403-019-00303-1

15. Chen L., Giesy J.P., Xie P. The dose makes the poison. Sci. Total Environ. 2018; 621: 649–53. https://doi.org/10.1016/j.scitotenv.2017.11.218

16. Buratti F.M., Manganelli M., Vichi S., Stefanelli M., Scardala S., Testai E., et al. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017; 91(3): 1049–130. https://doi.org/10.1007/s00204-016-1913-6

17. Ra D., Sa B., Sl B., Js M., Sj M., Da D., et al. Is exposure to BMAA a risk factor for neurodegenerative diseases? A response to a critical review of the BMAA hypothesis. Neurotox. Res. 2021; 39(1): 81–106. https://doi.org/10.1007/s12640-020-00302-0

18. Martin R.M., Stallrich J., Bereman M.S. Mixture designs to investigate adverse effects upon co-exposure to environmental cyanotoxins. Toxicology. 2019; 421: 74–83. https://doi.org/10.1016/j.tox.2019.04.013

19. Metcalf J.S., Codd G.A. Co-occurrence of cyanobacteria and cyanotoxins with other environmental health hazards: impacts and implications. Toxins. 2020; 12(10): 629–36. https://doi.org/10.3390/toxins12100629

20. Massey I.Y., Yang F., Ding Z., Yang S., Guo J., Tezi C., et al. Exposure routes and health effects of microcystins on animals and humans: A mini-review. Toxicon. 2018; 151: 156–62. https://doi.org/10.1016/j.toxicon.2018.07.010

21. Foss A.J., Aubel M.T., Gallagher B., Mettee N., Miller A., Fogelson S.B. Diagnosing microcystin intoxication of canines: Clinicopathological indications, pathological characteristics, and analytical detection in postmortem and antemortem samples. Toxins. 2019; 11(8): 456. https://doi.org/10.3390/toxins11080456

22. Svirčev Z., Lalić D., Bojadžija Savić G., Tokodi N., Drobac Backović D., Chen L., et al. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 2019; 93(9): 2429–81. https://doi.org/10.1007/s00204-019-02524-4

23. Codd G.A., Pliński M., Surosz W., Hutson J., Fallowfield H.J. Publication in 1672 of animal deaths at the Tuchomskie Lake, northern Poland and a likely role of cyanobacterial blooms. Toxicon. 2015; 108: 285–6. https://doi.org/10.1016/j.toxicon.2015.10.005

24. Belov A.B., Panin A.L. Teoriya sapronoznykh infektsii: istoriya razvitiya i puti sovershenstvovaniya v sisteme mediko-biologicheskikh nauk. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2020; 97(1): 91–101. https://doi.org/10.36233/0372-9311-2020-97-1-91-101

25. Otten T.G., Paerl H.W. Health effects of toxic cyanobacteria in U.S. drinking and recreational waters: our current understanding and proposed direction. Curr. Environ. Health Rep. 2015; 2(1): 75–84. https://doi.org/10.1007/s40572-014-0041-9

26. Svirčev Z., Drobac D., Tokodi N., Mijović B., Codd G.A., Meriluoto J. Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Arch. Toxicol. 2017; 91(2): 621–50. https://doi.org/10.1007/s00204-016-1921-6

27. Trevino-Garrison I., DeMent J., Ahmed F.S., Haines-Lieber P., Langer T., Ménager H., et al. Human illnesses and animal deaths associated with freshwater harmful algal blooms–Kansas. Toxins. 2015; 7(2): 353–66. https://doi.org/10.3390/toxins7020353

28. Vidal F., Sedan D., D'Agostino D., Cavalieri M.L., Mullen E., Parot Varela M.M., et al. Recreational exposure during algal bloom in Carrasco Beach, Uruguay: A liver failure case report. Toxins. 2017; 9(9): 267. https://doi.org/10.3390/toxins9090267

29. Vilariño N., Louzao M.C., Abal P., Cagide E., Carrera C., Vieytes M.R., et al. Human poisoning from marine toxins: Unknowns for optimal consumer protection. Toxins. 2018; 10(8): 324. https://doi.org/10.3390/toxins10080324

30. Plaas H.E., Paerl H.W. Toxic cyanobacteria: a growing threat to water and air quality. Environ. Sci. Technol. 2021; 55(1): 44–64. https://doi.org/10.1021/acs.est.0c06653

31. Hu Y., Chen J., Fan H., Xie P., He J. A review of neurotoxicity of microcystins. Environ. Sci. Pollut. Res. Int. 2016; 23(8): 7211–9. https://doi.org/10.1007/s11356-016-6073-y

32. Metcalf J.S., Souza N.R. Cyanobacteria and their toxins. In: Ahuja S., ed. Separation Science and Technology. Academic Press; 2019; 11: 125–48. https://doi.org/10.1016/B978-0-12-815730-5.00006-5

33. Popova A.A., Koksharova O.A. Neirotoksichnaya nebelkovaya aminokislota — βN-metilamin-L-alanin i ee rol' v biologicheskikh sistemakh (obzor). Biokhimiya. 2016; 81(8): 1021–33.

34. Hinojosa M.G., Gutiérrez-Praena D., Prieto A.I., Guzmán-Guillén R., Jos A., Cameán A.M. Neurotoxicity induced by microcystins and cylindrospermopsin: A review. Sci. Total Environ. 2019; 668: 547–65. https://doi.org/10.1016/j.scitotenv.2019.02.426

35. Testai E., Scardala S., Vichi S., Buratti F.M., Funari E. Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Crit. Rev. Toxicol. 2016. 46(5): 385–419. https://doi.org/10.3109/10408444.2015.1137865

36. Sini P., Dang T.B.C., Fais M., Galioto M., Padedda B.M., Lugliè A., et al. Cyanobacteria, cyanotoxins, and neurodegenerative diseases: Dangerous Liaisons. Int. J. Mol. Sci. 2021; 22(16): 8726. https://doi.org/10.3390/ijms22168726

37. Patocka J., Gupta R.C., Kuca K. Anatoxin-a(s): natural organophosphorus anticholinesterase agent. Mil. Med. Sci. Lett. 2011; 80: 129–39.

38. Florczyk M., Łakomiak A., Woêny M., Brzuzanet P. Neurotoxicity of cyanobacterial toxins. Environ. Biotechnol. 2014; 10(1): 26–43. https://doi.org/10.14799/ebms246

39. Silva D.F., Candeias E., Esteves A.R., Magalhães J.D., Ferreira I.L., Nunes-Costa D., et al. Microbial BMAA elicits mitochondrial dysfunction, innate immunity activation, and Alzheimer's disease features in cortical neurons. J. Neuroinflammation. 2020; 17(1): 332. https://doi.org/10.1186/s12974-020-02004-y

40. Delcourt N., Claudepierre T., Maignien T., Arnich N., Mattei C. Cellular and molecular aspects of the β-N-Methylamino-l-alanine (BMAA) mode of action within the neurodegenerative pathway: Facts and controversy. Toxins (Basel). 2017; 10(1): 6. https://doi.org/10.3390/toxins10010006

41. Soto T., Buzzi E.D., Rotstein N.P., German O.L., Politi L.E. Damaging effects of BMAA on retina neurons and Müller glial cells. Exp. Eye Res. 2021; 202: 108342. https://doi.org/10.1016/j.exer.2020.108342

42. Azevedo S.M., Carmichael W.W., Jochimsen E.M., Rinehart K.L., Lau S., Shaw G.R., et al. Human intoxication by microcystins during renal dialysis treatment in Caruaru — Brazil. Toxicol. 2002; 181-182: 441–6. https://doi.org/10.1016/S0300-483X(02)00491-2

43. Badar M., Batool F., Khan S.S., Khokhar I., Qamar M., Yasir Ch. Effects of microcystins toxins contaminated drinking water on hepatic problems in animals (cows and buffalos) and toxins removal chemical method. Buffalo Bulletin. 2017; 36(1): 43–56.

44. Li Y., Chen J.A., Zhao Q., Pu C., Qiu Z., Zhang R., et al. A cross-sectional investigation of chronic exposure to micro- cystin in relationship to childhood liver damage in the Three Gorges Reservoir Region, China. Environ. Health Perspect. 2011; 119(10): 1483–8. https://doi.org/10.1289/ehp.100241

45. Zhang Y., Zhu P., Wu X., Yuan T., Su Z., Chen S., et al. Microcystin-LR induces NLRP3 inflammasome activation via FOXO1 phosphorylation, resulting in interleukin-1β secretion and pyroptosis in hepatocytes. Toxicol. Sci. 2021; 179(1): 53–69. https://doi.org/10.1093/toxsci/kfaa159

46. Cao L., Massey I.Y., Feng H., Yang F. A review of cardiovascular toxicity of microcystins. Toxins. 2019; 11(9): 507. https://doi.org/10.3390/toxins11090507

47. Milutinović A., Zorc-Pleskovic R., Petrovic D., Zorc M., Suput D. Microcystin-LR induces alterations in heart muscle. Folia Biol. (Praha). 2006; 52(4): 116–8.

48. Kubickova B., Babica P., Hilscherová K. Effects of cyanobacterial toxins on the human gastrointestinal tract and the mucosal innate immune system. Environ. Sci. Europe. 2019; 31(1): 1–27. https://doi.org/10.1186/s12302-019-0212-2

49. Sieroslawska A., Rymuszka A. Assessment of the cytotoxic impact of cyanotoxin beta-N-methylamino-L-alanine on a fish immune cell line. Aquatic. Toxicol. 2019; 212: 214–21. https://doi.org/10.1016/j.aquatox.2019.05.012

50. Zhong Y., Shen L., Ye X., Zhou D., He Y., Li Y., et al. Neurotoxic anatoxin-a can also exert immunotoxicity by the induction of apoptosis on Carassius auratus lymphocytes in vitro when exposed to environmentally relevant concentrations. Front. Physiol. 2020; 11: 316. https://doi.org/10.3389/fphys.2020.00316

51. Lone Y., Bhide M., Koiri R.K. Microcystin-LR induced immunotoxicity in mammals. J. Toxicol. 2016; 2016: 8048125. https://doi.org/10.1155/2016/8048125

52. Duan Y., Xiong D., Wang Y., Dong H., Huang J., Zhang J. Effects of Microcystis aeruginosa and microcystin-LR on intestinal histology, immune response, and microbial community in Litopenaeus vannamei. Environ. Pollut. 2020; 265(Pt. A): 114774. https://doi.org/10.1016/j.envpol.2020.114774

53. Rymuszka A., Sieroslawska A., Bownik A., Skowronski T. Immunotoxic potential of cyanotoxins on the immune system of fish. Central Eur. J. Immunol. 2008; 33(3): 150–2.

54. Xu S., Yi X., Liu W., Zhang C., Massey I.Y., Yang F., et al. A review of nephrotoxicity of microcystins. Toxins. 2020; 12(11): 693. https://doi.org/10.3390/toxins12110693

55. Sitprija V., Sitprija S. Marine toxins and nephrotoxicity: Mechanism of injury. Toxicon. 2019; 161: 44–9. https://doi.org/10.1016/j.toxicon.2019.02.012

56. Wang Z., Li G., Wu Q., Liu C., Shen J., Yan W. Microcystin-LR exposure induced nephrotoxicity by triggering apoptosis in female zebrafish. Chemosphere. 2019; 214: 598–605. https://doi.org/10.1016/j.chemosphere.2018.09.103

57. Lin H., Liu W., Zeng H., Pu C., Zhang R., Qiu Z., et al. Determination of environmental exposure to microcystin and aflatoxin as a risk for renal function based on 5493 rural people in southwest China. Environ. Sci. Technol. 2016; 50(10): 5346–56. https://doi.org/10.1021/acs.est.6b01062

58. Zhou Y., Xu X., Yu B., Yu G. Characterization of in vitro effects of microcystin‐LR on intestinal epithelial cells. Environ. Toxicol. 2017; 32(5): 1539–47. https://doi.org/10.1002/tox.22375

59. Wu J.X., Huang H., Yang L., Zhang X.F., Zhang S.S., Liu H.H., et al. Gastrointestinal toxicity induced by microcystins. World J. Clin. Cases. 2018; 6(10): 344–54. https://doi.org/10.12998/wjcc.v6.i10.344

60. Harris N., Harvey K.V., Gordon S.C., Alderman P., Esposito D., Reif J.S., et al. Algal bloom–related illness: Improving health outcomes in primary care. J. Nurse Practitioners. 2020; 16(9): 679–82. https://doi.org/10.1016/j.nurpra.2020.06.019

61. Thuan N.H., An T.T., Shrestha A., Canh N.X., Sohng J.K., Dhakal D. Recent advances in exploration and biotechnological production of bioactive compounds in three cyanobacterial genera: Nostoc, Lyngbya, and Microcystis. Front. Chem. 2019; 7: 604. https://doi.org/10.3389/fchem.2019.00604

62. Vankova D., Pasheva M., Kiselova-Kaneva Y., Ivanov D., Ivanova D. Mechanisms of cyanotoxin toxicity—carcinogenicity, anticancer potential, and clinical toxicology. In: Pınar E., Tomohisa O., eds. Medical Toxicology. Rijeka, Croatia: IntechOpen; 2021. https://doi.org/10.5772/intechopen.88016

63. Hernandez B.Y., Zhu X., Sotto P., Paulino Y. Oral exposure to environmental cyanobacteria toxins: Implications for cancer risk. Environ. Int. 2021; 148: 106381. https://doi.org/10.1016/j.envint.2021.106381

64. Zegura B., Straser A., Filipič M. Genotoxicity and potential carcinogenicity of cyanobacterial toxins — a review. Mutat. Res. 2011; 727(1-2): 16–41. https://doi.org/10.1016/j.mrrev.2011.01.002

65. Ren Y., Yang M., Chen M., Zhu Q., Zhou L., Qin W., et al. Microcystin-LR promotes epithelial-mesenchymal transition in colorectal cancer cells through PI3-K/AKT and SMAD2. Toxicol. Lett. 2017; 265: 53–60. https://doi.org/10.1016/j.toxlet.2016.11.004