Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2022; 99: 172-184

Оценка интенсивности дегрануляции и изменений фенотипа нейтрофилов по уровню экспрессии FcᵧRIIIb в крови больных COVID-19 и реконвалесцентов

Кравцов А. Л., Бугоркова С. А., Клюева С. Н., Гончарова А. Ю., Кожевников В. А., Чумачкова Е. А., Портенко С. А., Щербакова С. А.

https://doi.org/10.36233/0372-9311-225

Аннотация

Введение. Тяжесть течения COVID-19 коррелирует с относительным содержанием в крови пациентов специфической популяции нейтрофильных гранулоцитов (НГ) низкой плотности, клетки которой характеризуются сниженной гранулярностью, высокой неоднородностью по экспрессии FcᵧRIIIb (CD16) и склонностью к спонтанному аутолизису (нетозу).

Цель исследования — сравнить интенсивность дегрануляции НГ и экспрессию FcᵧRIIIb на этих клетках в крови больных COVID-19 и реконвалесцентов.

Материалы и методы. С помощью проточной цитометрии исследовали лейкоциты крови 40 пациентов с диагнозом COVID-19, 33 реконвалесцентов и 20 здоровых доноров (контроль). Для идентификации НГ (CD16+-гранулоцитов) и оценки поверхностной экспрессии молекулярного триггера нетоза FcᵧRIIIb применяли одноцветный реагент меченых моноклональных антител CD16-FITC. Иммунофенотипирование лимфоцитов осуществляли с использованием двух четырехцветных реагентов. Кроме того, в каждом образце цельной крови, окрашенном по Lyse/No-Wash-протоколу, определяли содержание клеточного дебриса. Присутствие в крови нейтрофилов на стадии нетоза подтверждали с помощью микроскопии. Продукцию цитокинов клетками определяли на автоматическом иммуноферментном анализаторе.

Результаты. На фоне характерных изменений субпопуляционного состава лимфоцитов и продукции цитокинов в крови больных COVID-19 с острой пневмонией, гипоксией и тахикардией, в сравнении с реконвалесцентами, перенёсшими тяжёлую и среднетяжёлую форму болезни, зарегистрирована более интенсивная дегрануляция НГ (в 2,6 раза), более высокая степень неоднородности по экспрессии CD16 (в 1,8 раза) и повышенная интенсивность лейкоцитолиза (в 1,6 раза). У реконвалесцентов степень различий с контролем по данным показателям зависела от тяжести ранее перенесённого заболевания.

Заключение. Характер изменения изученных в работе показателей у пациентов с COVID-19 в острый период болезни и в период реконвалесценции подтверждает возможный механизм развития осложнений вследствие нарушения баланса между активностью высвобождаемой из гранул НГ эластазы и её плазменным ингибитором α1 -антитрипсином.

Список литературы

1. Петриков С.С., Иванников А.А., Васильченко М.К., Эсауленко А.Н., Алиджанова Х.Г. СOVID-19 и сердечно-сосудистая система. Часть 1. Патофизиология, патоморфология, осложнения, долгосрочный прогноз. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2021; 10(1): 14–26. https://doi.org/10.23934/2223-9022-2021-10-1-14-26

2. Thierry A., Roch B. Neutrophil Extracellular traps and byproducts play a key role in COVID-19: pathogenesis, risk factors, and therapy. J. Clin. Med. 2020; 9(9): 2942. https://doi.org/10.3390/jcm9092942

3. Paraskova Z., Zentsova I., Bloomfield M., Vrabcova P., Smetanova J., Klocperk A., et al. Disharmonic inflammatory signatures in COVID-19: augmented neutrophils, but impaired monocytes and dendritic cells’ responsiveness. Cell. 2020; 9(10): 2206. https://doi.org/10.3390/cells9102206.

4. Morrissay S., Geller A.E., Hu X., Tieri D., Ding C., Klaes C.K., et al. A specific low-density neutrophil population correlates with hypercoagulation and disease severity in hospitalized COVID-19 patients. JCI Insight. 2021; 6(9): e148435.

5. Cavalcante-Silva L.H.A., Carvalho D.C.M., Lima É.A., Galvão J.G.F.M., da Silva J.S.F., Sales-Neto J.M., et al. Neutrophils and COVID-19: The road so far. Int. Immunopharmacol. 2021; 90: 107233. https://doi.org/10.1916/j.intimp.2020.107233

6. Veras F.P., PoutelliM.C., Silva C.M., Toller-Kawahisa J.E., de Lima M., Naseimento D.C., et al. SARS-CoV-2 triggered neutrophil extracellular traps mediated COVID-19 pathology. J. Exp. Med. 2020; 217(12): e20201129. https://doi.org/10.1084/jem.20201129

7. Кассина Д.В., Василенко И.А., Гурьев А.С., Волков А.Ю., Метелин В.Б. Нейтрофильные внеклеточные ловушки: значение для диагностики и прогноза COVID-19. Альманах клинической медицины. 2020; 48(S1): S43–50. https://doi.org/10.18786/2072-0505-2020-48-029

8. Carissimo G., Xu W., Kwok I., Abdad M.Y., Chan Y.H., Fong S.W., et al. Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19. Nat. Commun. 2020; 11(1): 5243. https://doi.org/10.1038/s41467-020-19080-6

9. Schneck E., Mallek F., Schiederich S., Kramer E., MarkmannM., Hecker M., et al. Flow cytometry based quantification of neutrophil extracellular traps shows an association with hypercoagulation in septic shock and hypocoagulation in postsurgical systemic inflammation – a proof – of – concept study. J. Clin. Med. 2020; 9(1): 174. https://doi.org/10.3390/jcm9010174

10. Guéant J.L., Guéant-Rodrigues R.M., Fromonot J., Oussalah A., Louis H., Chery C., et al. Elastase and exacerbation of neutrophil innate immunity are involved in multi-visceral manifestations of COVID-19. Allergy. 2021; 76(6): 1846–58. https://doi.org/10.1111/all.14746

11. Бубнова М.Г., Шляхто Е.В., Аронов Д.М., Белевский А.С., Герасименко М.Ю., Глезер М.Г. и др. Новая коронавирусная болезнь COVID-19: особенности комплексной кардиологической и респираторной реабилитации. Российский кардиологический журнал. 2021; 26(5): 4487. https://doi.org/10.15829/1560-4071-2021-4487

12. Direct Immunofluorescence Staining of Whole Blood using a Lyse/No-Wash Procedure. BD Bioscience Resources and Tools. Available at: https://www.bdbioscience.com/en-us/resources/ protocols/stain-lyse-no-wash

13. Vera E.J., Chew Y.V., Nicholson L., Bruns H., Anderson P., Chen H.T., et al. Standartization of flow cytometry for whole blood immunophenotyping of islet transplant and transplant clinical trial recipients. PLoS One. 2019; 14(5): e0217163. https://doi.org/10.1371/journal.pone.0217163

14. Кравцов А.Л., Бугоркова С.А., Клюева С.А., Кожевников В.А., Кудрявцева О.М. Определение экспрессии FcγRIIIb (CD16) на поверхности нейтрофилов крови привитых против чумы людей. Молекулярная медицина. 2020; 18(2): 33–8. https://doi.org/10.29296/24999490-2020-02-06

15. Sklar L.A., Oades Z.G., Finney D.A. Neutrophil degranulation detected by right angle light scattering: spectroscopic methods suitable for simultaneous analyses of degranulation or shape change, elastase release, and cell aggregation. J. Immunology. 1984; 133(3): 1483–7.

16. Клюева С.Н., Бугоркова С.А., Гончарова А.Ю., Кравцов А.Л., Кудрявцева О.М., Санджиев Д.Н. и др. Комплексный анализ корреляционных взаимосвязей между показателями гуморального и клеточного иммунитета у лиц, вакцинированных против чумы. Инфекция и иммунитет. 2019; 9(1): 135–46. https://doi.org/10.15789/2220-7619-2019-1-135-146

17. Zerimech F., Jourdian M., Ouraed B., Bouchecareilh M., Sendid B., Dauhamel A., et al. Proteinase-antiproteinase imbalance in patients with severe COVID-19. Clin. Chem. Lab. Med. 2021; 59(8): 000010151520210137. https://doi.org/10.1515/cclm-2021-0137

18. Fornasari P.M. COVID-19: Neutrophils «unfriendly fire» imbalance proteolytic cascades triggering clinical worsening and viral sepsis. Potential role explanation for convalescent plasma as «fire hose». J. Blood Res. Hematol. Dis. 2020; 5: 2. https://doi.org/10.37532/jbrhd.2020.5(2).120

19. Akgun E., Tuzuner M.B., Suhin B., Kilercik K.M., Kulah S., Cakiroglu H.V., et al. Proteins associated with neutrophil degranulation are upregulated in nasopharyngeal swabs from SARS-CoV-2 patients. PLoS One. 2020; 15(10): e0240012. https://doi.org/10.1371/journal.pone.0240012

20. Кравцов А.Л., Бугоркова С.А. Роль плазменного ингибитора сериновых лейкоцитарных протеиназ в защите организма от COVID-19. Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98(5): 567–78. https://doi.org/10.36233/0372-9311-160

21. Yoshikura H. Epidemiological correlation between COVID-19 and epidemical prevalence of α-1 antitrypsin deficiency in the world. Glob. Health Med. 2020; 3(2): 73–81. https://doi.org/10.35772/ghm.2020.01068

22. Mustofa Z., Zhanapiya A., Kalbacher H., Burster T. Neutrophil elastase and proteinase 3 cleavage sites are adjacent to the polybasic sequence within the proteolytic sensitive activation loop of the SARS-CoV-2 spike protein. ACS Omega. 2021; 6(10): 7181–5. https://doi.org/10.1021/acsomega.1c00363

23. Pokhrel S., Kraemer B.R., Lee L., Samardzic K., Mochly-Rosen D. Increased elastase sensitivity and decreased intramolecular interactions in the more transmissible 501Y.V1 and 501Y.V2 SARS-CoV-2 variants, spike protein – an in silico analysis. PLoS One. 2021; 16(5): e0251426. https://doi.org/10.1371/journal.pone.0251426

24. Bai H., Hippensteel J., Leavitt A., Maloney J.P., Beckham D., Garcia C., et al. Hypothesis: alpha-1-antitrypsin is a promising treatment option for COVID-19. Med. Hypothesis. 2021; 146: 110394. https://doi.org/10.1016/j.mehy.2020.110394

25. Oguntuyo K.Y., Stevens C.S., Siddiquey M., Schilke R.M., Woodlard M.D., Zang H.S., et al. In plain sight: the role of alpha-1 antitrypsin in COVID-19 pathogenesis and therapeutics. bioRxiv. 2020. Preprint. https://doi.org/10.1101/2020.08.14.248880

26. Бавыкин А.С. Клеточный и молекулярный уровень стратегии COVID-19 по индукции иммунодефицита. Возможные терапевтические решения. Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98(4): 450–7. https://doi.org/10.36233/0372-9311-119

27. Giamarellos-Bourboulis E.J., Netea M.G., Rovina N., Akinosoglou K., Automadou A., Antonakos N., et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020; 27(6): 992–1000. e3. https://doi.org/10.1016/j.chom,2020.04.009

28. De Biasi S., Meschiari M., Gibellini L., Bellinazzi C., Borella R., Fidauza L., et al. Marked T-cell activation, senescence, exhaustion and skewing toward TH17 in patients with COVID-19 pneumonia. Nat. Commun. 2020; 11(1): 3434. https://doi.org/10.1038/s41467-020-17292-4

29. Aleman O.R., Mora N., Cortes-Vieyra R., Uribe-Querol E., Rosales C. Differential use of human Fcγ-receptors for inducing neutrophil extracellular traps formation. J. Immunol. Res. 2016; 2016: 2908034. https://doi.org/10.1155/2016/2908034

30. Mhaonaigh A.U., Coughlan A.U., Dwivedi A., Hartnett J., Cabral J., Moran B., et al. Low density granulocytes in ANCA vasculitis are heterogeneous and hypo-responsive to antimyeloperoxidase autoantibody. Front. Immunol. 2019; 10: 2603. https://doi.org/10.3399/fimmu.2019.02603

31. Hara T., Yamamura K., Sakai Y. The up-to date pathophysiology of Kawasaki disease. Clin. Transl. Immunol. 2021; 10(5): e1284. https://doi.org/10.1002/cti2.1284

32. Seman B.G., Robinson C.M. The enigma of low density granulocytes in humans: complexities in the characterization and function of LDGs during disease. Pathogens. 2021; 10(9): 1091. https://doi.org/10.3390/pathogens10091091

33. Zuo Y., Estes S.K., Ali R.A., Gandhi A.A., Yalavarthi S., Shi H., et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 2020; 12(570): eabd3876. https://doi.org/10.1126/scitranslmed.abd3876

34. Cloke T., Munder M., Tayler J., Müller I., Kropf P. Characterization of a novel population of low-density granulocytes associated with disease severity in HIV-1 infection. PLoS One. 2012; 7(11): e48939. https://doi.org/10.1371/journal.pone.0048939

Journal of microbiology, epidemiology and immunobiology. 2022; 99: 172-184

Assessment of neutrophil degranulation intensity and changes in neutrophil phenotype by FCᵧRIIIB expression level in blood of patients with COVID-19 and convalescents

Kravtsov A. L., Bugorkova S. A., Klyueva S. N., Goncharova A. Yu., Kozhevnikov V. A., Chumachkova E. A., Portenko S. A., Scherbakova S. A.

https://doi.org/10.36233/0372-9311-225

Abstract

Introduction. Disease severity in hospitalized COVID-19 patients correlates with the relative content in the blood of a specific low-density neutrophilic granulocyte (NG) population, whose cells are characterized by reduced granularity, high heterogeneity in the expression of FcᵧRIIIb (CD16) and a tendency to spontaneous autolysis (netosis).

The aim of the study was to compare the intensity of NG degranulation and the FcᵧRIIIb expression by these cells in blood of patients with COVID-19 and convalescents.

Materials and methods. The blood leukocytes of 40 patients diagnosed with COVID-19, 33 convalescents and 20 healthy donors (control) were examined using flow cytometry. To identify NG (CD16+-granulocytes) and to assess the surface expression of the netosis molecular trigger (FcᵧRIIIb), a single-color reagent of labeled monoclonal antibodies CD16-FITC was used. Immunophenotyping of lymphocytes was performed using two four-color reagents. In addition, cell debris content was determined in each Lyse/No-Wash-stained whole blood sample. The presence of neutrophils at the stage of netosis was confirmed by microscopy. Cytokine production was determined on an automatic enzyme immunoassay analyzer.

Results. Against the background of characteristic changes in the lymphocyte subpopulation composition and cytokine production, in blood of COVID-19 patients with acute pneumonia, hypoxia and tachycardia a more intense degranulation of NG (2.6 times), higher degree of CD16 expression heterogeneity (1.8 times) and an increased leukocytolysis intensity (1.6 times) were observed compared to convalescents who have undergone severe and moderate forms of the disease. In convalescents, the degree of differences of these indicators compared to control values varied in concordance with the disease severity.

Conclusion. The nature of changes in the parameters studied in COVID-19 patients in the acute phase of the disease and during the period of convalescence confirms the possible mechanism of the development of complications due to an imbalance between the activity of elastase released from NG granules and its plasma inhibitor α1 -antitrypsin.

References

1. Petrikov S.S., Ivannikov A.A., Vasil'chenko M.K., Esaulenko A.N., Alidzhanova Kh.G. SOVID-19 i serdechno-sosudistaya sistema. Chast' 1. Patofiziologiya, patomorfologiya, oslozhneniya, dolgosrochnyi prognoz. Zhurnal im. N.V. Sklifosovskogo «Neotlozhnaya meditsinskaya pomoshch'». 2021; 10(1): 14–26. https://doi.org/10.23934/2223-9022-2021-10-1-14-26

2. Thierry A., Roch B. Neutrophil Extracellular traps and byproducts play a key role in COVID-19: pathogenesis, risk factors, and therapy. J. Clin. Med. 2020; 9(9): 2942. https://doi.org/10.3390/jcm9092942

3. Paraskova Z., Zentsova I., Bloomfield M., Vrabcova P., Smetanova J., Klocperk A., et al. Disharmonic inflammatory signatures in COVID-19: augmented neutrophils, but impaired monocytes and dendritic cells’ responsiveness. Cell. 2020; 9(10): 2206. https://doi.org/10.3390/cells9102206.

4. Morrissay S., Geller A.E., Hu X., Tieri D., Ding C., Klaes C.K., et al. A specific low-density neutrophil population correlates with hypercoagulation and disease severity in hospitalized COVID-19 patients. JCI Insight. 2021; 6(9): e148435.

5. Cavalcante-Silva L.H.A., Carvalho D.C.M., Lima É.A., Galvão J.G.F.M., da Silva J.S.F., Sales-Neto J.M., et al. Neutrophils and COVID-19: The road so far. Int. Immunopharmacol. 2021; 90: 107233. https://doi.org/10.1916/j.intimp.2020.107233

6. Veras F.P., PoutelliM.C., Silva C.M., Toller-Kawahisa J.E., de Lima M., Naseimento D.C., et al. SARS-CoV-2 triggered neutrophil extracellular traps mediated COVID-19 pathology. J. Exp. Med. 2020; 217(12): e20201129. https://doi.org/10.1084/jem.20201129

7. Kassina D.V., Vasilenko I.A., Gur'ev A.S., Volkov A.Yu., Metelin V.B. Neitrofil'nye vnekletochnye lovushki: znachenie dlya diagnostiki i prognoza COVID-19. Al'manakh klinicheskoi meditsiny. 2020; 48(S1): S43–50. https://doi.org/10.18786/2072-0505-2020-48-029

8. Carissimo G., Xu W., Kwok I., Abdad M.Y., Chan Y.H., Fong S.W., et al. Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19. Nat. Commun. 2020; 11(1): 5243. https://doi.org/10.1038/s41467-020-19080-6

9. Schneck E., Mallek F., Schiederich S., Kramer E., MarkmannM., Hecker M., et al. Flow cytometry based quantification of neutrophil extracellular traps shows an association with hypercoagulation in septic shock and hypocoagulation in postsurgical systemic inflammation – a proof – of – concept study. J. Clin. Med. 2020; 9(1): 174. https://doi.org/10.3390/jcm9010174

10. Guéant J.L., Guéant-Rodrigues R.M., Fromonot J., Oussalah A., Louis H., Chery C., et al. Elastase and exacerbation of neutrophil innate immunity are involved in multi-visceral manifestations of COVID-19. Allergy. 2021; 76(6): 1846–58. https://doi.org/10.1111/all.14746

11. Bubnova M.G., Shlyakhto E.V., Aronov D.M., Belevskii A.S., Gerasimenko M.Yu., Glezer M.G. i dr. Novaya koronavirusnaya bolezn' COVID-19: osobennosti kompleksnoi kardiologicheskoi i respiratornoi reabilitatsii. Rossiiskii kardiologicheskii zhurnal. 2021; 26(5): 4487. https://doi.org/10.15829/1560-4071-2021-4487

12. Direct Immunofluorescence Staining of Whole Blood using a Lyse/No-Wash Procedure. BD Bioscience Resources and Tools. Available at: https://www.bdbioscience.com/en-us/resources/ protocols/stain-lyse-no-wash

13. Vera E.J., Chew Y.V., Nicholson L., Bruns H., Anderson P., Chen H.T., et al. Standartization of flow cytometry for whole blood immunophenotyping of islet transplant and transplant clinical trial recipients. PLoS One. 2019; 14(5): e0217163. https://doi.org/10.1371/journal.pone.0217163

14. Kravtsov A.L., Bugorkova S.A., Klyueva S.A., Kozhevnikov V.A., Kudryavtseva O.M. Opredelenie ekspressii FcγRIIIb (CD16) na poverkhnosti neitrofilov krovi privitykh protiv chumy lyudei. Molekulyarnaya meditsina. 2020; 18(2): 33–8. https://doi.org/10.29296/24999490-2020-02-06

15. Sklar L.A., Oades Z.G., Finney D.A. Neutrophil degranulation detected by right angle light scattering: spectroscopic methods suitable for simultaneous analyses of degranulation or shape change, elastase release, and cell aggregation. J. Immunology. 1984; 133(3): 1483–7.

16. Klyueva S.N., Bugorkova S.A., Goncharova A.Yu., Kravtsov A.L., Kudryavtseva O.M., Sandzhiev D.N. i dr. Kompleksnyi analiz korrelyatsionnykh vzaimosvyazei mezhdu pokazatelyami gumoral'nogo i kletochnogo immuniteta u lits, vaktsinirovannykh protiv chumy. Infektsiya i immunitet. 2019; 9(1): 135–46. https://doi.org/10.15789/2220-7619-2019-1-135-146

17. Zerimech F., Jourdian M., Ouraed B., Bouchecareilh M., Sendid B., Dauhamel A., et al. Proteinase-antiproteinase imbalance in patients with severe COVID-19. Clin. Chem. Lab. Med. 2021; 59(8): 000010151520210137. https://doi.org/10.1515/cclm-2021-0137

18. Fornasari P.M. COVID-19: Neutrophils «unfriendly fire» imbalance proteolytic cascades triggering clinical worsening and viral sepsis. Potential role explanation for convalescent plasma as «fire hose». J. Blood Res. Hematol. Dis. 2020; 5: 2. https://doi.org/10.37532/jbrhd.2020.5(2).120

19. Akgun E., Tuzuner M.B., Suhin B., Kilercik K.M., Kulah S., Cakiroglu H.V., et al. Proteins associated with neutrophil degranulation are upregulated in nasopharyngeal swabs from SARS-CoV-2 patients. PLoS One. 2020; 15(10): e0240012. https://doi.org/10.1371/journal.pone.0240012

20. Kravtsov A.L., Bugorkova S.A. Rol' plazmennogo ingibitora serinovykh leikotsitarnykh proteinaz v zashchite organizma ot COVID-19. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2021; 98(5): 567–78. https://doi.org/10.36233/0372-9311-160

21. Yoshikura H. Epidemiological correlation between COVID-19 and epidemical prevalence of α-1 antitrypsin deficiency in the world. Glob. Health Med. 2020; 3(2): 73–81. https://doi.org/10.35772/ghm.2020.01068

22. Mustofa Z., Zhanapiya A., Kalbacher H., Burster T. Neutrophil elastase and proteinase 3 cleavage sites are adjacent to the polybasic sequence within the proteolytic sensitive activation loop of the SARS-CoV-2 spike protein. ACS Omega. 2021; 6(10): 7181–5. https://doi.org/10.1021/acsomega.1c00363

23. Pokhrel S., Kraemer B.R., Lee L., Samardzic K., Mochly-Rosen D. Increased elastase sensitivity and decreased intramolecular interactions in the more transmissible 501Y.V1 and 501Y.V2 SARS-CoV-2 variants, spike protein – an in silico analysis. PLoS One. 2021; 16(5): e0251426. https://doi.org/10.1371/journal.pone.0251426

24. Bai H., Hippensteel J., Leavitt A., Maloney J.P., Beckham D., Garcia C., et al. Hypothesis: alpha-1-antitrypsin is a promising treatment option for COVID-19. Med. Hypothesis. 2021; 146: 110394. https://doi.org/10.1016/j.mehy.2020.110394

25. Oguntuyo K.Y., Stevens C.S., Siddiquey M., Schilke R.M., Woodlard M.D., Zang H.S., et al. In plain sight: the role of alpha-1 antitrypsin in COVID-19 pathogenesis and therapeutics. bioRxiv. 2020. Preprint. https://doi.org/10.1101/2020.08.14.248880

26. Bavykin A.S. Kletochnyi i molekulyarnyi uroven' strategii COVID-19 po induktsii immunodefitsita. Vozmozhnye terapevticheskie resheniya. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2021; 98(4): 450–7. https://doi.org/10.36233/0372-9311-119

27. Giamarellos-Bourboulis E.J., Netea M.G., Rovina N., Akinosoglou K., Automadou A., Antonakos N., et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020; 27(6): 992–1000. e3. https://doi.org/10.1016/j.chom,2020.04.009

28. De Biasi S., Meschiari M., Gibellini L., Bellinazzi C., Borella R., Fidauza L., et al. Marked T-cell activation, senescence, exhaustion and skewing toward TH17 in patients with COVID-19 pneumonia. Nat. Commun. 2020; 11(1): 3434. https://doi.org/10.1038/s41467-020-17292-4

29. Aleman O.R., Mora N., Cortes-Vieyra R., Uribe-Querol E., Rosales C. Differential use of human Fcγ-receptors for inducing neutrophil extracellular traps formation. J. Immunol. Res. 2016; 2016: 2908034. https://doi.org/10.1155/2016/2908034

30. Mhaonaigh A.U., Coughlan A.U., Dwivedi A., Hartnett J., Cabral J., Moran B., et al. Low density granulocytes in ANCA vasculitis are heterogeneous and hypo-responsive to antimyeloperoxidase autoantibody. Front. Immunol. 2019; 10: 2603. https://doi.org/10.3399/fimmu.2019.02603

31. Hara T., Yamamura K., Sakai Y. The up-to date pathophysiology of Kawasaki disease. Clin. Transl. Immunol. 2021; 10(5): e1284. https://doi.org/10.1002/cti2.1284

32. Seman B.G., Robinson C.M. The enigma of low density granulocytes in humans: complexities in the characterization and function of LDGs during disease. Pathogens. 2021; 10(9): 1091. https://doi.org/10.3390/pathogens10091091

33. Zuo Y., Estes S.K., Ali R.A., Gandhi A.A., Yalavarthi S., Shi H., et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 2020; 12(570): eabd3876. https://doi.org/10.1126/scitranslmed.abd3876

34. Cloke T., Munder M., Tayler J., Müller I., Kropf P. Characterization of a novel population of low-density granulocytes associated with disease severity in HIV-1 infection. PLoS One. 2012; 7(11): e48939. https://doi.org/10.1371/journal.pone.0048939