Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2022; 99: 93-108

Генетическое разнообразие вируса Эпштейна–Барр: современный взгляд на проблему

Попкова М. И., Уткин О. В.

https://doi.org/10.36233/0372-9311-228

Аннотация

В целом характеристика генетического разнообразия вируса Эпштейна–Барр (ВЭБ) лежит в основе изучения патогенеза, целевой разработки методов лабораторной диагностики, вакцин, средств специфической терапии ассоциированных с ним заболеваний, совершенствования системы эпидемиологического надзора за ВЭБ-инфекцией, а также дальнейшей детализации таксономии и классификации вируса. Целью настоящего обзора является обобщение и анализ данных литературы, посвящённых изучению генетического разнообразия ВЭБ, для перспективного развития методологии молекулярно-биологических исследований в клинической практике и эпидемиологическом надзоре за ВЭБ-ассоциированными заболеваниями. Работа выполнена на основе анализа публикаций, размещённых в базах данных PubMed, Web of Science, Scopus, eLibrary. Отдельно сфокусировано внимание на изучении данного вопроса в России. Показано, что на протяжении нескольких десятилетий использовались подходы, основанные на анализе нуклеотидной и аминокислотной вариабельности отдельных генов ВЭБ или их участков. Однако единой, унифицированной системы, учитывающей все генетическое разнообразие ВЭБ, сильные и слабые стороны как более ранних, так и современных классификаций, не существует. Большинство публикаций посвящены изучению онкогена LMP-1. С развитием технологий полногеномного секвенирования возобновился поиск геновариантов и подтипов ВЭБ. На фоне динамичного развития данного направления выводы исследователей пока основываются на относительно небольшом количестве геномов, секвенированных с переменным качеством, проанализированных с применением разных биоинформационных стратегий, с неравнозначной выборкой с точки зрения географического происхождения; некоторые нозологические формы ВЭБ-ассоциированных заболеваний, географические области и этнические группы остаются неохарактеризованными. Развитие и оптимизация методических подходов на основе полногеномного секвенирования и секвенирования определённого набора генов будут способствовать расширению существующих представлений о генетическом разнообразии ВЭБ во всём мире, его связи с заболеваниями и, возможно, клиническими особенностями их течения, совершенствованию эпидемиологического надзора за ВЭБ-инфекцией. 

Список литературы

1. Epstein M.A., Achong B.G., Barr Y.M. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964; 1(7335): 702–3. https://doi.org/10.1016/s0140-6736(64)91524-7

2. Knipe D.M., Howley P.M. Fields virology. 6th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2013.

3. Khan G., Fitzmaurice C., Naghavi M., Ahmed L.A. Global and regional incidence, mortality and disability-adjusted life-years for Epstein–Barr virus-attributable malignancies, 1990-2017. BMJ Open. 2020; 10(8): e037505. https://doi.org/10.1136/bmjopen-2020-037505

4. Corvalán A.H., Ruedlinger J., de Mayo T., Polakovicova I., Gonzalez-Hormazabal P., Aguayo F. The phylogeographic diversity of EBV and admixed ancestry in the Americas — another model of disrupted human-pathogen co-evolution. Cancers (Basel). 2019; 11(2): 217. https://doi.org/10.3390/cancers11020217

5. Kanda T., Yajima M., Ikuta K. Epstein–Barr virus strain variation and cancer. Cancer Sci. 2019; 110(4): 1132–9. https://doi.org/10.1111/cas.13954

6. Neves M., Marinho-Dias J., Ribeiro J., Sousa H. Epstein–Barr virus strains and variations: Geographic or disease-specific variants? J. Med. Virol. 2017; 89(3): 373–87. https://doi.org/10.1002/jmv.24633

7. Blazquez A.C., Berenstein A.J., Torres C., Izquierdo A., Lezama C., Moscatelli G., et al. Comprehensive evolutionary analysis of complete Epstein–Barr virus genomes from Argentina and other geographies. Viruses. 2021; 13(6): 1172. https://doi.org/10.3390/v13061172

8. Xue W.Q., Wang T.M., Huang J.W., Zhang J.B., He Y.Q., Wu Z.Y., et al. A comprehensive analysis of genetic diversity of EBV reveals potential high-risk subtypes associated with nasopharyngeal carcinoma in China. Virus Evol. 2021; 7(1): veab010. https://doi.org/10.1093/ve/veab010

9. Гончарова Е.В., Сенюта Н.Б., Смирнова К.В., Щербак Л.Н., Гурцевич В.Э. Вирус Эпштейна–Барр (ВЭБ) в России: инфицированность населения и анализ вариантов гена LMP-1 у больных ВЭБ-ассоциированными патологиями и здоровых лиц. Вопросы вирусологии. 2015; 60(2): 11–7.

10. Государственный доклад «О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2020 году». М.; 2021.

11. Смирнова К.В., Дидук С.В., Гурцевич В.Э. Полиморфизм онкогена LMP-1 вируса Эпштейна–Барр у представителей коренного малочисленного народа Дальнего Востока России. Эпидемиология и инфекционные болезни. 2017; 22(5): 239–47. https://doi.org/10.18821/1560-9529-2017-22-5-239-247

12. Смирнова К.В., Сенюта Н.Б., Лубенская А.К., Душенькина Т.Е., Гурцевич В.Э. Древние варианты вируса Эпштейна–Барр (Herpesviridae, Lymphocryptovirus, HHV-4): гипотезы и факты. Вопросы вирусологии. 2020; 65(2): 77–86. https://doi.org/10.36233/0507-4088-2020-65-2-77-86

13. Гурцевич В.Э., Смирнова К.В., Ботезату И.В., Душенькина Т.Е., Лубенская А.К., Дубар Э. и соавт. Полиморфизм онкогена LMP-1 вируса Эпштейна–Барр в двух этнических группах России, татар и славян, и его влияние на развитие некоторых злокачественных опухолей. Инфекция и иммунитет. 2020; 10(2): 347–58. https://doi.org/10.15789/2220-7619-EBV-1162

14. Сенюта Н.Б., Игнатова А.В., Ломая М.В., Гончарова Е.В., Щербак Л.Н., Душенькина Т.Е. и соавт. Вирус Эпштейна– Барр у больных раком носоглотки и здоровых лиц в двух географически различных регионах России. Инфекция и иммунитет. 2017; 7(1): 41–50. https://doi.org/10.15789/2220-7619-2017-1-41-50

15. Hui K.F., Chan T.F., Yang W., Shen J.J., Lam K.P., Kwok H., et al. High-risk Epstein–Barr virus variants characterized by distinct polymorphisms in the EBER locus are strongly associated with nasopharyngeal carcinoma. Int. J. Cancer. 2019; 144(12): 3031–42. https://doi.org/10.1002/ijc.32049

16. Xu M., Zhang W.L., Zhu Q., Zhang S., Yao Y.Y., Xiang T., et al. Genome-wide profiling of Epstein–Barr virus integration by targeted sequencing in Epstein–Barr virus associated malignancies. Theranostics. 2019; 9(4): 1115–24. https://doi.org/10.7150/thno.29622

17. Zhou L., Chen J.N., Qiu X.M., Pan Y.H., Zhang Z.G., Shao C.K. Comparative analysis of 22 Epstein–Barr virus genomes from diseased and healthy individuals. J. Gen.Virol. 2017; 98(1): 96–107. https://doi.org/10.1099/jgv.0.000699

18. Telford M., Hughes D.A., Juan D., Stoneking M., Navarro A., Santpere G. Expanding the geographic characterisation of Epstein–Barr virus variation through gene-based approaches. Microorganisms. 2020; 8(11): 1686. https://doi.org/10.3390/microorganisms8111686

19. Palser A.L., Grayson N.E., White R.E., Corton C., Correia S., Ba Abdullah M.M., et al. Genome diversity of Epstein–Barr virus from multiple tumor types and normal infection. J. Virol. 2015; 89(10): 5222–37. https://doi.org/10.1128/JVI.03614-14

20. Zanella L., Riquelme I., Buchegger K., Abanto M., Ili C., Brebi P. A reliable Epstein–Barr virus classification based on phylogenomic and population analyses. Sci. Rep. 2019; 9(1): 9829. https://doi.org/10.1038/s41598-019-45986-3

21. Wegner F., Lassalle F., Depledge D.P., Balloux F., Breuer J. Co-evolution of sites under immune selection shapes Epstein– Barr virus population structure. Mol. Biol. Evol. 2019; 36(11): 2512–21. https://doi.org/10.1093/molbev/msz152

22. Baer R., Bankier A.T., Biggin M.D., Deininger P.L., Farrell P.J., Gibson T.G. DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature (London). 1984; 310(5974): 207–11. https://doi.org/10.1038/310207a0

23. Dambaugh T., Hennessy K., Chamnankit L., Kieff E. U2 region of Epstein–Barr virus DNA may encode Epstein–Barr nuclear antigen 2. Proc. Natl. Acad. Sci. USA. 1984; 81(23): 7632–6. https://doi.org/10.1073/pnas.81.23.7632

24. Sample J., Young L., Martin B., Chatman T., Kieff E., Rickinson A., et al. Epstein–Barr virus types 1 and 2 differ in their EBNA-3A, EBNA3B, and EBNA-3C genes. J. Virol. 1990; 64(9): 4084–92. https://doi.org/10.1128/JVI.64.9.4084-4092.1990

25. Kaymaz Y., Oduor C.I., Aydemir O., Luftig M.A., Otieno J.A., Ong'echa J.M., et al. Epstein–Barr virus genomes reveal po pulation structure and type 1 association with endemic Burkitt lymphoma. J. Virol. 2020; 94(17): e02007-19. https://doi.org/10.1128/JVI.02007-19

26. Kwok H., Chiang A.K. From conventional to next generation sequencing of Epstein–Barr virus genomes. Viruses. 2016; 8(3): 60. https://doi.org/10.3390/v8030060

27. Smatti M.K., Al-Sadeq D.W., Ali N.H., Pintus G., AbouSaleh H., Nasrallah G.K. Epstein–Barr virus epidemiology, serology, and genetic variability of LMP-1 oncogene among healthy population: an update. Front. Oncol. 2018; 8: 211. https://doi.org/10.3389/fonc.2018.00211

28. Correia S., Palser A., Elgueta Karstegl C., Middeldorp J.M., Ramayanti O., Cohen J.I., et al. Natural variation of Epstein–Barr virus genes, proteins, and primary MicroRNA. J. Virol. 2017; 91(15): e00375-17. https://doi.org/10.1128/JVI.00375-17

29. Попкова М.И., Уткин О.В., Соболева Е.А., Сахарнов Н.А., Брызгалова Д.А., Сенатская А.О. и соавт. Методические основы дифференциальной детекции ВЭБ1/ВЭБ2 и ВГЧ6A/ ВГЧ6B. Инфекция и иммунитет. 2021; 11(6): 1057–66. https://doi.org/10.15789/2220-7619-MBF-1661

30. Traore L., Nikiema O., Ouattara A.K., Compaore T.R., Soubeiga S.T., Diarra B., et al. EBV and HHV-6 circulating subtypes in people living with HIV in Burkina Faso, impact on CD4 T cell count and HIV viral load. Mediterr. J. Hematol. Infect. Dis. 2017; 9(1): e2017049. https://doi.org/10.4084/mjhid.2017.049

31. Rickinson A.B., Young L.S., Rowe M. Influence of the Epstein– Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J. Virol. 1987; 61(5): 1310–7. https://doi.org/10.1128/JVI.61.5.1310-1317.1987

32. Tsai M.H., Lin X., Shumilov A., Bernhardt K., Feederle R., Poirey R., et al. The biological properties of different Epstein– Barr virus strains explain their association with various types of cancers. Oncotarget. 2017; 8(6): 10238–54. https://doi.org/10.18632/oncotarget.14380

33. Monteiro T.A.F., Costa I.B., Costa I.B., Corrêa T.L.D.S., Coelho B.M.R., Silva A.E.S., et al. Genotypes of Epstein–Barr virus (EBV1/EBV2) in individuals with infectious mononucleosis in the metropolitan area of Belém, Brazil, between 2005 and 2016. Braz. J. Infect. Dis. 2020; 24(4): 322–9. https://doi.org/10.1016/j.bjid.2020.06.004

34. Santpere G., Darre F., Blanco S., Alcami A., Villoslada P., Mar Albà M., et al. Genome-wide analysis of wild-type Epstein– Barr virus genomes derived from healthy individuals of the 1,000 genomes project. Genome Biol. Evol. 2014; 6(4): 846–60. https://doi.org/10.1093/gbe/evu054

35. Correia S., Bridges R., Wegner F., Venturini C., Palser A., Middeldorp J.M., et al. Sequence variation of Epstein–Barr virus: viral types, geography, codon usage, and diseases. J. Virol. 2018; 92(22): e01132-18. https://doi.org/10.1128/JVI.01132-18

36. Banko A., Miljanovic D., Lazarevic I., Cirkovic A. A systematic review of Epstein–Barr virus latent membrane protein 1 (LMP-1) gene variants in nasopharyngeal carcinoma. Pathogens. 2021; 10(8): 1057. https://doi.org/10.3390/pathogens10081057

37. Liao H.M., Liu H., Lei H., Li B., Chin P.J., Tsai S., et al. Frequency of EBV LMP-1 promoter and coding variations in Burkitt lymphoma samples in Africa and South America and peripheral blood in Uganda. Cancers (Basel). 2018; 10(6): 177. https://doi.org/10.3390/cancers10060177

38. Hu L.F., Zabarovsky E.R., Chen F., Cao S.L., Ernberg I., Klein G., et al. Isolation and sequencing of the Epstein–Barr virus BNLF-1 gene (LMP-1) from a Chinese nasopharyngeal carcinoma. J. Gen. Virol. 1991; 72(Pt. 10): 2399–409. https://doi.org/10.1099/0022-1317-72-10-2399

39. Sandvej K., Gratama J.W., Munch M., Zhou X.G., Bolhuis R.L., Andresen B.S., et al. Sequence analysis of the Epstein–Barr virus (EBV) latent membrane protein-1 gene and promoter region: identification of four variants among wild-type EBV isolates. Blood. 1997; 90(1): 323–30. https://doi.org/10.1182/blood.V90.1.323

40. Яковлева Л.С., Сенюта Н.Б., Гончарова Е.В., Щербак Л.Н., Смирнова К.В., Павлиш О.А. и соавт. Варианты онкогена LMP-1 вируса Эпштейна–Барр в клеточных линиях различного происхождения. Молекулярная биология. 2015; 49(5): 800–10. https://doi.org/10.7868/S0026898415050213

41. Edwards R.H., Seillier-Moiseiwitsch F., Raab-Traub N. Signature amino acid changes in latent membrane protein 1 distinguish Epstein–Barr virus strains. Virology. 1999; 261(1): 79–95. https://doi.org/10.1006/viro.1999.9855

42. Walling D.M., Shebib N., Weaver S.C., Nichols C.M., Flaitz C.M., Webster-Cyriaque J. The molecular epidemiology and evolution of Epstein–Barr virus: Sequence variation and genetic recombination in the latent membrane protein-1 gene. J. Infect. Dis. 1999; 179(4): 763–74. https://doi.org/10.1086/314672

43. Lei H., Li T., Li B., Tsai S., Biggar R.J., Nkrumah F., et al. Epstein–Barr virus from Burkitt lymphoma biopsies from Africa and South America share novel LMP-1 promoter and gene variations. Sci. Rep. 2015; 5: 16706. https://doi.org/10.1038/srep16706

44. Tierney R.J., Edwards R.H., Sitki-Green D., Croom-Carter D., Roy S., Yao Q.Y., et al. Multiple Epstein–Barr virus strains in patients with infectious mononucleosis: comparison of ex vivo samples with in vitro isolates by use of heteroduplex tracking assays. J. Infect. Dis. 2006; 193(3): 287–97. https://doi.org/10.1086/498913

45. Weiss E.R., Lamers S.L., Henderson J.L., Melnikov A., Somasundaran M., Garber M., et al. Early Epstein–Barr virus genomic diversity and convergence toward the B95.8 genome in primary infection. J. Virol. 2018; 92(2): e01466-17. https://doi.org/10.1128/JVI.01466-17

46. Bhatia K., Raj A., Guitierrez M.I., Judde J.G., Spangler G., Venkatesh H., et al. Variation in the sequence of Epstein–Barr virus nuclear antigen 1 in normal peripheral blood lymphocytes and in Burkitt’s lymphomas. Oncogene. 1996; 13(1): 177–81.

47. Thuan L.D., Kha N.D., Minh N.T., Thuy L. Novel patterns of the Epstein–Barr nuclear antigen (EBNA-1) V-Val subtype in EBV-associated nasopharyngeal carcinoma from Vietnam. Balkan. J. Med. Genet. 2019; 22(1): 61–8. https://doi.org/10.2478/bjmg-2019-0011

48. Martini M., Capello D., Serraino D., Navarra A., Pierconti F., Cenci T., et al. Characterization of variants in the promoter of EBV gene BZLF1 in normal donors, HIV-positive patients and in AIDS-related lymphomas. J. Infect. 2007; 54(3): 298–306. https://doi.org/10.1016/j.jinf.2006.04.015

49. Bristol J.A., Djavadian R., Albright E.R., Coleman C.B., Ohashi M., Hayes M., et al. A cancer-associated Epstein–Barr virus BZLF1 promoter variant enhances lytic infection. PLoS Pathog. 2018; 14(7): e1007179. https://doi.org/10.1371/journal.ppat.1007179

50. Gumperz J., Sherer N.M., Farrell P.J., Johannsen E.C., Kenney S.C. B cells infected with type 2 Epstein–Barr virus (EBV) have increased NFATc1/NFATc2 activity and enhanced lytic gene expression in comparison to Type 1 EBV infection. PLoS Pathog. 2020; 16(2): e1008365. https://doi.org/10.1371/journal.ppat.1008365

51. Liu J., Ji X., Shen Z., Wang PhD. Y., Luo PhD. B. Sequence variations of Epstein–Barr virus-encoded BARF1 gene in nasopharyngeal carcinomas and healthy donors from southern and northern China. J. Med. Virol. 2018; 90(10): 1629–35. https://doi.org/10.1002/jmv.25233

52. Kim H., Burassakarn A., Kang Y., Iizasa H., Yoshiyama H. A single nucleotide polymorphism in the BART promoter region of Epstein–Barr virus isolated from nasopharyngeal cancer cells. Biochem. Biophys. Res. Commun. 2019; 520(2): 373–8. https://doi.org/10.1016/j.bbrc.2019.10.028

53. Wang Y., Zhang X., Chao Y., Jia Y., Xing X., Luo B. New variations of Epstein–Barr virus‐encoded small RNA genes in nasopharyngeal carcinomas, gastric carcinomas, and healthy donors in northern China. J. Med. Virol. 2010; 82(5): 829–36. https://doi.org/10.1002/jmv.21714

54. Chiara M., Manzari C., Lionetti C., Mechelli R., AnastasiadouE., Chiara Buscarinu M., et al. Geographic population structure in Epstein–Barr virus revealed by comparative genomics. Genome Biol. Evol. 2016; 8(11): 3284–91. https://doi.org/10.1093/gbe/evw226

55. Tu C., Zeng Z., Qi P., Li X., Yu Z., Guo C., et al. GenomeWide analysis of 18 Epstein–Barr viruses isolated from primary nasopharyngeal carcinoma biopsy specimens. J. Virol. 2017; 91(17): e00301-17. https://doi.org/10.1128/JVI.00301-17

56. Bridges R., Correia S., Wegner F., Venturini C., Palser A., WhiteR.E., et al. Essential role of inverted repeat in Epstein–Barr virus IR-1 in B cell transformation; geographical variation of the viral genome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019; 374(1773): 20180299. https://doi.org/10.1098/rstb.2018.0299

57. Siak P.Y., Khoo A.S., Leong C.O., Hoh B.P., Cheah S.C. Current status and future perspectives about molecular biomarkers of nasopharyngeal carcinoma. Cancers (Basel). 2021; 13(14): 3490. https://doi.org/10.3390/cancers13143490

Journal of microbiology, epidemiology and immunobiology. 2022; 99: 93-108

Genetic diversity of the Epstein–Barr virus: a modern view of the problem

Popkova M. I., Utkin O. V.

https://doi.org/10.36233/0372-9311-228

Abstract

In general, the characteristic of the genetic diversity of the Epstein-Barr virus (EBV) underlies the study of pathogenesis, targeted development of laboratory diagnostic methods, vaccines, specific therapy for associated diseases, improving the system of epidemiological surveillance of EBV infection, as well as further detailing the taxonomy and virus classification. The purpose of this review is to summarize and analyze the literature data on the genetic diversity of EBV for the prospective development of the methodology of molecular research in clinical practice and epidemiological surveillance of EBV-associated diseases. The work was carried out based on an analysis of publications in the PubMed, Web of Science, Scopus, eLibrary databases. Special attention was focused on the studies in Russia. It has been shown that approaches based on the analysis of nucleotide and amino acid variability of individual EBV genes or their regions have been used for several decades. However, there is no single, unified system that takes into account the entire genetic diversity of EBV, and the strengths and weaknesses of both earlier and modern classifications. Most publications are devoted to the study of the LMP-1 oncogene. With the development of whole genome sequencing technologies, the search for genovariants and subtypes of EBV has resumed. It is demonstrated that despite the dynamic development of this area, the conclusions of researchers are still based on a relatively small number of genomes sequenced with variable quality, analyzed using different bioinformatic strategies, with an unequal sample in terms of geographical origin. Moreover, some nosological forms of EBV-associated diseases, geographical areas and ethnic groups remain uncharacterized. The development and optimization of methodological approaches based on whole genome sequencing and sequencing of a specific set of genes will contribute to the expansion of existing ideas about the genetic diversity of EBV throughout the world, its relationship with diseases and, possibly, the clinical features of their course, and the improvement of epidemiological surveillance of EBV infection. 

References

1. Epstein M.A., Achong B.G., Barr Y.M. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964; 1(7335): 702–3. https://doi.org/10.1016/s0140-6736(64)91524-7

2. Knipe D.M., Howley P.M. Fields virology. 6th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2013.

3. Khan G., Fitzmaurice C., Naghavi M., Ahmed L.A. Global and regional incidence, mortality and disability-adjusted life-years for Epstein–Barr virus-attributable malignancies, 1990-2017. BMJ Open. 2020; 10(8): e037505. https://doi.org/10.1136/bmjopen-2020-037505

4. Corvalán A.H., Ruedlinger J., de Mayo T., Polakovicova I., Gonzalez-Hormazabal P., Aguayo F. The phylogeographic diversity of EBV and admixed ancestry in the Americas — another model of disrupted human-pathogen co-evolution. Cancers (Basel). 2019; 11(2): 217. https://doi.org/10.3390/cancers11020217

5. Kanda T., Yajima M., Ikuta K. Epstein–Barr virus strain variation and cancer. Cancer Sci. 2019; 110(4): 1132–9. https://doi.org/10.1111/cas.13954

6. Neves M., Marinho-Dias J., Ribeiro J., Sousa H. Epstein–Barr virus strains and variations: Geographic or disease-specific variants? J. Med. Virol. 2017; 89(3): 373–87. https://doi.org/10.1002/jmv.24633

7. Blazquez A.C., Berenstein A.J., Torres C., Izquierdo A., Lezama C., Moscatelli G., et al. Comprehensive evolutionary analysis of complete Epstein–Barr virus genomes from Argentina and other geographies. Viruses. 2021; 13(6): 1172. https://doi.org/10.3390/v13061172

8. Xue W.Q., Wang T.M., Huang J.W., Zhang J.B., He Y.Q., Wu Z.Y., et al. A comprehensive analysis of genetic diversity of EBV reveals potential high-risk subtypes associated with nasopharyngeal carcinoma in China. Virus Evol. 2021; 7(1): veab010. https://doi.org/10.1093/ve/veab010

9. Goncharova E.V., Senyuta N.B., Smirnova K.V., Shcherbak L.N., Gurtsevich V.E. Virus Epshteina–Barr (VEB) v Rossii: infitsirovannost' naseleniya i analiz variantov gena LMP-1 u bol'nykh VEB-assotsiirovannymi patologiyami i zdorovykh lits. Voprosy virusologii. 2015; 60(2): 11–7.

10. Gosudarstvennyi doklad «O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossiiskoi Federatsii v 2020 godu». M.; 2021.

11. Smirnova K.V., Diduk S.V., Gurtsevich V.E. Polimorfizm onkogena LMP-1 virusa Epshteina–Barr u predstavitelei korennogo malochislennogo naroda Dal'nego Vostoka Rossii. Epidemiologiya i infektsionnye bolezni. 2017; 22(5): 239–47. https://doi.org/10.18821/1560-9529-2017-22-5-239-247

12. Smirnova K.V., Senyuta N.B., Lubenskaya A.K., Dushen'kina T.E., Gurtsevich V.E. Drevnie varianty virusa Epshteina–Barr (Herpesviridae, Lymphocryptovirus, HHV-4): gipotezy i fakty. Voprosy virusologii. 2020; 65(2): 77–86. https://doi.org/10.36233/0507-4088-2020-65-2-77-86

13. Gurtsevich V.E., Smirnova K.V., Botezatu I.V., Dushen'kina T.E., Lubenskaya A.K., Dubar E. i soavt. Polimorfizm onkogena LMP-1 virusa Epshteina–Barr v dvukh etnicheskikh gruppakh Rossii, tatar i slavyan, i ego vliyanie na razvitie nekotorykh zlokachestvennykh opukholei. Infektsiya i immunitet. 2020; 10(2): 347–58. https://doi.org/10.15789/2220-7619-EBV-1162

14. Senyuta N.B., Ignatova A.V., Lomaya M.V., Goncharova E.V., Shcherbak L.N., Dushen'kina T.E. i soavt. Virus Epshteina– Barr u bol'nykh rakom nosoglotki i zdorovykh lits v dvukh geograficheski razlichnykh regionakh Rossii. Infektsiya i immunitet. 2017; 7(1): 41–50. https://doi.org/10.15789/2220-7619-2017-1-41-50

15. Hui K.F., Chan T.F., Yang W., Shen J.J., Lam K.P., Kwok H., et al. High-risk Epstein–Barr virus variants characterized by distinct polymorphisms in the EBER locus are strongly associated with nasopharyngeal carcinoma. Int. J. Cancer. 2019; 144(12): 3031–42. https://doi.org/10.1002/ijc.32049

16. Xu M., Zhang W.L., Zhu Q., Zhang S., Yao Y.Y., Xiang T., et al. Genome-wide profiling of Epstein–Barr virus integration by targeted sequencing in Epstein–Barr virus associated malignancies. Theranostics. 2019; 9(4): 1115–24. https://doi.org/10.7150/thno.29622

17. Zhou L., Chen J.N., Qiu X.M., Pan Y.H., Zhang Z.G., Shao C.K. Comparative analysis of 22 Epstein–Barr virus genomes from diseased and healthy individuals. J. Gen.Virol. 2017; 98(1): 96–107. https://doi.org/10.1099/jgv.0.000699

18. Telford M., Hughes D.A., Juan D., Stoneking M., Navarro A., Santpere G. Expanding the geographic characterisation of Epstein–Barr virus variation through gene-based approaches. Microorganisms. 2020; 8(11): 1686. https://doi.org/10.3390/microorganisms8111686

19. Palser A.L., Grayson N.E., White R.E., Corton C., Correia S., Ba Abdullah M.M., et al. Genome diversity of Epstein–Barr virus from multiple tumor types and normal infection. J. Virol. 2015; 89(10): 5222–37. https://doi.org/10.1128/JVI.03614-14

20. Zanella L., Riquelme I., Buchegger K., Abanto M., Ili C., Brebi P. A reliable Epstein–Barr virus classification based on phylogenomic and population analyses. Sci. Rep. 2019; 9(1): 9829. https://doi.org/10.1038/s41598-019-45986-3

21. Wegner F., Lassalle F., Depledge D.P., Balloux F., Breuer J. Co-evolution of sites under immune selection shapes Epstein– Barr virus population structure. Mol. Biol. Evol. 2019; 36(11): 2512–21. https://doi.org/10.1093/molbev/msz152

22. Baer R., Bankier A.T., Biggin M.D., Deininger P.L., Farrell P.J., Gibson T.G. DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature (London). 1984; 310(5974): 207–11. https://doi.org/10.1038/310207a0

23. Dambaugh T., Hennessy K., Chamnankit L., Kieff E. U2 region of Epstein–Barr virus DNA may encode Epstein–Barr nuclear antigen 2. Proc. Natl. Acad. Sci. USA. 1984; 81(23): 7632–6. https://doi.org/10.1073/pnas.81.23.7632

24. Sample J., Young L., Martin B., Chatman T., Kieff E., Rickinson A., et al. Epstein–Barr virus types 1 and 2 differ in their EBNA-3A, EBNA3B, and EBNA-3C genes. J. Virol. 1990; 64(9): 4084–92. https://doi.org/10.1128/JVI.64.9.4084-4092.1990

25. Kaymaz Y., Oduor C.I., Aydemir O., Luftig M.A., Otieno J.A., Ong'echa J.M., et al. Epstein–Barr virus genomes reveal po pulation structure and type 1 association with endemic Burkitt lymphoma. J. Virol. 2020; 94(17): e02007-19. https://doi.org/10.1128/JVI.02007-19

26. Kwok H., Chiang A.K. From conventional to next generation sequencing of Epstein–Barr virus genomes. Viruses. 2016; 8(3): 60. https://doi.org/10.3390/v8030060

27. Smatti M.K., Al-Sadeq D.W., Ali N.H., Pintus G., AbouSaleh H., Nasrallah G.K. Epstein–Barr virus epidemiology, serology, and genetic variability of LMP-1 oncogene among healthy population: an update. Front. Oncol. 2018; 8: 211. https://doi.org/10.3389/fonc.2018.00211

28. Correia S., Palser A., Elgueta Karstegl C., Middeldorp J.M., Ramayanti O., Cohen J.I., et al. Natural variation of Epstein–Barr virus genes, proteins, and primary MicroRNA. J. Virol. 2017; 91(15): e00375-17. https://doi.org/10.1128/JVI.00375-17

29. Popkova M.I., Utkin O.V., Soboleva E.A., Sakharnov N.A., Bryzgalova D.A., Senatskaya A.O. i soavt. Metodicheskie osnovy differentsial'noi detektsii VEB1/VEB2 i VGCh6A/ VGCh6B. Infektsiya i immunitet. 2021; 11(6): 1057–66. https://doi.org/10.15789/2220-7619-MBF-1661

30. Traore L., Nikiema O., Ouattara A.K., Compaore T.R., Soubeiga S.T., Diarra B., et al. EBV and HHV-6 circulating subtypes in people living with HIV in Burkina Faso, impact on CD4 T cell count and HIV viral load. Mediterr. J. Hematol. Infect. Dis. 2017; 9(1): e2017049. https://doi.org/10.4084/mjhid.2017.049

31. Rickinson A.B., Young L.S., Rowe M. Influence of the Epstein– Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J. Virol. 1987; 61(5): 1310–7. https://doi.org/10.1128/JVI.61.5.1310-1317.1987

32. Tsai M.H., Lin X., Shumilov A., Bernhardt K., Feederle R., Poirey R., et al. The biological properties of different Epstein– Barr virus strains explain their association with various types of cancers. Oncotarget. 2017; 8(6): 10238–54. https://doi.org/10.18632/oncotarget.14380

33. Monteiro T.A.F., Costa I.B., Costa I.B., Corrêa T.L.D.S., Coelho B.M.R., Silva A.E.S., et al. Genotypes of Epstein–Barr virus (EBV1/EBV2) in individuals with infectious mononucleosis in the metropolitan area of Belém, Brazil, between 2005 and 2016. Braz. J. Infect. Dis. 2020; 24(4): 322–9. https://doi.org/10.1016/j.bjid.2020.06.004

34. Santpere G., Darre F., Blanco S., Alcami A., Villoslada P., Mar Albà M., et al. Genome-wide analysis of wild-type Epstein– Barr virus genomes derived from healthy individuals of the 1,000 genomes project. Genome Biol. Evol. 2014; 6(4): 846–60. https://doi.org/10.1093/gbe/evu054

35. Correia S., Bridges R., Wegner F., Venturini C., Palser A., Middeldorp J.M., et al. Sequence variation of Epstein–Barr virus: viral types, geography, codon usage, and diseases. J. Virol. 2018; 92(22): e01132-18. https://doi.org/10.1128/JVI.01132-18

36. Banko A., Miljanovic D., Lazarevic I., Cirkovic A. A systematic review of Epstein–Barr virus latent membrane protein 1 (LMP-1) gene variants in nasopharyngeal carcinoma. Pathogens. 2021; 10(8): 1057. https://doi.org/10.3390/pathogens10081057

37. Liao H.M., Liu H., Lei H., Li B., Chin P.J., Tsai S., et al. Frequency of EBV LMP-1 promoter and coding variations in Burkitt lymphoma samples in Africa and South America and peripheral blood in Uganda. Cancers (Basel). 2018; 10(6): 177. https://doi.org/10.3390/cancers10060177

38. Hu L.F., Zabarovsky E.R., Chen F., Cao S.L., Ernberg I., Klein G., et al. Isolation and sequencing of the Epstein–Barr virus BNLF-1 gene (LMP-1) from a Chinese nasopharyngeal carcinoma. J. Gen. Virol. 1991; 72(Pt. 10): 2399–409. https://doi.org/10.1099/0022-1317-72-10-2399

39. Sandvej K., Gratama J.W., Munch M., Zhou X.G., Bolhuis R.L., Andresen B.S., et al. Sequence analysis of the Epstein–Barr virus (EBV) latent membrane protein-1 gene and promoter region: identification of four variants among wild-type EBV isolates. Blood. 1997; 90(1): 323–30. https://doi.org/10.1182/blood.V90.1.323

40. Yakovleva L.S., Senyuta N.B., Goncharova E.V., Shcherbak L.N., Smirnova K.V., Pavlish O.A. i soavt. Varianty onkogena LMP-1 virusa Epshteina–Barr v kletochnykh liniyakh razlichnogo proiskhozhdeniya. Molekulyarnaya biologiya. 2015; 49(5): 800–10. https://doi.org/10.7868/S0026898415050213

41. Edwards R.H., Seillier-Moiseiwitsch F., Raab-Traub N. Signature amino acid changes in latent membrane protein 1 distinguish Epstein–Barr virus strains. Virology. 1999; 261(1): 79–95. https://doi.org/10.1006/viro.1999.9855

42. Walling D.M., Shebib N., Weaver S.C., Nichols C.M., Flaitz C.M., Webster-Cyriaque J. The molecular epidemiology and evolution of Epstein–Barr virus: Sequence variation and genetic recombination in the latent membrane protein-1 gene. J. Infect. Dis. 1999; 179(4): 763–74. https://doi.org/10.1086/314672

43. Lei H., Li T., Li B., Tsai S., Biggar R.J., Nkrumah F., et al. Epstein–Barr virus from Burkitt lymphoma biopsies from Africa and South America share novel LMP-1 promoter and gene variations. Sci. Rep. 2015; 5: 16706. https://doi.org/10.1038/srep16706

44. Tierney R.J., Edwards R.H., Sitki-Green D., Croom-Carter D., Roy S., Yao Q.Y., et al. Multiple Epstein–Barr virus strains in patients with infectious mononucleosis: comparison of ex vivo samples with in vitro isolates by use of heteroduplex tracking assays. J. Infect. Dis. 2006; 193(3): 287–97. https://doi.org/10.1086/498913

45. Weiss E.R., Lamers S.L., Henderson J.L., Melnikov A., Somasundaran M., Garber M., et al. Early Epstein–Barr virus genomic diversity and convergence toward the B95.8 genome in primary infection. J. Virol. 2018; 92(2): e01466-17. https://doi.org/10.1128/JVI.01466-17

46. Bhatia K., Raj A., Guitierrez M.I., Judde J.G., Spangler G., Venkatesh H., et al. Variation in the sequence of Epstein–Barr virus nuclear antigen 1 in normal peripheral blood lymphocytes and in Burkitt’s lymphomas. Oncogene. 1996; 13(1): 177–81.

47. Thuan L.D., Kha N.D., Minh N.T., Thuy L. Novel patterns of the Epstein–Barr nuclear antigen (EBNA-1) V-Val subtype in EBV-associated nasopharyngeal carcinoma from Vietnam. Balkan. J. Med. Genet. 2019; 22(1): 61–8. https://doi.org/10.2478/bjmg-2019-0011

48. Martini M., Capello D., Serraino D., Navarra A., Pierconti F., Cenci T., et al. Characterization of variants in the promoter of EBV gene BZLF1 in normal donors, HIV-positive patients and in AIDS-related lymphomas. J. Infect. 2007; 54(3): 298–306. https://doi.org/10.1016/j.jinf.2006.04.015

49. Bristol J.A., Djavadian R., Albright E.R., Coleman C.B., Ohashi M., Hayes M., et al. A cancer-associated Epstein–Barr virus BZLF1 promoter variant enhances lytic infection. PLoS Pathog. 2018; 14(7): e1007179. https://doi.org/10.1371/journal.ppat.1007179

50. Gumperz J., Sherer N.M., Farrell P.J., Johannsen E.C., Kenney S.C. B cells infected with type 2 Epstein–Barr virus (EBV) have increased NFATc1/NFATc2 activity and enhanced lytic gene expression in comparison to Type 1 EBV infection. PLoS Pathog. 2020; 16(2): e1008365. https://doi.org/10.1371/journal.ppat.1008365

51. Liu J., Ji X., Shen Z., Wang PhD. Y., Luo PhD. B. Sequence variations of Epstein–Barr virus-encoded BARF1 gene in nasopharyngeal carcinomas and healthy donors from southern and northern China. J. Med. Virol. 2018; 90(10): 1629–35. https://doi.org/10.1002/jmv.25233

52. Kim H., Burassakarn A., Kang Y., Iizasa H., Yoshiyama H. A single nucleotide polymorphism in the BART promoter region of Epstein–Barr virus isolated from nasopharyngeal cancer cells. Biochem. Biophys. Res. Commun. 2019; 520(2): 373–8. https://doi.org/10.1016/j.bbrc.2019.10.028

53. Wang Y., Zhang X., Chao Y., Jia Y., Xing X., Luo B. New variations of Epstein–Barr virus‐encoded small RNA genes in nasopharyngeal carcinomas, gastric carcinomas, and healthy donors in northern China. J. Med. Virol. 2010; 82(5): 829–36. https://doi.org/10.1002/jmv.21714

54. Chiara M., Manzari C., Lionetti C., Mechelli R., AnastasiadouE., Chiara Buscarinu M., et al. Geographic population structure in Epstein–Barr virus revealed by comparative genomics. Genome Biol. Evol. 2016; 8(11): 3284–91. https://doi.org/10.1093/gbe/evw226

55. Tu C., Zeng Z., Qi P., Li X., Yu Z., Guo C., et al. GenomeWide analysis of 18 Epstein–Barr viruses isolated from primary nasopharyngeal carcinoma biopsy specimens. J. Virol. 2017; 91(17): e00301-17. https://doi.org/10.1128/JVI.00301-17

56. Bridges R., Correia S., Wegner F., Venturini C., Palser A., WhiteR.E., et al. Essential role of inverted repeat in Epstein–Barr virus IR-1 in B cell transformation; geographical variation of the viral genome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019; 374(1773): 20180299. https://doi.org/10.1098/rstb.2018.0299

57. Siak P.Y., Khoo A.S., Leong C.O., Hoh B.P., Cheah S.C. Current status and future perspectives about molecular biomarkers of nasopharyngeal carcinoma. Cancers (Basel). 2021; 13(14): 3490. https://doi.org/10.3390/cancers13143490