Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98: 331-338

Нарушения кишечной микробиоты при расстройствах аутистического спектра: новые горизонты в поиске патогенетических подходов к терапии. Часть 3. Потенциальные стратегии влияния на ось кишечник–мозг для коррекции симптомов расстройств аутистического спектра

Благонравова А. С., Жиляева Т. В., Квашнина Д. В.

https://doi.org/10.36233/0372-9311-84

Аннотация

Третья часть обзора литературы, посвящённого роли нарушений кишечной микробиоты в патогенезе расстройств аутистического спектра (РАС), содержит анализ опубликованной литературы о возможных интервенционных подходах в отношении кишечной микробиоты при РАС и оценку эффективности различных типов вмешательств, которые изучались в эксперименте и клинической практике. Приведены имеющиеся к настоящему времени данные о возможности коррекции кишечной микробиоты при РАС с помощью диеты, приёма пре- и пробиотиков, антибиотикотерапии, а также об эффективности трансплантации кишечной микробиоты. Анализ опубликованных данных свидетельствует о том, что дальнейшая разработка подходов к коррекции дисбиоза кишечника при РАС может дать безопасные и, вероятно, эффективные в отношении поведенческих симптомов подходы, но это требует дальнейших рандомизированных контролируемых исследований для подтверждения эффективности и безопасности с позиции доказательной медицины, поскольку имеющиеся к настоящему времени исследования являются малочисленными и раз- розненными, в связи с чем их можно считать предварительными.

Список литературы

1. Brandt L.J., Aroniadis O.C., Mellow M., Kanatzar A., Kelly C., Park T., et al. Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am. J. Gastroenterol. 2012; 107(7): 1079–87. https://doi.org/10.1038/ajg.2012.60

2. Moayyedi P., Quigley E.M.M., Lacy B.E., Lembo A.J., Saito Y.A., Schiller L.R., et al. The effect of fiber supplementation on irritable bowel syndrome: a systematic review and meta- analysis. Am. J. Gastroenterol. 2014; 109(9): 1367–74. https://doi.org/10.1038/ajg.2014.195

3. Prantera C., Lochs H., Grimaldi M., Danese S., Scribano M.L., Gionchetti P., et al. Rifaximin-extended intestinal release induces remission in patients with moderately active Crohn's disease. Gastroenterology. 2012; 142(3): 473–81. https://doi.org/10.1053/j.gastro.2011.11.032

4. Tillisch K., Labus J., Kilpatrick L., Jiang Z., Stains J., Ebrat B., et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013; 144(7): 1394–401. https://doi.org/10.1053/j.gastro.2013.02.043

5. Youngster I., Sauk J., Pindar C., Wilson R.G., Kaplan J.L., Smith M.B., et al. Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin. Infect. Dis. 2014; 58(11): 1515–22. https://doi.org/10,1093/cid/ciu135

6. Estruch R., Ros E., Salas-Salvadó J., Covas M.I., Corella D., et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018; 378(25): e34. https://doi.org/10.1056/NEJMoa1800389.

7. Toribio-Mateas M. Harnessing the power of microbiome assessment tools as part of neuroprotective nutrition and lifestyle medicine interventions. Microorganisms. 2018; 6(2): 35. https://doi.org/10.3390/microorganisms6020035

8. Guasch-Ferre M., Hu F.B., Ruiz-Canela M., Bulló M., Toledo E., Wang D.D., et al. Plasma metabolites from choline pathway and risk of cardiovascular disease in the PREDIMED (prevention with Mediterranean diet) study. J. Am. Heart Assoc. 2017; 6(11): e006524. https://doi.org/10.1161/JAHA.117.006524

9. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014; 11(8): 506–14. https://doi.org/10.1038/nrgastro.2014.66

10. Doenyas C. Dietary interventions for autism spectrum disorder: New perspectives from the gut-brain axis. Physiol. Behav. 2018;194: 577–82. https://doi.org/10.1016/j.physbeh.2018.07.014

11. Campbell-McBride N. Gut and psychology syndrome. J. Orthomol. Med. 2008; 23(2): 90–4.

12. De Filippis F., Pellegrini N., Vannini L., Jeffery I.B., La Storia A., Laghi L., et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016; 65(11): 1812–21. https://doi.org/10.1136/gutjnl-2015-309957

13. Marí-Bauset S., Zazpe I., Mari-Sanchis A., Llopis- González A., Morales-Suárez-Varela M. Evidence of the gluten-free and casein- free diet in autism spectrum disorders: A systematic review. J. Child Neurol. 2014; 29(12): 1718–27. https://doi.org/10.1177/0883073814531330

14. Reichelt K.L., Knivsberg A.M. The possibility and probability of a gut-to-brain connection in autism. Ann. Clin. Psychiatry. 2009; 21(4): 205–11.

15. Reichelt K.L., Tveiten D., Knivsberg A.M., Brønstad G. Peptides’ role in autism with emphasis on exorphins. Microb. Ecol. Health Dis. 2012; 23: 18958. https://doi.org/10.3402/mehd.v23i0.18958

16. Sanctuary M.R., Kain J.N., Angkustsiri K., German J.B. Dietary considerations in autism spectrum disorders: the potential role of protein digestion and microbial putrefaction in the gut-brain axis. Front. Nutr. 2018; 5: 40. https://doi.org/10.3389/fnut.2018.00040

17. Kang D.W., Adams J.B., Gregory A.C., Borody T., Chittick L., Fasano A., et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome. 2017; 5(1): 10. https://doi.org/10.1186/s40168-016-0225-7

18. Whiteley P., Haracopos D., Knivsberg A.M., Reichelt K.L., Parlar S., Jacobsen J., et al. The ScanBrit randomised, controlled, single-blind study of a gluten- and casein-free dietary intervention for children with autism spectrum disorders. Nutr. Neurosci. 2010; 13(2): 87–100. https://doi.org/10.1179/147683010X12611460763922

19. Giannetti E., Staiano A. Probiotics for irritable bowel syndrome: clinical data in children. J. Pediatr. Gastroenterol. Nutr. 2016; 63(Suppl. 1): S25–6. https://doi.org/10.1097/MPG.0000000000001220

20. Hsiao E.Y., McBride S.W., Hsien S., Sharon G., Hyde E.R., Mc- Cue T., et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopment disorders. Cell. 2013; 155(7): 1451–63. https://doi.org/10.1016/j.cell.2013.11.024

21. Liu F., Li J., Wu F., Zheng H., Peng Q., Zhou H. Altered composition and function of intestinal microbiota in autism spectrum disorders: A systematic review. Transl. Psychiatry. 2019; 9(1): 43. https://doi.org/10.1038/s41398-019-0389-6

22. Zhang Y., Li L., Guo C., Mu D., Feng B., Zuo X., et al. Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: A meta-analysis. BMC Gastroenterol. 2016; 16(1): 62. https://doi.org/10.1186/s12876-016-0470-z

23. Navarro F., Liu Y., Rhoads J.M. Can probiotics benefit children with autism spectrum disorders? World J. Gastroenterol. 2016; 22(46): 10093–102. https://doi.org/10.3748/wjg.v22.i46.10093

24. Buffington S.A., Di Prisco G.V., Auchtung T.A., Ajami N.J., Petrosino J.F., Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. 2016; 165(7): 1762–75. https://doi.org/10.1016/j.cell.2016.06.001

25. Donaldson Z.R., Young L.J. Oxytocin, vasopressin and the neurogenetics of sociality. Science. 2008; 322(5903): 900–4. https://doi.org/10.1126/science.1158668

26. Fetissov S.O., Averina O.V., Danilenko V.N. Neuropeptides in the microbiota-brain axis and feeding behavior in autism spectrum disorder. Nutrition. 2018; 61: 43–8. https://doi.org/10.1016/j.nut.2018.10.030

27. El-Ansary A., Bacha A.B., Bjørklund G., Al-Orf N., Bhat R.S., Moubayed N., et al. Probiotic treatment reduces the autistic-like excitation/inhibition imbalance in juvenile hamsters induced by orally administered propionic acid and clindamycin. Metab. Brain Dis. 2018; 33(4): 1155–64. https://doi.org/10.1007/s11011-018-0212-8

28. Kaluzna-Czaplinska J., Blaszczyk S. The level of arabinitol in autistic children after probiotic therapy. Nutrition. 2012; 28(2): 124–6. https://doi.org/10.1016/j.nut.2011.08.002

29. Tomova A., Husarova V., Lakatosova S., Bakos J., Vlkova B., Babinska K., et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav. 2015; 138: 179–87. https://doi.org/10.1016/j.physbeh.2014.10.033

30. Blades M. Autism: an interesting dietary case history. Nutr. Food Sci. 2000; 30(3): 137–9. https://doi.org/10.1108/00346650010319741

31. Grossi E., Melli S., Dunca D., Terruzzi V. Unexpected improvement in core autism spectrum disorder symptoms after longterm treatment with probiotics. SAGE Open Med. Case Rep. 2016; 4: 2050313X16666231. https://doi.org/10.1177/2050313X16666231

32. West R., Roberts E., Sichel L.S., Sichel J. Improvements in gastrointestinal symptoms among children with autism spectrum disorder receiving the Delpro® probiotic and immunomodulatory formulation. J. Prob. Health. 2013; 1(1): 1–6. https://doi.org/10.4172/2329-8901.1000102

33. Shaaban S.Y., El Gendy Y.G., Mehanna N.S., El-Senousy W.M., El-Feki H.S.A., Saad K., et al. The role of probiotics in children with autism spectrum disorder: A prospective, open-label study. Nutr. Neurosci. 2017; 21(9): 676–81. https://doi.org/10.1080/1028415X.2017.1347746

34. Pärtty A., Kalliomäki M., Wacklin P., Salminen S., Isolauri E. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: A randomized trial. Pediatr. Res. 2015; 77(6): 823–8. https://doi.org/10.1038/pr.2015.51

35. Parracho H.M., Gibson G.R., Knott F., Bosscher D., Kleerebezem M., McCartney A.L. A double-blind, placebo-controlled, crossover-designed probiotic feeding study in children diagnosed with autistic spectrum disorders. Int. J. Probiot. Prebiot. 2010; 5(2): 69. https://doi.org/10.1186/s40168-018-0523-3

36. Belizário J.E., Napolitano M. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front. Microbiol. 2015; 6: 050. https://doi.org/10.3389/fmicb.2015.01050

37. Pennesi C.M., Klein L.C. Effectiveness of the gluten-free, casein- free diet for children diagnosed with autism spectrum disorder: Based on parental report. Nutr. Neurosci. 2012; 15(2): 85–91. https://doi.org/10.1179/1476830512Y.0000000003

38. Ruskin D.N., Svedova J., Cote J.L., Sandau U., Rho, J.M., Kawamura M., et al. Ketogenic diet improves core symptoms of autism in BTBR mice. PLoS ONE. 2013; 8(6): e65021. https://doi.org/10.1371/journal.pone.0065021

39. Castro K., Faccioli L.S., Baronio D., Gottfried C., Perry I.S., dos Santos Riesgo R. Effect of a ketogenic diet on autism spectrum disorder: A systematic review. Res. Autism Spectr. Disord. 2015; 20: 31–8. https://doi.org/10.1080/1028415X.2015.1133029

40. Kang D., Adams J.B., Coleman D., Pollard E.L., Maldonado J., McDonough-Means S., et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci. Rep. 2019; 9(1): 5821. https://doi.org/10.1038/s41598-019-42183-0

41. Bagdasarian N., Rao K., Malani P.N. Diagnosis and treatment of Clostridium difficile in adults a systematic review. JAMA. 2015; 313(4): 398–408. https://doi.org/10.1001/jama.2014.17103

42. Dethlefsen L., Huse S., Sogin M.L., Relman D.A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008; 6(11): e280. https://doi.org/10.1371/journal.pbio.0060280

43. Parracho H.M.R.T., Bingham M.O., Gibson G.R., McCartney A.L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 2005; 54(Pt. 10): 987–91. https://doi.org/10.1099/jmm.0.46101-0

44. Berding K., Donovan S.M. Diet can impact microbiota composition in children with autism spectrum disorder. Front. Neurosci. 2018; 12: 515. https://doi.org/10.3389/fnins.2018.00515

45. Plaza-Diaz J., Gomez-Fernandez A., Chueca N., Torre-Aguilar M.J., Gil A., Perez-Navero J.L., et al. Autism spectrum disorder (ASD) with and without mental regression is associated with changes in the fecal microbiota. Nutrients. 2019; 11(2): 337. https://doi.org/10.3390/nu11020337

46. Singh R.K., Chang H.W., Yan D., Lee K.M., Ucmak D., Wong K., et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017; 15(1): 73. https://doi.org/10.1186/s12967-017-1175-у

47. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505(7484): 559–63. https://doi.org/10.1038/nature12820

48. Sivamaruthi B.S., Suganthy N., Kesika P., Chaiyasut C. The role of microbiome, dietary supplements, and probiotics in autism spectrum disorder. Int. J. Environ. Res. Public Health. 2020; 17(8): 2647. https://doi.org/10.3390/ijerph17082647

49. Johnson D., Letchumanan V., Thurairajasingam S., Lee L.H. A revolutionizing approach to autism spectrum disorder using the microbiome. Nutrients. 2020; 12(7): 1983. https://doi.org/10.3390/nu12071983

50. Shenderov B.A., Sinitsa A.V., Zakharchenko M.M., Lang C. Metabiotics: Present State, Challenges and Perspectives. Cham, Switzerland: Springer Nature; 2020. https://doi.org/10.1007/978-3-030-34167-1

51. Shenderov B.A., Tkachenko E.I., Lazebnik L.B., Ardatskaya M.D., Sinitsa A.V., Zakharchenko M.M. Metabiotics-novel technology of protective and treatment of diseases associated with microecological imbalance in human being. Exp. Clin. Gastroenterol. 2018; 151(3): 83–92.

52. Roussin L., Prince N., Perez-Pardo P., Kraneveld A.D., Rabot S., Naudon L. Role of the gut microbiota in the pathophysiology of autism spectrum disorder: clinical and preclinical evidence. Microorganisms. 2020; 8(9): 1369. https://doi.org/10.3390/microorganisms8091369

Journal of microbiology, epidemiology and immunobiology. 2021; 98: 331-338

Disturbances of intestinal microbiota in autism spectrum disorders: new horizons in search for pathogenetic approaches to therapy. Рart 3. Рotential strategies of influence on gut-brain axis for correction of symptoms of autism spectrum disorders

Blagonravova A. S., Zhilyaeva T. V., Kvashnina D. V.

https://doi.org/10.36233/0372-9311-84

Abstract

The third part of the literature review on the role of intestinal microbiota disturbances in the pathogenesis of autism spectrum disorders (ASD) is devoted to the analysis of published literature on possible interventional approaches for intestinal microbiota in ASD and the evaluation of the effectiveness of various types of interventions that have been studied in experiment and in clinical practice. Presented are available data on the possibility of correcting the intestinal microbiota in ASD with diet, taking pre- and probiotics, antibiotic therapy, as well as the effectiveness of transplantation of intestinal microbiota. An analysis of published data suggests that further development of approaches for correcting intestinal dysbiosis in ASD may provide safe and probably effective strategy for behavioral symptoms, but this requires further randomized controlled trials to confirm efficacy and safety from the perspective of evidence-based medicine, since available to date studies are small and scattered, and therefore they can only be considered preliminary.

References

1. Brandt L.J., Aroniadis O.C., Mellow M., Kanatzar A., Kelly C., Park T., et al. Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am. J. Gastroenterol. 2012; 107(7): 1079–87. https://doi.org/10.1038/ajg.2012.60

2. Moayyedi P., Quigley E.M.M., Lacy B.E., Lembo A.J., Saito Y.A., Schiller L.R., et al. The effect of fiber supplementation on irritable bowel syndrome: a systematic review and meta- analysis. Am. J. Gastroenterol. 2014; 109(9): 1367–74. https://doi.org/10.1038/ajg.2014.195

3. Prantera C., Lochs H., Grimaldi M., Danese S., Scribano M.L., Gionchetti P., et al. Rifaximin-extended intestinal release induces remission in patients with moderately active Crohn's disease. Gastroenterology. 2012; 142(3): 473–81. https://doi.org/10.1053/j.gastro.2011.11.032

4. Tillisch K., Labus J., Kilpatrick L., Jiang Z., Stains J., Ebrat B., et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013; 144(7): 1394–401. https://doi.org/10.1053/j.gastro.2013.02.043

5. Youngster I., Sauk J., Pindar C., Wilson R.G., Kaplan J.L., Smith M.B., et al. Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin. Infect. Dis. 2014; 58(11): 1515–22. https://doi.org/10,1093/cid/ciu135

6. Estruch R., Ros E., Salas-Salvadó J., Covas M.I., Corella D., et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018; 378(25): e34. https://doi.org/10.1056/NEJMoa1800389.

7. Toribio-Mateas M. Harnessing the power of microbiome assessment tools as part of neuroprotective nutrition and lifestyle medicine interventions. Microorganisms. 2018; 6(2): 35. https://doi.org/10.3390/microorganisms6020035

8. Guasch-Ferre M., Hu F.B., Ruiz-Canela M., Bulló M., Toledo E., Wang D.D., et al. Plasma metabolites from choline pathway and risk of cardiovascular disease in the PREDIMED (prevention with Mediterranean diet) study. J. Am. Heart Assoc. 2017; 6(11): e006524. https://doi.org/10.1161/JAHA.117.006524

9. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014; 11(8): 506–14. https://doi.org/10.1038/nrgastro.2014.66

10. Doenyas C. Dietary interventions for autism spectrum disorder: New perspectives from the gut-brain axis. Physiol. Behav. 2018;194: 577–82. https://doi.org/10.1016/j.physbeh.2018.07.014

11. Campbell-McBride N. Gut and psychology syndrome. J. Orthomol. Med. 2008; 23(2): 90–4.

12. De Filippis F., Pellegrini N., Vannini L., Jeffery I.B., La Storia A., Laghi L., et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016; 65(11): 1812–21. https://doi.org/10.1136/gutjnl-2015-309957

13. Marí-Bauset S., Zazpe I., Mari-Sanchis A., Llopis- González A., Morales-Suárez-Varela M. Evidence of the gluten-free and casein- free diet in autism spectrum disorders: A systematic review. J. Child Neurol. 2014; 29(12): 1718–27. https://doi.org/10.1177/0883073814531330

14. Reichelt K.L., Knivsberg A.M. The possibility and probability of a gut-to-brain connection in autism. Ann. Clin. Psychiatry. 2009; 21(4): 205–11.

15. Reichelt K.L., Tveiten D., Knivsberg A.M., Brønstad G. Peptides’ role in autism with emphasis on exorphins. Microb. Ecol. Health Dis. 2012; 23: 18958. https://doi.org/10.3402/mehd.v23i0.18958

16. Sanctuary M.R., Kain J.N., Angkustsiri K., German J.B. Dietary considerations in autism spectrum disorders: the potential role of protein digestion and microbial putrefaction in the gut-brain axis. Front. Nutr. 2018; 5: 40. https://doi.org/10.3389/fnut.2018.00040

17. Kang D.W., Adams J.B., Gregory A.C., Borody T., Chittick L., Fasano A., et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome. 2017; 5(1): 10. https://doi.org/10.1186/s40168-016-0225-7

18. Whiteley P., Haracopos D., Knivsberg A.M., Reichelt K.L., Parlar S., Jacobsen J., et al. The ScanBrit randomised, controlled, single-blind study of a gluten- and casein-free dietary intervention for children with autism spectrum disorders. Nutr. Neurosci. 2010; 13(2): 87–100. https://doi.org/10.1179/147683010X12611460763922

19. Giannetti E., Staiano A. Probiotics for irritable bowel syndrome: clinical data in children. J. Pediatr. Gastroenterol. Nutr. 2016; 63(Suppl. 1): S25–6. https://doi.org/10.1097/MPG.0000000000001220

20. Hsiao E.Y., McBride S.W., Hsien S., Sharon G., Hyde E.R., Mc- Cue T., et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopment disorders. Cell. 2013; 155(7): 1451–63. https://doi.org/10.1016/j.cell.2013.11.024

21. Liu F., Li J., Wu F., Zheng H., Peng Q., Zhou H. Altered composition and function of intestinal microbiota in autism spectrum disorders: A systematic review. Transl. Psychiatry. 2019; 9(1): 43. https://doi.org/10.1038/s41398-019-0389-6

22. Zhang Y., Li L., Guo C., Mu D., Feng B., Zuo X., et al. Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: A meta-analysis. BMC Gastroenterol. 2016; 16(1): 62. https://doi.org/10.1186/s12876-016-0470-z

23. Navarro F., Liu Y., Rhoads J.M. Can probiotics benefit children with autism spectrum disorders? World J. Gastroenterol. 2016; 22(46): 10093–102. https://doi.org/10.3748/wjg.v22.i46.10093

24. Buffington S.A., Di Prisco G.V., Auchtung T.A., Ajami N.J., Petrosino J.F., Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. 2016; 165(7): 1762–75. https://doi.org/10.1016/j.cell.2016.06.001

25. Donaldson Z.R., Young L.J. Oxytocin, vasopressin and the neurogenetics of sociality. Science. 2008; 322(5903): 900–4. https://doi.org/10.1126/science.1158668

26. Fetissov S.O., Averina O.V., Danilenko V.N. Neuropeptides in the microbiota-brain axis and feeding behavior in autism spectrum disorder. Nutrition. 2018; 61: 43–8. https://doi.org/10.1016/j.nut.2018.10.030

27. El-Ansary A., Bacha A.B., Bjørklund G., Al-Orf N., Bhat R.S., Moubayed N., et al. Probiotic treatment reduces the autistic-like excitation/inhibition imbalance in juvenile hamsters induced by orally administered propionic acid and clindamycin. Metab. Brain Dis. 2018; 33(4): 1155–64. https://doi.org/10.1007/s11011-018-0212-8

28. Kaluzna-Czaplinska J., Blaszczyk S. The level of arabinitol in autistic children after probiotic therapy. Nutrition. 2012; 28(2): 124–6. https://doi.org/10.1016/j.nut.2011.08.002

29. Tomova A., Husarova V., Lakatosova S., Bakos J., Vlkova B., Babinska K., et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav. 2015; 138: 179–87. https://doi.org/10.1016/j.physbeh.2014.10.033

30. Blades M. Autism: an interesting dietary case history. Nutr. Food Sci. 2000; 30(3): 137–9. https://doi.org/10.1108/00346650010319741

31. Grossi E., Melli S., Dunca D., Terruzzi V. Unexpected improvement in core autism spectrum disorder symptoms after longterm treatment with probiotics. SAGE Open Med. Case Rep. 2016; 4: 2050313X16666231. https://doi.org/10.1177/2050313X16666231

32. West R., Roberts E., Sichel L.S., Sichel J. Improvements in gastrointestinal symptoms among children with autism spectrum disorder receiving the Delpro® probiotic and immunomodulatory formulation. J. Prob. Health. 2013; 1(1): 1–6. https://doi.org/10.4172/2329-8901.1000102

33. Shaaban S.Y., El Gendy Y.G., Mehanna N.S., El-Senousy W.M., El-Feki H.S.A., Saad K., et al. The role of probiotics in children with autism spectrum disorder: A prospective, open-label study. Nutr. Neurosci. 2017; 21(9): 676–81. https://doi.org/10.1080/1028415X.2017.1347746

34. Pärtty A., Kalliomäki M., Wacklin P., Salminen S., Isolauri E. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: A randomized trial. Pediatr. Res. 2015; 77(6): 823–8. https://doi.org/10.1038/pr.2015.51

35. Parracho H.M., Gibson G.R., Knott F., Bosscher D., Kleerebezem M., McCartney A.L. A double-blind, placebo-controlled, crossover-designed probiotic feeding study in children diagnosed with autistic spectrum disorders. Int. J. Probiot. Prebiot. 2010; 5(2): 69. https://doi.org/10.1186/s40168-018-0523-3

36. Belizário J.E., Napolitano M. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front. Microbiol. 2015; 6: 050. https://doi.org/10.3389/fmicb.2015.01050

37. Pennesi C.M., Klein L.C. Effectiveness of the gluten-free, casein- free diet for children diagnosed with autism spectrum disorder: Based on parental report. Nutr. Neurosci. 2012; 15(2): 85–91. https://doi.org/10.1179/1476830512Y.0000000003

38. Ruskin D.N., Svedova J., Cote J.L., Sandau U., Rho, J.M., Kawamura M., et al. Ketogenic diet improves core symptoms of autism in BTBR mice. PLoS ONE. 2013; 8(6): e65021. https://doi.org/10.1371/journal.pone.0065021

39. Castro K., Faccioli L.S., Baronio D., Gottfried C., Perry I.S., dos Santos Riesgo R. Effect of a ketogenic diet on autism spectrum disorder: A systematic review. Res. Autism Spectr. Disord. 2015; 20: 31–8. https://doi.org/10.1080/1028415X.2015.1133029

40. Kang D., Adams J.B., Coleman D., Pollard E.L., Maldonado J., McDonough-Means S., et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci. Rep. 2019; 9(1): 5821. https://doi.org/10.1038/s41598-019-42183-0

41. Bagdasarian N., Rao K., Malani P.N. Diagnosis and treatment of Clostridium difficile in adults a systematic review. JAMA. 2015; 313(4): 398–408. https://doi.org/10.1001/jama.2014.17103

42. Dethlefsen L., Huse S., Sogin M.L., Relman D.A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008; 6(11): e280. https://doi.org/10.1371/journal.pbio.0060280

43. Parracho H.M.R.T., Bingham M.O., Gibson G.R., McCartney A.L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 2005; 54(Pt. 10): 987–91. https://doi.org/10.1099/jmm.0.46101-0

44. Berding K., Donovan S.M. Diet can impact microbiota composition in children with autism spectrum disorder. Front. Neurosci. 2018; 12: 515. https://doi.org/10.3389/fnins.2018.00515

45. Plaza-Diaz J., Gomez-Fernandez A., Chueca N., Torre-Aguilar M.J., Gil A., Perez-Navero J.L., et al. Autism spectrum disorder (ASD) with and without mental regression is associated with changes in the fecal microbiota. Nutrients. 2019; 11(2): 337. https://doi.org/10.3390/nu11020337

46. Singh R.K., Chang H.W., Yan D., Lee K.M., Ucmak D., Wong K., et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017; 15(1): 73. https://doi.org/10.1186/s12967-017-1175-u

47. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505(7484): 559–63. https://doi.org/10.1038/nature12820

48. Sivamaruthi B.S., Suganthy N., Kesika P., Chaiyasut C. The role of microbiome, dietary supplements, and probiotics in autism spectrum disorder. Int. J. Environ. Res. Public Health. 2020; 17(8): 2647. https://doi.org/10.3390/ijerph17082647

49. Johnson D., Letchumanan V., Thurairajasingam S., Lee L.H. A revolutionizing approach to autism spectrum disorder using the microbiome. Nutrients. 2020; 12(7): 1983. https://doi.org/10.3390/nu12071983

50. Shenderov B.A., Sinitsa A.V., Zakharchenko M.M., Lang C. Metabiotics: Present State, Challenges and Perspectives. Cham, Switzerland: Springer Nature; 2020. https://doi.org/10.1007/978-3-030-34167-1

51. Shenderov B.A., Tkachenko E.I., Lazebnik L.B., Ardatskaya M.D., Sinitsa A.V., Zakharchenko M.M. Metabiotics-novel technology of protective and treatment of diseases associated with microecological imbalance in human being. Exp. Clin. Gastroenterol. 2018; 151(3): 83–92.

52. Roussin L., Prince N., Perez-Pardo P., Kraneveld A.D., Rabot S., Naudon L. Role of the gut microbiota in the pathophysiology of autism spectrum disorder: clinical and preclinical evidence. Microorganisms. 2020; 8(9): 1369. https://doi.org/10.3390/microorganisms8091369