Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98: 198-212
Однонуклеотидные полиморфизмы членов суперсемейства интерлейкина-1: ассоциация с вирусными гепатитами В и С
Власенко Н. В., Чурилова Н. С., Панасюк Я. В., Клушкина В. В., Дубоделов Д. В., Кудрявцева Е. Н., Семененко Т. А., Кузин С. Н., Акимкин В. Г.
https://doi.org/10.36233/0372-9311-121Аннотация
В обзоре представлена информация об однонуклеотидных полиморфизмах (single nucleotide polymorphism, SNP) в генах некоторых интерлейкинов (IL), входящих в суперсемейство IL-1, и их связи с различными заболеваниями человека как инфекционной, так и неинфекционной природы. Кратко изложена история обнаружения SNP и развитие научного поиска по данной проблеме до сегодняшнего времени. Описаны некоторые механизмы взаимодействия инфекционных агентов и иммунной системы человека с учётом SNP отдельных цитокинов суперсемейства IL-1. Приведены данные о связи ряда SNP в генах, кодирующих другие факторы иммунной системы, ассоциированные с особенностями течения вирусных гепатитов В и С. Обсуждается значение определения SNP-пропорции провоспалительных цитокинов и их антагонистов суперсемейства IL-1 среди здорового населения и соотношения отдельных SNP у определённых групп пациентов как параметра мониторинга систем эпидемиологического надзора за инфекционными заболеваниями.
Список литературы
1. Mosrati M.A., Malmström A., Lysiak M., Krysztofiak A., Hallbeck M., Milos P., et al. TERT promoter mutations and polymorphisms as prognostic factors in primary glioblastoma. Oncotarget. 2015; 6(18): 16663–73. https://doi.org/10.18632/oncotarget.4389
2. Risch N.J. Searching for genetic determinants in the new millennium. Nature. 2000; 405(6788): 847–56. https://doi.org/10.1038/35015718
3. Rech T.F., Mazzoleni L.E., Mazzoleni F., Francesconi C.F.M., Sander G.B., Michita R.T., et al. Analysis of the influence of interleukin-1β gene polymorphism on gastric inflammatory response and precancerous lesions development in patients with functional dyspepsia. Immunol. Invest. 2020; 49(5): 585–96. https://doi.org/10.1080/08820139.2019.1710532
4. Sachidanandam R., Weissman D., Schmidt S.C., Kakol J.M., Stein L.D., Marth G., et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001; 409(6822): 928–33. https://doi.org/10.1038/35057149
5. Hijikata M., Ohta Y., Mishiro S. Identification of a single nucleotide polymorphism in the MxA gene promoter (G/T at nt-88) correlated with the response of hepatitis C patients to interferon. Intervirology. 2000; 43(2): 124–7. https://doi.org/10.1159/000025035
6. Grösch S., Niederberger E., Lötsch J., Skarke C., Geisslinger G. A rapid screening method for a single nucleotide polymorphism (SNP) in the human MOR gene. Br. J. Clin. Pharmacol. 2001; 52(6): 711–4. https://doi.org/10.1046/j.0306-5251.2001.01504.x
7. International HapMap Consortium. The International HapMap Project. Nature. 2003; 426(6968): 789–96. https://doi.org/10.1038/nature02168
8. Chamberlian S, Shaw J., Rowland A., Wallis J., South S., Nakamura Y., et al. Mapping of mutation causing Friedreich’s ataxia to human chromosome 9. Nature (London). 1988; 334(6179): 248–50. https://doi.org/10.1038/334248a0
9. Fujita R., Agid Y., Trouillas P., Seck A., Tommasi-Davenas C., Driesel A.J., et al. Confirmation of linkage of Friedreich ataxia to chromosome 9 and identification of a new closely linked marker. Genomics. 1989; 4(1): 110–1. https://doi.org/10.1016/0888-7543(89)90323-6
10. Сташкевич Д.С., Филиппова Ю.Ю., Бурмистрова А.Л. Актуальные вопросы иммунологии: система цитокинов, биологическое значение, генетический полиморфизм, методы определения. Челябинск: Цицеро; 2016.
11. Dinarello C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011; 117(14): 3720–32. https://doi.org/10.1182/blood-2010-07-273417
12. Werman A., Werman-Venkert R., White R., Lee J. K., Werman B., Krelin Y., et al. The precursor form of IL-1alpha is an intracrine proinflammatory activator of transcription. Proc. Natl. Acad. Sci. USA. 2004; 101(8): 2434–9. https://doi.org/10.1073/pnas.0308705101
13. Boraschi D., Italiani P., Weil S., Martin M.U. The family of the interleukin-1 receptors. Immunol. Rev. 2017; 281(1): 197–232. https://doi.org/10.1111/imr.12606
14. Madej M.P., Töpfer E., Boraschi D., Italiani P. Different regulation of interleukin-1 production and activity in monocytes and macrophages: innate memory as an endogenous mechanism of IL-1 inhibition. Front. Pharmacol. 2017; 8: 335. https://doi.org/10.3389/fphar.2017.00335
15. Pšemeneckienė G., Petrikonis K., Rastenytė A.D. Polymorphisms of proinflammatory cytokines in relation to APOE Epsilon 4 and risk of Alzheimer's disease in the Lithuanian population. Medicina (Kaunas). 2019; 55(10): 689. https://doi.org/10.3390/medicina55100689
16. Serretti A., Olgiati P., Politis A., Malitas P., Albani D., Dusi S., et al. Lack of association between interleukin-1 alpha rs1800587 polymorphism and Alzheimer's disease in two independent European samples. J. Alzheimers Dis. 2009; 16(1): 181–7. https://doi.org/10.3233/JAD-2009-0946
17. Yildiz S.H., Erdogan M.O., Artan S., Solak M., Yaman M., Ozbabalik B.D., et al. Association of Alzheimer's disease with APOE and IL-1α gene polymorphisms. Am. J. Alzheimers Dis. Other Demen. 2015; 30(8): 756–61. https://doi.org/10.1177/1533317512461557
18. Asensi V., Alvarez V., Valle E., Meana A., Fierer J., Coto E., et al. IL-1 alpha (-889) promoter polymorphism is a risk factor for osteomyelitis. Am. J. Med. Genet. A. 2003; 119A(2): 132–6. https://doi.org/10.1002/ajmg.a.20137
19. Tsezou A., Poultsides L., Kostopoulou F., Zintzaras E., Satra M., Kitsiou-Tzeli S., et al. Influence of interleukin 1alpha (IL-1alpha): IL-4, and IL-6 polymorphisms on genetic susceptibility to chronic osteomyelitis. Clin. Vaccine Immunol. 2008; 15(12): 1888–90. https://doi.org/10.1128/CVI.00209-08
20. Jiang N., Li S.Y., Ma Y.F., Hu Y.J., Lin Q.R., Yu B. Associations between interleukin gene polymorphisms and risks of developing extremity posttraumatic osteomyelitis in Chinese Han population. Mediators Inflamm. 2020; 2020: 3278081. https://doi.org/10.1155/2020/3278081
21. Korobeinikova E., Ugenskiene R., Insodaite R., Rudzianskas V., Jaselske E., Poskiene L., et al. Association of angiogenesis and inflammation-related gene functional polymorphisms with early-stage breast cancer prognosis. Oncol. Lett. 2020; 19(6): 3687–700. https://doi.org/10.3892/ol.2020.11521
22. Picos A., Vulturar R., Picos A., Chis A., Chiorean I., Piciu A., et al. Interleukin-1A and interleukin-1B gene polymorphisms in gastroesophageal reflux disease. Exp. Ther. Med. 2020; 20(4): 3394–8. https://doi.org/10.3892/etm.2020.9030
23. Oliveira M.B., de Vasconcellos J.P.C., Ananina G., Costa V.P., de Melo M.B. Association between IL1A and IL1B polymorphisms and primary open angle glaucoma in a Brazilian population. Exp. Biol. Med. (Maywood). 2018; 243(13): 1083–91. https://doi.org/10.1177/1535370218809709
24. Su H., Rei N., Zhang L., Cheng J. Meta-analyses of IL1A polymorphisms and the risk of several autoimmune diseases published in databases. PLoS One. 2018; 13(6): e0198693. https://doi.org/10.1371/journal.pone.0198693
25. Gorący I., Kaczmarczyk M., Ciechanowicz A., Lewandowska K., Jakubiszyn P., Bodnar O., et al. Polymorphism of interleukin 1B may modulate the risk of ischemic stroke in polish patients. Medicina (Kaunas). 2019; 55(9): 558. https://doi.org/10.3390/medicina55090558
26. Okada S., Hata K., Shinagawa T., Noguchi T., Tanaka T., Kawai K., et al. A polymorphism in interleukin-1β gene is associated with the development of pouchitis in Japanese patients with ulcerative colitis. Digestion. 2019; 1–10. https://doi.org/10.1159/000503283
27. Landvik N.E., Hart K., Skaug V., Stangeland L.B., Haugen A., Zienolddiny S. A specific interleukin-1B haplotype correlates with high levels of IL1B mRNA in the lung and increased risk of non-small cell lung cancer. Carcinogenesis. 2009; 30(7): 1186–92. https://doi.org/10.1093/carcin/bgp122
28. Srinivasan L., Harris M.C., Kilpatrick L.E. Cytokines and inflammatory response in the fetus and neonate. In: Fetal and Neonatal Physiology. Elsevier; 2017: 1241–54.e4. https://doi.org/10.1016/b978-0-323-35214-7.00128-1
29. Cavalli G., Dinarello C.A. Anakinra therapy for non-cancer inflammatory diseases. Front. Pharmacol. 2018; 9: 1157. https://doi.org/10.3389/fphar.2018.01157
30. Bachove I., Chang C. Anakinra and related drugs targeting interleukin-1 in the treatment of cryopyrin-associated periodic syndromes. Open Access Rheumatol. 2014; (6): 15–25. https://doi.org/10.2147/OARRR.S46017
31. Aksentijevich I., Masters S.L., Ferguson P.J., Dancey P., Frenkel J., van Royen-Kerkhoff A., et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N. Engl. J. Med. 2009; 360(23): 2426–37. https://doi.org/10.1056/NEJMoa0807865
32. Worrall B.B., Azhar S., Nyquist P.A., Ackerman R.H., Hamm T.L., DeGraba T.J. Interleukin-1 receptor antagonist gene polymorphisms in carotid atherosclerosis. Stroke. 2003; 34(3): 790–3. https://doi.org/10.1161/01.STR.0000057815.79289.EC
33. Worrall B.B., Brott T.G., Brown R.D. Jr., Brown W.M., Rich S.S., Arepalli S., et al. IL1RN VNTR polymorphism in ischemic stroke: analysis in 3 populations. Stroke. 2007; 38(4): 1189–96. https://doi.org/10.1161/01.STR.0000260099.42744.b0
34. Jaiswal D., Trivedi S., Singh R., Dada R., Singh K. Association of the IL1RN gene VNTR polymorphism with human male infertility. PLoS One. 2012; 7(12): e51899. https://doi.org/10.1371/journal.pone.0051899
35. Tripathy A., Ganu M., Sonam L., Alagarasu K., Walimbe A., Thanapati S., et al. Association of IL1RN VNTR polymorphism with chikungunya infection: a study from Western India. J. Med. Virol. 2019; 91(11): 1901–8. https://doi.org/10.1002/jmv.25546
36. Ismail E., Nofal O.K.J., Sakthiswary R., Shaharir S.S., Sridharan R. The clinical significance of interleukin-1 receptor antagonist +2018 polymorphism in rheumatoid arthritis. PLoS One. 2016; 11(4): e0153752. https://doi.org/10.1371/journal.pone.0153752
37. Lin J., Wang Y., Wang Y., Pan Y. Inflammatory biomarkers and risk of ischemic stroke and subtypes: A 2-sample Mendelian randomization study. Neurol. Res. 2020; 42(2): 118–25. https://doi.org/10.1080/01616412.2019.1710404
38. Ibáñez L., Velli P.S., Font R., Jaén A., Royo J., Irigoyen D., et al. HIV-infection, atherosclerosis and the inflammatory pathway: candidate gene study in a Spanish HIV-infected population. PLoS One. 2014; 9(11): e112279. https://doi.org/10.1371/journal.pone.0112279
39. Attur M., Wang H.Y., Kraus V.B., Bukowski J.F., Aziz N., Krasnokutsky S., et al. Radiographic severity of knee osteoarthritis is conditional on interleukin 1 receptor antagonist gene variations. Ann. Rheum. Dis. 2010; 69(5): 856–61. https://doi.org/10.1136/ard.2009.113043
40. ВОЗ. Гепатит C. Available at: https://www.who.int/ru/newsroom/fact-sheets/detail/hepatitis-c
41. Jiang D.K., Sun J., Cao G., Liu Y., Lin D., Gao Y.Z., et al. Genetic variants in STAT4 and HLA-DQ genes confer risk of hepatitis B virus-related hepatocellular carcinoma. Nat. Genet. 2013; 45(1): 72–5. https://doi.org/10.1038/ng.2483
42. Abd El-Baky R.M., Hetta H.F., Koneru G., Ammar M., Shafik E.A., Mohareb D.A., et al. Impact of interleukin IL-6 rs1474347 and IL-10 rs-1800896 genetic polymorphisms on the susceptibility of HCV-infected Egyptian patients to hepatocellular carcinoma. Immunol. Res. 2020; 68(3): 118–25. https://doi.org/10.1007/s12026-020-09126-8
43. Cao L.N., Cheng S.L., Liu W. IL10 rs1800896 polymorphism is associated with liver cirrhosis and chronic hepatitis B. Genet. Mol. Res. 2016; 15(1). https://doi.org/10.4238/gmr.15017256
44. Rybicka M., Woziwodzka A., Sznarkowska A., Romanowski T., Stalke P., Dręczewski M., et al. Genetic variation in IL-10 influences the progression of hepatitis B infection. Int. J. Infect. Dis. 2020; 96: 260–5. https://doi.org/10.1016/j.ijid.2020.04.079
45. Shi H., He H., Ojha S.C., Sun C., Fu J., Yan M., et al. Association of STAT3 and STAT4 polymorphisms with susceptibility to chronic hepatitis B virus infection and risk of hepatocellular carcinoma: a meta-analysis. Biosci. Rep. 2019; 39(6): BSR20190783. https://doi.org/10.1042/BSR20190783
46. Jiménez-Sousa M.Á., Gómez-Moreno A.Z., Pineda-Tenor D., Brochado-Kith O., Sánchez-Ruano J.J., Artaza-Varasa T., et al. The myeloid-epithelial-reproductive tyrosine kinase (MERTK) rs4374383 polymorphism predicts progression of liver fibrosis in hepatitis C virus-infected patients: a longitudinal study. J. Clin. Med. 2018; 7(12): 473. https://doi.org/10.3390/jcm7120473
47. Cavalli M., Pan G., Nord H., Wallén Arzt E., Wallerman O., Wadelius C. Genetic prevention of hepatitis C virus-induced liver fibrosis by allele-specific downregulation of MERTK. Hepatol. Res. 2017; 47(8): 826–30. https://doi.org/10.1111/hepr.12810
48. Agúndez J.A., García-Martín E., Devesa M.J., Carballo M., Martínez C., Lee-Brunner A., et al. Polymorphism of the TLR4 gene reduces the risk of hepatitis C virus-induced hepatocellular carcinoma. Oncology. 2012; 82(1): 35–40. https://doi.org/10.1159/000335606
49. Chang S.W., Fann C.S., Su W.H., Wang Y.C., Weng C.C., Yu C.J., et al. A genome-wide association study on chronic HBV infection and its clinical progression in male Han-Taiwanese. PLoS One. 2014; 9(6): e99724. https://doi.org/10.1371/journal.pone.0099724
50. Sheneef A., Esmat M.M., Mohammad A.N., Mahmoud A.A., Moghazy H.M., Noureldin A.K. Interleukin-10 and interferon gamma gene polymorphisms and hepatitis C virus-related liver cirrhosis risk. J. Interferon Cytokine Res. 2017; 37(4): 175–80. https://doi.org/10.1089/jir.2016.0106
51. Maurya G., Hazam R.K., Ruttala R., Karna R., Das B.C., Kar P. A study of association between regulatory polymorphism in the IL-10 gene promoter region and acute viral hepatitis, and acute liver failure. Indian J. Gastroenterol. 2018; 37(4): 293–8. https://doi.org/10.1007/s12664-018-0858-5
52. Jiménez-Sousa M.A., Fernández-Rodríguez A., Guzmán-Fulgencio M., García-Álvarez M., Resino S. Meta-analysis: implications of interleukin-28B polymorphisms in spontaneous and treatment-related clearance for patients with hepatitis C. BMC Med. 2013; 11: 6. https://doi.org/10.1186/1741-7015-11-6
53. Малов С.И. Сравнительная клинико-эпидемиологическая характеристика вирусного гепатита С на сопредельных территориях России и Монголии: Автореф. дисс. ... канд. мед. наук. М.; 2017.
54. Świątek-Kościelna B., Kałużna E., Strauss E., Nowak J., Bereszyńska I., Gowin E., et al. Prevalence of IFNL3 rs4803217 single nucleotide polymorphism and clinical course of chronic hepatitis C. World J. Gastroenterol. 2017; 23(21): 3815–24. https://doi.org/10.3748/wjg.v23.i21.3815
55. Posuwan N., Payungporn S., Tangkijvanich P., Ogawa S., Murakami S., Iijima S., et al. Genetic association of human leukocyte antigens with chronicity or resolution of hepatitis B infection in Thai population. PLoS One. 2014; 9(1): e86007. https://doi.org/10.1371/journal.pone.0086007
56. Sghaier I., Zidi S., Mouelhi L., Ghazoueni E., Brochot E., Almawi W.Y., et al. TLR3 and TLR4 SNP variants in the liver disease resulting from hepatitis B virus and hepatitis C virus infection. Br. J. Biomed. Sci. 2019; 76(1): 35–41. https://doi.org/10.1080/09674845.2018.1547179
57. Wu J.F., Chen C.H., Ni Y.H., Lin Y.T., Chen H.L., Hsu H.Y., et al. Toll-like receptor and hepatitis B virus clearance in chronic infected patients: a long-term prospective cohort study in Taiwan. J. Infect. Dis. 2012; 206(5): 662–68. https://doi.org/10.1093/infdis/jis420
58. Al-Qahtani A.A., Al-Anazi M.R., Al-Zoghaibi F., Abdo A.A., Sanai F.M., Khan M.Q., et al. The association of toll-like receptor 4 polymorphism with hepatitis C virus infection in Saudi Arabian patients. BioMed Res. Int. 2014; 2014: 357062. https://doi.org/10.1155/2014/357062
59. Katrinli S., Nigdelioglu A., Ozdil K., Dinler-Doganay G., Doganay L. The association of variations in TLR genes and spontaneous immune control of hepatitis B virus. Clin. Res. Hepatol. Gastroenterol. 2018; 42(2): 139–44. https://doi.org/10.1016/j.clinre.2017.10.002
60. Pires-Neto Ode S., de Sá K.S., Santana B.B., Gomes S.T., Amoras Eda S., Conde S.R., et al. Lack of association between polymorphisms of the TLR4 gene and infection with the hepatitis B and C viruses. Mediators Inflamm. 2015; 2015: 150673. https://doi.org/10.1155/2015/150673
61. Zagórska A., Través P.G., Jiménez-García L., Strickland J.D., Oh J., Tapia F.J., et al. Differential regulation of hepatic physiology and injury by the TAM receptors Axl and Mer. Life Sci. Alliance. 2020; 3(8): e202000694. https://doi.org/10.26508/lsa.202000694
62. Schmidt-Arras D., Rose-John S. IL-6 pathway in the liver: from physiopathology to therapy. J. Hepatol. 2016; 64(6): 14031415. https://doi.org/10.1016/j.jhep.2016.02.004
63. Jiang D.K., Ma X.P., Wu X., Peng L., Yin J., Dan Y., et al. Genetic variations in STAT4, C2, HLA-DRB1 and HLA-DQ associated with risk of hepatitis B virus-related liver cirrhosis. Sci. Rep. 2015; 5: 16278. https://doi.org/10.1038/srep16278
64. Estfanous S.Z.K., Ali S.A., Seif S.M., Soror S.H.A., Abdelaziz D.H.A. Inflammasome genes' polymorphisms in Egyptian chronic hepatitis C patients: influence on vulnerability to infection and response to treatment. Mediators Inflamm. 2019; 2019: 3273645. https://doi.org/10.1155/2019/3273645
65. Biswas A., Panigrahi R., Pal M., De B.K., Chakrabarti S., Ghosh M.K., et al. Association of interleukin-1β and gene polymorphisms with liver pathogenesis in hepatitis B virus Infection among Eastern Indian population. J. Clin. Exp. Hepatol. 2013; 3(4): 281–7. https://doi.org/10.1016/j.jceh.2013.11.006
Journal of microbiology, epidemiology and immunobiology. 2021; 98: 198-212
Single nucleotide polymorphisms of the interleukin-1 superfamily members: аssociation with viral hepatitis B and C
Vlasenko N. V., Churilova N. S., Panasyuk Ya. V., Klushkina V. V., Dubodelov D. V., Kudryavtseva E. N., Semenenko T. A., Kuzin S. N., Akimkin N. G.
https://doi.org/10.36233/0372-9311-121Abstract
The review provides information on single nucleotide polymorphisms (SNPs) in genes encoding some interleukins belonging to the interleukin-1 (IL-1) superfamily and on their association with different infectious and non-infectious human diseases. It also briefs on the history of SNP discovery and the progress in the related scientific studies till the present time. It gives an insight into some mechanisms of interaction between infectious agents and the human immune system, involving SNPs in some cytokines of the IL-1 superfamily. The review provides data on relationships of SNPs in genes encoding other factors of the immune system, which are associated with the specific characteristics of natural history of chronic hepatitis B and C. It explores the significance of assessment of the SNP-proportion in proinflammatory cytokines and their antagonists of the IL-1 superfamily among the healthy population as well as the ratio of individual SNPs in specific groups of patients as a monitoring parameter for epidemiological surveillance of infectious diseases.
References
1. Mosrati M.A., Malmström A., Lysiak M., Krysztofiak A., Hallbeck M., Milos P., et al. TERT promoter mutations and polymorphisms as prognostic factors in primary glioblastoma. Oncotarget. 2015; 6(18): 16663–73. https://doi.org/10.18632/oncotarget.4389
2. Risch N.J. Searching for genetic determinants in the new millennium. Nature. 2000; 405(6788): 847–56. https://doi.org/10.1038/35015718
3. Rech T.F., Mazzoleni L.E., Mazzoleni F., Francesconi C.F.M., Sander G.B., Michita R.T., et al. Analysis of the influence of interleukin-1β gene polymorphism on gastric inflammatory response and precancerous lesions development in patients with functional dyspepsia. Immunol. Invest. 2020; 49(5): 585–96. https://doi.org/10.1080/08820139.2019.1710532
4. Sachidanandam R., Weissman D., Schmidt S.C., Kakol J.M., Stein L.D., Marth G., et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001; 409(6822): 928–33. https://doi.org/10.1038/35057149
5. Hijikata M., Ohta Y., Mishiro S. Identification of a single nucleotide polymorphism in the MxA gene promoter (G/T at nt-88) correlated with the response of hepatitis C patients to interferon. Intervirology. 2000; 43(2): 124–7. https://doi.org/10.1159/000025035
6. Grösch S., Niederberger E., Lötsch J., Skarke C., Geisslinger G. A rapid screening method for a single nucleotide polymorphism (SNP) in the human MOR gene. Br. J. Clin. Pharmacol. 2001; 52(6): 711–4. https://doi.org/10.1046/j.0306-5251.2001.01504.x
7. International HapMap Consortium. The International HapMap Project. Nature. 2003; 426(6968): 789–96. https://doi.org/10.1038/nature02168
8. Chamberlian S, Shaw J., Rowland A., Wallis J., South S., Nakamura Y., et al. Mapping of mutation causing Friedreich’s ataxia to human chromosome 9. Nature (London). 1988; 334(6179): 248–50. https://doi.org/10.1038/334248a0
9. Fujita R., Agid Y., Trouillas P., Seck A., Tommasi-Davenas C., Driesel A.J., et al. Confirmation of linkage of Friedreich ataxia to chromosome 9 and identification of a new closely linked marker. Genomics. 1989; 4(1): 110–1. https://doi.org/10.1016/0888-7543(89)90323-6
10. Stashkevich D.S., Filippova Yu.Yu., Burmistrova A.L. Aktual'nye voprosy immunologii: sistema tsitokinov, biologicheskoe znachenie, geneticheskii polimorfizm, metody opredeleniya. Chelyabinsk: Tsitsero; 2016.
11. Dinarello C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011; 117(14): 3720–32. https://doi.org/10.1182/blood-2010-07-273417
12. Werman A., Werman-Venkert R., White R., Lee J. K., Werman B., Krelin Y., et al. The precursor form of IL-1alpha is an intracrine proinflammatory activator of transcription. Proc. Natl. Acad. Sci. USA. 2004; 101(8): 2434–9. https://doi.org/10.1073/pnas.0308705101
13. Boraschi D., Italiani P., Weil S., Martin M.U. The family of the interleukin-1 receptors. Immunol. Rev. 2017; 281(1): 197–232. https://doi.org/10.1111/imr.12606
14. Madej M.P., Töpfer E., Boraschi D., Italiani P. Different regulation of interleukin-1 production and activity in monocytes and macrophages: innate memory as an endogenous mechanism of IL-1 inhibition. Front. Pharmacol. 2017; 8: 335. https://doi.org/10.3389/fphar.2017.00335
15. Pšemeneckienė G., Petrikonis K., Rastenytė A.D. Polymorphisms of proinflammatory cytokines in relation to APOE Epsilon 4 and risk of Alzheimer's disease in the Lithuanian population. Medicina (Kaunas). 2019; 55(10): 689. https://doi.org/10.3390/medicina55100689
16. Serretti A., Olgiati P., Politis A., Malitas P., Albani D., Dusi S., et al. Lack of association between interleukin-1 alpha rs1800587 polymorphism and Alzheimer's disease in two independent European samples. J. Alzheimers Dis. 2009; 16(1): 181–7. https://doi.org/10.3233/JAD-2009-0946
17. Yildiz S.H., Erdogan M.O., Artan S., Solak M., Yaman M., Ozbabalik B.D., et al. Association of Alzheimer's disease with APOE and IL-1α gene polymorphisms. Am. J. Alzheimers Dis. Other Demen. 2015; 30(8): 756–61. https://doi.org/10.1177/1533317512461557
18. Asensi V., Alvarez V., Valle E., Meana A., Fierer J., Coto E., et al. IL-1 alpha (-889) promoter polymorphism is a risk factor for osteomyelitis. Am. J. Med. Genet. A. 2003; 119A(2): 132–6. https://doi.org/10.1002/ajmg.a.20137
19. Tsezou A., Poultsides L., Kostopoulou F., Zintzaras E., Satra M., Kitsiou-Tzeli S., et al. Influence of interleukin 1alpha (IL-1alpha): IL-4, and IL-6 polymorphisms on genetic susceptibility to chronic osteomyelitis. Clin. Vaccine Immunol. 2008; 15(12): 1888–90. https://doi.org/10.1128/CVI.00209-08
20. Jiang N., Li S.Y., Ma Y.F., Hu Y.J., Lin Q.R., Yu B. Associations between interleukin gene polymorphisms and risks of developing extremity posttraumatic osteomyelitis in Chinese Han population. Mediators Inflamm. 2020; 2020: 3278081. https://doi.org/10.1155/2020/3278081
21. Korobeinikova E., Ugenskiene R., Insodaite R., Rudzianskas V., Jaselske E., Poskiene L., et al. Association of angiogenesis and inflammation-related gene functional polymorphisms with early-stage breast cancer prognosis. Oncol. Lett. 2020; 19(6): 3687–700. https://doi.org/10.3892/ol.2020.11521
22. Picos A., Vulturar R., Picos A., Chis A., Chiorean I., Piciu A., et al. Interleukin-1A and interleukin-1B gene polymorphisms in gastroesophageal reflux disease. Exp. Ther. Med. 2020; 20(4): 3394–8. https://doi.org/10.3892/etm.2020.9030
23. Oliveira M.B., de Vasconcellos J.P.C., Ananina G., Costa V.P., de Melo M.B. Association between IL1A and IL1B polymorphisms and primary open angle glaucoma in a Brazilian population. Exp. Biol. Med. (Maywood). 2018; 243(13): 1083–91. https://doi.org/10.1177/1535370218809709
24. Su H., Rei N., Zhang L., Cheng J. Meta-analyses of IL1A polymorphisms and the risk of several autoimmune diseases published in databases. PLoS One. 2018; 13(6): e0198693. https://doi.org/10.1371/journal.pone.0198693
25. Gorący I., Kaczmarczyk M., Ciechanowicz A., Lewandowska K., Jakubiszyn P., Bodnar O., et al. Polymorphism of interleukin 1B may modulate the risk of ischemic stroke in polish patients. Medicina (Kaunas). 2019; 55(9): 558. https://doi.org/10.3390/medicina55090558
26. Okada S., Hata K., Shinagawa T., Noguchi T., Tanaka T., Kawai K., et al. A polymorphism in interleukin-1β gene is associated with the development of pouchitis in Japanese patients with ulcerative colitis. Digestion. 2019; 1–10. https://doi.org/10.1159/000503283
27. Landvik N.E., Hart K., Skaug V., Stangeland L.B., Haugen A., Zienolddiny S. A specific interleukin-1B haplotype correlates with high levels of IL1B mRNA in the lung and increased risk of non-small cell lung cancer. Carcinogenesis. 2009; 30(7): 1186–92. https://doi.org/10.1093/carcin/bgp122
28. Srinivasan L., Harris M.C., Kilpatrick L.E. Cytokines and inflammatory response in the fetus and neonate. In: Fetal and Neonatal Physiology. Elsevier; 2017: 1241–54.e4. https://doi.org/10.1016/b978-0-323-35214-7.00128-1
29. Cavalli G., Dinarello C.A. Anakinra therapy for non-cancer inflammatory diseases. Front. Pharmacol. 2018; 9: 1157. https://doi.org/10.3389/fphar.2018.01157
30. Bachove I., Chang C. Anakinra and related drugs targeting interleukin-1 in the treatment of cryopyrin-associated periodic syndromes. Open Access Rheumatol. 2014; (6): 15–25. https://doi.org/10.2147/OARRR.S46017
31. Aksentijevich I., Masters S.L., Ferguson P.J., Dancey P., Frenkel J., van Royen-Kerkhoff A., et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N. Engl. J. Med. 2009; 360(23): 2426–37. https://doi.org/10.1056/NEJMoa0807865
32. Worrall B.B., Azhar S., Nyquist P.A., Ackerman R.H., Hamm T.L., DeGraba T.J. Interleukin-1 receptor antagonist gene polymorphisms in carotid atherosclerosis. Stroke. 2003; 34(3): 790–3. https://doi.org/10.1161/01.STR.0000057815.79289.EC
33. Worrall B.B., Brott T.G., Brown R.D. Jr., Brown W.M., Rich S.S., Arepalli S., et al. IL1RN VNTR polymorphism in ischemic stroke: analysis in 3 populations. Stroke. 2007; 38(4): 1189–96. https://doi.org/10.1161/01.STR.0000260099.42744.b0
34. Jaiswal D., Trivedi S., Singh R., Dada R., Singh K. Association of the IL1RN gene VNTR polymorphism with human male infertility. PLoS One. 2012; 7(12): e51899. https://doi.org/10.1371/journal.pone.0051899
35. Tripathy A., Ganu M., Sonam L., Alagarasu K., Walimbe A., Thanapati S., et al. Association of IL1RN VNTR polymorphism with chikungunya infection: a study from Western India. J. Med. Virol. 2019; 91(11): 1901–8. https://doi.org/10.1002/jmv.25546
36. Ismail E., Nofal O.K.J., Sakthiswary R., Shaharir S.S., Sridharan R. The clinical significance of interleukin-1 receptor antagonist +2018 polymorphism in rheumatoid arthritis. PLoS One. 2016; 11(4): e0153752. https://doi.org/10.1371/journal.pone.0153752
37. Lin J., Wang Y., Wang Y., Pan Y. Inflammatory biomarkers and risk of ischemic stroke and subtypes: A 2-sample Mendelian randomization study. Neurol. Res. 2020; 42(2): 118–25. https://doi.org/10.1080/01616412.2019.1710404
38. Ibáñez L., Velli P.S., Font R., Jaén A., Royo J., Irigoyen D., et al. HIV-infection, atherosclerosis and the inflammatory pathway: candidate gene study in a Spanish HIV-infected population. PLoS One. 2014; 9(11): e112279. https://doi.org/10.1371/journal.pone.0112279
39. Attur M., Wang H.Y., Kraus V.B., Bukowski J.F., Aziz N., Krasnokutsky S., et al. Radiographic severity of knee osteoarthritis is conditional on interleukin 1 receptor antagonist gene variations. Ann. Rheum. Dis. 2010; 69(5): 856–61. https://doi.org/10.1136/ard.2009.113043
40. VOZ. Gepatit C. Available at: https://www.who.int/ru/newsroom/fact-sheets/detail/hepatitis-c
41. Jiang D.K., Sun J., Cao G., Liu Y., Lin D., Gao Y.Z., et al. Genetic variants in STAT4 and HLA-DQ genes confer risk of hepatitis B virus-related hepatocellular carcinoma. Nat. Genet. 2013; 45(1): 72–5. https://doi.org/10.1038/ng.2483
42. Abd El-Baky R.M., Hetta H.F., Koneru G., Ammar M., Shafik E.A., Mohareb D.A., et al. Impact of interleukin IL-6 rs1474347 and IL-10 rs-1800896 genetic polymorphisms on the susceptibility of HCV-infected Egyptian patients to hepatocellular carcinoma. Immunol. Res. 2020; 68(3): 118–25. https://doi.org/10.1007/s12026-020-09126-8
43. Cao L.N., Cheng S.L., Liu W. IL10 rs1800896 polymorphism is associated with liver cirrhosis and chronic hepatitis B. Genet. Mol. Res. 2016; 15(1). https://doi.org/10.4238/gmr.15017256
44. Rybicka M., Woziwodzka A., Sznarkowska A., Romanowski T., Stalke P., Dręczewski M., et al. Genetic variation in IL-10 influences the progression of hepatitis B infection. Int. J. Infect. Dis. 2020; 96: 260–5. https://doi.org/10.1016/j.ijid.2020.04.079
45. Shi H., He H., Ojha S.C., Sun C., Fu J., Yan M., et al. Association of STAT3 and STAT4 polymorphisms with susceptibility to chronic hepatitis B virus infection and risk of hepatocellular carcinoma: a meta-analysis. Biosci. Rep. 2019; 39(6): BSR20190783. https://doi.org/10.1042/BSR20190783
46. Jiménez-Sousa M.Á., Gómez-Moreno A.Z., Pineda-Tenor D., Brochado-Kith O., Sánchez-Ruano J.J., Artaza-Varasa T., et al. The myeloid-epithelial-reproductive tyrosine kinase (MERTK) rs4374383 polymorphism predicts progression of liver fibrosis in hepatitis C virus-infected patients: a longitudinal study. J. Clin. Med. 2018; 7(12): 473. https://doi.org/10.3390/jcm7120473
47. Cavalli M., Pan G., Nord H., Wallén Arzt E., Wallerman O., Wadelius C. Genetic prevention of hepatitis C virus-induced liver fibrosis by allele-specific downregulation of MERTK. Hepatol. Res. 2017; 47(8): 826–30. https://doi.org/10.1111/hepr.12810
48. Agúndez J.A., García-Martín E., Devesa M.J., Carballo M., Martínez C., Lee-Brunner A., et al. Polymorphism of the TLR4 gene reduces the risk of hepatitis C virus-induced hepatocellular carcinoma. Oncology. 2012; 82(1): 35–40. https://doi.org/10.1159/000335606
49. Chang S.W., Fann C.S., Su W.H., Wang Y.C., Weng C.C., Yu C.J., et al. A genome-wide association study on chronic HBV infection and its clinical progression in male Han-Taiwanese. PLoS One. 2014; 9(6): e99724. https://doi.org/10.1371/journal.pone.0099724
50. Sheneef A., Esmat M.M., Mohammad A.N., Mahmoud A.A., Moghazy H.M., Noureldin A.K. Interleukin-10 and interferon gamma gene polymorphisms and hepatitis C virus-related liver cirrhosis risk. J. Interferon Cytokine Res. 2017; 37(4): 175–80. https://doi.org/10.1089/jir.2016.0106
51. Maurya G., Hazam R.K., Ruttala R., Karna R., Das B.C., Kar P. A study of association between regulatory polymorphism in the IL-10 gene promoter region and acute viral hepatitis, and acute liver failure. Indian J. Gastroenterol. 2018; 37(4): 293–8. https://doi.org/10.1007/s12664-018-0858-5
52. Jiménez-Sousa M.A., Fernández-Rodríguez A., Guzmán-Fulgencio M., García-Álvarez M., Resino S. Meta-analysis: implications of interleukin-28B polymorphisms in spontaneous and treatment-related clearance for patients with hepatitis C. BMC Med. 2013; 11: 6. https://doi.org/10.1186/1741-7015-11-6
53. Malov S.I. Sravnitel'naya kliniko-epidemiologicheskaya kharakteristika virusnogo gepatita S na sopredel'nykh territoriyakh Rossii i Mongolii: Avtoref. diss. ... kand. med. nauk. M.; 2017.
54. Świątek-Kościelna B., Kałużna E., Strauss E., Nowak J., Bereszyńska I., Gowin E., et al. Prevalence of IFNL3 rs4803217 single nucleotide polymorphism and clinical course of chronic hepatitis C. World J. Gastroenterol. 2017; 23(21): 3815–24. https://doi.org/10.3748/wjg.v23.i21.3815
55. Posuwan N., Payungporn S., Tangkijvanich P., Ogawa S., Murakami S., Iijima S., et al. Genetic association of human leukocyte antigens with chronicity or resolution of hepatitis B infection in Thai population. PLoS One. 2014; 9(1): e86007. https://doi.org/10.1371/journal.pone.0086007
56. Sghaier I., Zidi S., Mouelhi L., Ghazoueni E., Brochot E., Almawi W.Y., et al. TLR3 and TLR4 SNP variants in the liver disease resulting from hepatitis B virus and hepatitis C virus infection. Br. J. Biomed. Sci. 2019; 76(1): 35–41. https://doi.org/10.1080/09674845.2018.1547179
57. Wu J.F., Chen C.H., Ni Y.H., Lin Y.T., Chen H.L., Hsu H.Y., et al. Toll-like receptor and hepatitis B virus clearance in chronic infected patients: a long-term prospective cohort study in Taiwan. J. Infect. Dis. 2012; 206(5): 662–68. https://doi.org/10.1093/infdis/jis420
58. Al-Qahtani A.A., Al-Anazi M.R., Al-Zoghaibi F., Abdo A.A., Sanai F.M., Khan M.Q., et al. The association of toll-like receptor 4 polymorphism with hepatitis C virus infection in Saudi Arabian patients. BioMed Res. Int. 2014; 2014: 357062. https://doi.org/10.1155/2014/357062
59. Katrinli S., Nigdelioglu A., Ozdil K., Dinler-Doganay G., Doganay L. The association of variations in TLR genes and spontaneous immune control of hepatitis B virus. Clin. Res. Hepatol. Gastroenterol. 2018; 42(2): 139–44. https://doi.org/10.1016/j.clinre.2017.10.002
60. Pires-Neto Ode S., de Sá K.S., Santana B.B., Gomes S.T., Amoras Eda S., Conde S.R., et al. Lack of association between polymorphisms of the TLR4 gene and infection with the hepatitis B and C viruses. Mediators Inflamm. 2015; 2015: 150673. https://doi.org/10.1155/2015/150673
61. Zagórska A., Través P.G., Jiménez-García L., Strickland J.D., Oh J., Tapia F.J., et al. Differential regulation of hepatic physiology and injury by the TAM receptors Axl and Mer. Life Sci. Alliance. 2020; 3(8): e202000694. https://doi.org/10.26508/lsa.202000694
62. Schmidt-Arras D., Rose-John S. IL-6 pathway in the liver: from physiopathology to therapy. J. Hepatol. 2016; 64(6): 14031415. https://doi.org/10.1016/j.jhep.2016.02.004
63. Jiang D.K., Ma X.P., Wu X., Peng L., Yin J., Dan Y., et al. Genetic variations in STAT4, C2, HLA-DRB1 and HLA-DQ associated with risk of hepatitis B virus-related liver cirrhosis. Sci. Rep. 2015; 5: 16278. https://doi.org/10.1038/srep16278
64. Estfanous S.Z.K., Ali S.A., Seif S.M., Soror S.H.A., Abdelaziz D.H.A. Inflammasome genes' polymorphisms in Egyptian chronic hepatitis C patients: influence on vulnerability to infection and response to treatment. Mediators Inflamm. 2019; 2019: 3273645. https://doi.org/10.1155/2019/3273645
65. Biswas A., Panigrahi R., Pal M., De B.K., Chakrabarti S., Ghosh M.K., et al. Association of interleukin-1β and gene polymorphisms with liver pathogenesis in hepatitis B virus Infection among Eastern Indian population. J. Clin. Exp. Hepatol. 2013; 3(4): 281–7. https://doi.org/10.1016/j.jceh.2013.11.006
События
-
Журнал «Концепт: Философия, религия, культура» принят в Scopus >>>
9 июл 2025 | 13:25 -
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52 -
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32