Журналов:     Статей:        

Морской гидрофизический журнал. 2023; 39: 448-466

Тенденции и региональные особенности изменчивости термических условий северо-восточной части Тихого океана севернее 30° с. ш. в последние четыре десятилетия

Ростов И. Д., Дмитриева Е. В., Рудых Н. И.

https://doi.org/10.22449/0233-7584-2023-4-

Аннотация

   Цель. Выявить региональные особенности современных климатических изменений температуры воды в северо-восточной части внетропической зоны Тихого океана, оценить характеристики температурных трендов на поверхности и в верхнем слое океана и их связи с крупномасштабными процессами в океане и атмосфере – цель настоящей работы.

   Методы и результаты. На основе климатических массивов NOAA c использованием статистических методов анализа и аппарата эмпирических ортогональных функций определены характеристики межгодовой изменчивости температуры воды на поверхности и в верхнем 1000-метровом слое различных районов исследуемой акватории. Дана количественная оценка температурных трендов, корреляционных связей с влияющими факторами и их статистической значимости для отдельных 20-летних периодов последних 40 лет.

   Выводы. В первые десятилетия XXI в. тренды потепления явно выражены на поверхности и в верхнем 200-метровом слое северо-восточного и центрального районов акватории. По сравнению с предшествующим 20-летним периодом величина положительных трендов ТПО в среднем по всей акватории увеличилась примерно в 4 раза. За последние два десятилетия теплосодержание верхнего 200-метрового слоя увеличилось на 5 %, а всего 1000-метрового – на 2 %, что
в 1,5 раза меньше, чем в северо-западном секторе внетропической зоны Тихого океана, где в отличие от поверхности потепление толщи вод проходило более высокими темпами. В целом по исследуемому району корреляционные связи колебаний теплосодержания верхнего 200-метрового слоя океана с изменениями влияющих факторов проявляются через климатические индексы NPGO, PDO, NP, PNA, SOI, AD и градиенты атмосферного давления между ведущими центрами действия атмосферы.

Список литературы

1. Belkin I., Krishfield R., Honjo S. Decadal variability of the North Pacific Polar Front: Subsurface warming versus surface cooling // Geophysical Research Letters. 2002. Vol. 29, iss. 9. P. 65-1–65-4. doi: 10.1029/2001GL013806

2. The Transition Region Mode Water of the North Pacific and Its Rapid Modification / H. Saito [et al.] // Journal of Physical Oceanography. 2011. Vol. 41, iss. 9. P. 1639–1658. doi: 10.1175/2011JPO4346.1

3. Favorite F., Dodimead A. J., Nasu R. Oceanography of the Subarctic Pacific region, 1960-71. Vancouver, Canada, 1976. 187 p. (International North Pacific Fisheries Commission Bulletin ; No. 33). URL: https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/17465.pdf (date of access: 20. 10. 2022).

4. Qiu B. Large-Scale Variability in the Midlatitude Subtropical and Subpolar North Pacific Ocean: Observations and Causes // Journal of Physical Oceanography. 2002. Vol. 32, iss. 1. P. 353–375. doi: 10.1175/1520-0485(2002)032<0353:LSVITM>2.0.CO;2

5. Interdecadal variability of the Western Subarctic Gyre in the North Pacific Ocean / H. Kuroda [et al.] // Deep Sea Research Part I: Oceanographic Research Papers. 2021. Vol. 169. 103461. doi: 10.1016/j.dsr.2020.103461

6. Barnett T. P. On the Nature and Causes of Large-Scale Thermal Variability in the Central North Pacific Ocean // Journal of Physical Oceanography. 1981. Vol. 11, iss. 7. P. 887–904. doi: 10.1175/1520-0485(1981)011<0887:OTNACO>2.0.CO;2

7. The North Pacific Oxygen Uptake Rates over the Past Half Century / E. Y. Kwon [et al.] // Journal of Climate. 2016. Vol. 29, iss. 1. P. 61–76. doi: 10.1175/JCLI-D-14-00157.1

8. Ростов И. Д., Дмитриева Е. В., Рудых Н. И. Климатические изменения термических условий в тихоокеанской субарктике в условиях современного глобального потепления // Морской гидрофизический журнал. 2021. Т. 37, № 2. С.162–178. doi: 10.22449/0233-7584-2021-2-162-178

9. Archer C. L., Caldeira K. Historical trends in the jet streams // Geophysical Research Letters. 2008. Vol. 35, iss. 8. L08803. doi: 10.1029/2008GL033614

10. Nieves V., Willis J. K., Patzert W. C. Recent hiatus caused by decadal shift in Indo-Pacific heating // Science. 2015. Vol. 349, iss. 6247. P. 532–535. doi: 10.1126/science.aaa4521

11. Trenberth K. E., Fasullo J. T. An apparent hiatus in global warming? // Earth’s Future. 2013. Vol. 1, iss. 1. P. 19–32. doi: 10.1002/2013EF000165

12. Physical drivers of the summer 2019 North Pacific marine heatwave / D. J. Amaya [et al.] // Nature Communications. 2020. Vol. 11, iss. 1. 1903. doi: 10.1038/s41467-020-15820-w

13. Causes and impacts of the 2014 warm anomaly in the NE Pacific / N. A. Bond [et al.] // Geophysical Research Letters. 2015. Vol. 42, iss. 9. P. 3414–3420. doi: 10.1002/2015GL063306

14. Changes in Earth’s Energy Budget during and after the ”Pause” in Global Warming: An Observational Perspective / N. G. Loeb [et al.] // Climate. 2018. Vol. 6, iss. 3. 62. doi: 10.3390/cli6030062

15. Ross T., Jackson J., Hannah C. The Northeast Pacific: Update on marine heatwave status and trends // PICES Press. 2021. Vol. 29, no. 1. P. 46–48. URL: https://meetings.pices.int/publications/pices-press/PICES-Press-2023-Vol31No2.pdf (date of access: 20. 10. 2022).

16. Di Lorenzo E., Mantua N. Multi-year persistence of the 2014/15 North Pacific marine heatwave // Nature Climate Change. 2016. Vol. 6, iss. 11. P. 1042–1047. doi: 10.1038/nclimate3082

17. Removing the Effects of Tropical Dynamics from North Pacific Climate Variability / Y. Zhao [et al.] // Journal of Climate. 2021. Vol. 34, iss. 23. P. 9249–9265. doi: 10.1175/JCLI-D-21-0344.1

18. Ростов И. Д., Дмитриева Е. В. Региональные особенности межгодовых изменений температуры воды в субарктической зоне Тихого океана // Метеорология и гидрология. 2021. № 2. С. 67–79.

19. Externally Forced and Internally Generated Decadal Climate Variability Associated with the Interdecadal Pacific Oscillation / G. A. Meehl [et al.] // Journal of Climate. 2013. Vol. 26, iss. 18. P. 7298–7310. doi: 10.1175/JCLI-D-12-00548.1

20. Hartmann B., Wendler G. The Significance of the 1976 Pacific Climate Shift in the Climatology of Alaska // Journal of Climate. 2005. Vol. 18, iss. 22. P. 4824–4839. doi: 10.1175/JCLI3532.1

21. Interannual to Decadal Variability of the Upper-Ocean Heat Content in the Western North Pacific and Its Relationship to Oceanic and Atmospheric Variability / H. Na [et al.] // Journal of Climate. 2018. Vol. 31, iss. 13. P. 5107–5125. doi: 10.1175/JCLI-D-17-0506.1

22. A Hybrid Global Ocean Data Assimilation System at NCEP / S. G. Penny [et al.] // Monthly Weather Review. 2015. Vol. 143, iss. 11. P. 4660–4677. doi: 10.1175/MWR-D-14-00376.1

23. World Ocean Database 2018 / T. P. Boyer [et al.] ; tech. ed. A. V. Mishonov. Silver Spring, MD : U.S. Department of Commerce, 2018. 207 p. (NOAA Atlas NESDIS 87). URL: https://www.ncei.noaa.gov/sites/default/files/2020-04/wod_intro_0.pdf (date of access: 20. 10. 2022)

24. Ростов И. Д., Дмитриева Е. В., Рудых Н. И. Межгодовая изменчивость термических характеристик верхнего 1000-метрового слоя внетропической зоны северо-западной части Тихого океана на рубеже XX-XXI веков // Морской гидрофизический журнал. 2023. Т. 39, № 2. С. 157–176. EDN ALOUMA.

25. Лучин В. А., Матвеев В. И. Межгодовая изменчивость термического состояния холодного подповерхностного слоя Охотского моря // Известия ТИНРО. 2016. Т. 187. C. 205–216.

26. On the Response of the Aleutian Low to Greenhouse Warming / B. Gan [et al.] // Journal of Climate. 2017. Vol. 30, iss. 10. P. 3907–3925. doi: 10.1175/JCLI-D-15-0789.1

27. Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System. / P. Xiu [et al.] // Scientific Reports. 2018. Vol. 8. 2866. doi: 10.1038/s41598-018-21247-7

28. Overland J. E., Adams J. M., Bond N. A. Decadal Variability of the Aleutian Low and Its Relation to High-Latitude Circulation // Journal of Climate. 1999. Vol. 12, iss. 5. P. 1542–1548. doi: 10.1175/1520-0442(1999)012<1542:DVOTAL>2.0.CO;2

29. On the Pacific Ocean regime shift / C. Stephens [et al.] // Geophysical Research Letters. 2001. Vol. 28, iss. 19. P. 3721–3724. doi: 10.1029/2000GL012813

30. Budgets for Decadal Variability in Pacific Ocean Heat Content / Z. Hu [et al.] // Journal of Climate. 2020. Vol. 33, iss. 17. P. 7663–7678. doi: 10.1175/JCLI-D-19-0360.1

31. Western Boundary Currents and Frontal Air–Sea Interaction: Gulf Stream and Kuroshio Extension / K. A. Kelly [et al.] // Journal of Climate. 2010. Vol. 23, iss. 21. P. 5644–5667. doi: 10.1175/2010JCLI3346.1

32. North Pacific Gyre Oscillation Synchronizes Climate Fluctuations in the Eastern and Western Boundary Systems / L. I. Ceballos [et al.] // Journal of Climate. 2009. Vol. 22, iss. 19. P. 5163–5174. doi: 10.1175/2009JCLI2848.1

33. Deser C., Phillips A. S., Hurrell J. W. Pacific Interdecadal Climate Variability: Linkages between the Tropics and the North Pacific during Boreal Winter since 1900 // Journal of Climate. 2004. Vol. 17, iss. 16. P. 3109–3124. doi: 10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2

Morskoy Gidrofizicheskiy Zhurnal. 2023; 39: 448-466

Trends and regional features of variability of the northeast Pacific Ocean thermal conditions north of 30° N over the last four decades

Rostov I. D., Dmitrieva E. V., Rudykh N. I.

https://doi.org/10.22449/0233-7584-2023-4-

Abstract

   Purpose. The study is purposed at revealing the regional features of modern climatic changes in water temperature in the northeastern extratropical zone of the Pacific Ocean, at assessing the characteristics
of temperature trends on the ocean surface and in its upper layer and their relationship with the largescale processes in the ocean and atmosphere.

   Methods and Results. Based on the NOAA climatic data sets, and using the statistical methods of analysis and the apparatus of empirical orthogonal functions, the characteristics of the interannual variability of water temperature on the surface and in the upper 1000-meter layer were determined in different regions of the area under study. Temperature trends, correlations with the influencing factors and their statistical significance for some 20-year periods of previous 40 years were quantitatively assessed.

   Conclusions. In the first decades of the 21st century, the warming trends are explicit on the surface and in the upper 200-meter layer of the northeastern and central regions of the area. As compared to the previous 20-year period, the magnitude of positive SST trends increased, on average, by about 4 times over the entire water area. In course of the past two decades, the heat content of the upper 200-meter layer increased by 5 % and that of the whole 1000-meter layer – by 2 %, which is 1.5 times less than in the northwestern sector of the Pacific extratropical zone where, unlike the surface, the rate of water column warming was higher. As for the area under study, on the whole, the correlations between the heat content fluctuations in the upper 200-meter ocean layer and the changes in influencing factors are manifested through the climatic indices NPGO, PDO, NP, PNA, SOI, AD and the atmospheric pressure gradients between the leading centers of the atmosphere action.

References

1. Belkin I., Krishfield R., Honjo S. Decadal variability of the North Pacific Polar Front: Subsurface warming versus surface cooling // Geophysical Research Letters. 2002. Vol. 29, iss. 9. P. 65-1–65-4. doi: 10.1029/2001GL013806

2. The Transition Region Mode Water of the North Pacific and Its Rapid Modification / H. Saito [et al.] // Journal of Physical Oceanography. 2011. Vol. 41, iss. 9. P. 1639–1658. doi: 10.1175/2011JPO4346.1

3. Favorite F., Dodimead A. J., Nasu R. Oceanography of the Subarctic Pacific region, 1960-71. Vancouver, Canada, 1976. 187 p. (International North Pacific Fisheries Commission Bulletin ; No. 33). URL: https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/17465.pdf (date of access: 20. 10. 2022).

4. Qiu B. Large-Scale Variability in the Midlatitude Subtropical and Subpolar North Pacific Ocean: Observations and Causes // Journal of Physical Oceanography. 2002. Vol. 32, iss. 1. P. 353–375. doi: 10.1175/1520-0485(2002)032<0353:LSVITM>2.0.CO;2

5. Interdecadal variability of the Western Subarctic Gyre in the North Pacific Ocean / H. Kuroda [et al.] // Deep Sea Research Part I: Oceanographic Research Papers. 2021. Vol. 169. 103461. doi: 10.1016/j.dsr.2020.103461

6. Barnett T. P. On the Nature and Causes of Large-Scale Thermal Variability in the Central North Pacific Ocean // Journal of Physical Oceanography. 1981. Vol. 11, iss. 7. P. 887–904. doi: 10.1175/1520-0485(1981)011<0887:OTNACO>2.0.CO;2

7. The North Pacific Oxygen Uptake Rates over the Past Half Century / E. Y. Kwon [et al.] // Journal of Climate. 2016. Vol. 29, iss. 1. P. 61–76. doi: 10.1175/JCLI-D-14-00157.1

8. Rostov I. D., Dmitrieva E. V., Rudykh N. I. Klimaticheskie izmeneniya termicheskikh uslovii v tikhookeanskoi subarktike v usloviyakh sovremennogo global'nogo potepleniya // Morskoi gidrofizicheskii zhurnal. 2021. T. 37, № 2. S.162–178. doi: 10.22449/0233-7584-2021-2-162-178

9. Archer C. L., Caldeira K. Historical trends in the jet streams // Geophysical Research Letters. 2008. Vol. 35, iss. 8. L08803. doi: 10.1029/2008GL033614

10. Nieves V., Willis J. K., Patzert W. C. Recent hiatus caused by decadal shift in Indo-Pacific heating // Science. 2015. Vol. 349, iss. 6247. P. 532–535. doi: 10.1126/science.aaa4521

11. Trenberth K. E., Fasullo J. T. An apparent hiatus in global warming? // Earth’s Future. 2013. Vol. 1, iss. 1. P. 19–32. doi: 10.1002/2013EF000165

12. Physical drivers of the summer 2019 North Pacific marine heatwave / D. J. Amaya [et al.] // Nature Communications. 2020. Vol. 11, iss. 1. 1903. doi: 10.1038/s41467-020-15820-w

13. Causes and impacts of the 2014 warm anomaly in the NE Pacific / N. A. Bond [et al.] // Geophysical Research Letters. 2015. Vol. 42, iss. 9. P. 3414–3420. doi: 10.1002/2015GL063306

14. Changes in Earth’s Energy Budget during and after the ”Pause” in Global Warming: An Observational Perspective / N. G. Loeb [et al.] // Climate. 2018. Vol. 6, iss. 3. 62. doi: 10.3390/cli6030062

15. Ross T., Jackson J., Hannah C. The Northeast Pacific: Update on marine heatwave status and trends // PICES Press. 2021. Vol. 29, no. 1. P. 46–48. URL: https://meetings.pices.int/publications/pices-press/PICES-Press-2023-Vol31No2.pdf (date of access: 20. 10. 2022).

16. Di Lorenzo E., Mantua N. Multi-year persistence of the 2014/15 North Pacific marine heatwave // Nature Climate Change. 2016. Vol. 6, iss. 11. P. 1042–1047. doi: 10.1038/nclimate3082

17. Removing the Effects of Tropical Dynamics from North Pacific Climate Variability / Y. Zhao [et al.] // Journal of Climate. 2021. Vol. 34, iss. 23. P. 9249–9265. doi: 10.1175/JCLI-D-21-0344.1

18. Rostov I. D., Dmitrieva E. V. Regional'nye osobennosti mezhgodovykh izmenenii temperatury vody v subarkticheskoi zone Tikhogo okeana // Meteorologiya i gidrologiya. 2021. № 2. S. 67–79.

19. Externally Forced and Internally Generated Decadal Climate Variability Associated with the Interdecadal Pacific Oscillation / G. A. Meehl [et al.] // Journal of Climate. 2013. Vol. 26, iss. 18. P. 7298–7310. doi: 10.1175/JCLI-D-12-00548.1

20. Hartmann B., Wendler G. The Significance of the 1976 Pacific Climate Shift in the Climatology of Alaska // Journal of Climate. 2005. Vol. 18, iss. 22. P. 4824–4839. doi: 10.1175/JCLI3532.1

21. Interannual to Decadal Variability of the Upper-Ocean Heat Content in the Western North Pacific and Its Relationship to Oceanic and Atmospheric Variability / H. Na [et al.] // Journal of Climate. 2018. Vol. 31, iss. 13. P. 5107–5125. doi: 10.1175/JCLI-D-17-0506.1

22. A Hybrid Global Ocean Data Assimilation System at NCEP / S. G. Penny [et al.] // Monthly Weather Review. 2015. Vol. 143, iss. 11. P. 4660–4677. doi: 10.1175/MWR-D-14-00376.1

23. World Ocean Database 2018 / T. P. Boyer [et al.] ; tech. ed. A. V. Mishonov. Silver Spring, MD : U.S. Department of Commerce, 2018. 207 p. (NOAA Atlas NESDIS 87). URL: https://www.ncei.noaa.gov/sites/default/files/2020-04/wod_intro_0.pdf (date of access: 20. 10. 2022)

24. Rostov I. D., Dmitrieva E. V., Rudykh N. I. Mezhgodovaya izmenchivost' termicheskikh kharakteristik verkhnego 1000-metrovogo sloya vnetropicheskoi zony severo-zapadnoi chasti Tikhogo okeana na rubezhe XX-XXI vekov // Morskoi gidrofizicheskii zhurnal. 2023. T. 39, № 2. S. 157–176. EDN ALOUMA.

25. Luchin V. A., Matveev V. I. Mezhgodovaya izmenchivost' termicheskogo sostoyaniya kholodnogo podpoverkhnostnogo sloya Okhotskogo morya // Izvestiya TINRO. 2016. T. 187. C. 205–216.

26. On the Response of the Aleutian Low to Greenhouse Warming / B. Gan [et al.] // Journal of Climate. 2017. Vol. 30, iss. 10. P. 3907–3925. doi: 10.1175/JCLI-D-15-0789.1

27. Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System. / P. Xiu [et al.] // Scientific Reports. 2018. Vol. 8. 2866. doi: 10.1038/s41598-018-21247-7

28. Overland J. E., Adams J. M., Bond N. A. Decadal Variability of the Aleutian Low and Its Relation to High-Latitude Circulation // Journal of Climate. 1999. Vol. 12, iss. 5. P. 1542–1548. doi: 10.1175/1520-0442(1999)012<1542:DVOTAL>2.0.CO;2

29. On the Pacific Ocean regime shift / C. Stephens [et al.] // Geophysical Research Letters. 2001. Vol. 28, iss. 19. P. 3721–3724. doi: 10.1029/2000GL012813

30. Budgets for Decadal Variability in Pacific Ocean Heat Content / Z. Hu [et al.] // Journal of Climate. 2020. Vol. 33, iss. 17. P. 7663–7678. doi: 10.1175/JCLI-D-19-0360.1

31. Western Boundary Currents and Frontal Air–Sea Interaction: Gulf Stream and Kuroshio Extension / K. A. Kelly [et al.] // Journal of Climate. 2010. Vol. 23, iss. 21. P. 5644–5667. doi: 10.1175/2010JCLI3346.1

32. North Pacific Gyre Oscillation Synchronizes Climate Fluctuations in the Eastern and Western Boundary Systems / L. I. Ceballos [et al.] // Journal of Climate. 2009. Vol. 22, iss. 19. P. 5163–5174. doi: 10.1175/2009JCLI2848.1

33. Deser C., Phillips A. S., Hurrell J. W. Pacific Interdecadal Climate Variability: Linkages between the Tropics and the North Pacific during Boreal Winter since 1900 // Journal of Climate. 2004. Vol. 17, iss. 16. P. 3109–3124. doi: 10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2