Журналов:     Статей:        

Морской гидрофизический журнал. 2023; 39: 342-358

Оценка эффективности экспресс-метода оперативного прогноза на примерах перуанского (2007 года), чилийских (2010, 2014 и 2015 годов) цунами

Королёв Ю. П.

https://doi.org/10.29039/0233-7584-2023-3-342-358

Аннотация

Цель. Целью работы является изучение возможности оперативного прогнозирования цунами в условиях реального времени по данным глубоководных станций измерения уровня океана.

Методы и результаты. Экспресс-метод позволяет заблаговременно рассчитывать волновые формы ожидаемого цунами в океане, а также вблизи побережья. Для прогнозирования требуется сейсмологическая информация только о времени начала и координатах эпицентра землетрясения и данные одной станции измерения уровня океана, получаемые в режиме реального времени. В численных экспериментах использовались данные ближайших к очагам цунами глубоководных станций измерения уровня океана длительностью, равной первому полупериоду (первому периоду) цунами. Результаты расчета цунами 2007–2015 гг. достаточно хорошо совпадают с формами цунами, зарегистрированными глубоководными станциями в океане в различных направлениях от очага. Качество расчетов сопоставимо с качеством расчетов других авторов. Прогноз цунами в заданных точках возможен сразу после получения информации о прохождении первой волны цунами через ближайшую к очагу глубоководную станцию.

Выводы. В отличие от других способов, экспресс-метод не нуждается в построении сейсмического источника, не требует гигантской базы синтетических мареограмм. Экспресс-метод может применяться для прогноза цунами в тех областях, для которых другие способы не применимы (например, отсутствуют базы синтетических мареограмм). Такими областями являются побережья северо-западной части Тихого океана.

Список литературы

1. Опыт модернизации российской системы предупреждения о цунами / А. В. Фролов [и др.] // Метеорология и гидрология. 2012. № 6. С. 5–21. EDN OYSKXF.

2. Whitmore P. M., Sokolowski T. J. Predicting tsunami amplitudes along the North American coast from tsunamis generated in the Northwest Pacific Ocean during tsunami warnings // Science of Tsunami Hazards. 1996. Vol. 14, no. 3. P. 147–166. URL: http://tsunamisociety.org/STHVol14N3Y1996.pdf (дата обращения: 15.05.2023).

3. Inverse algorithm for tsunami forecasts / Y. Wei [et al.] // Journal of Waterway, Ports, Coastal, and Ocean Engineering. 2003. Vol. 129, iss. 2. P. 60–69. https://doi.org/10.1061/(asce)0733-950x(2003)129:2(60)

4. Real-time tsunami forecasting: Challenges and solutions / F. I. Gonzalez [et al.] // Математические методы в геофизике : Труды Международной конференции. В 2 частях. Новосибирск : ИВМиМГ СО РАН, 2003. Ч. I. С. 225–228.

5. Extraction of tsunami source coefficients via inversion of DART® buoy data / D. B. Percival [et al.] // Natural Hazards. 2011. Vol. 58, iss. 1. P. 567–590. https://doi.org/10.1007/s11069- 010-9688-1

6. Korolev Yu. P. An approximate method of short-term tsunami forecast and the hindcasting of some recent events // Natural Hazards and Earth System Sciences. 2011. Vol. 11, iss. 11. P. 3081–3091. https://doi.org/10.5194/nhess-11-3081-2011

7. Королев Ю. П. О возможности оперативного прогноза локальных цунами на Курильских островах // Фундаментальная и прикладная гидрофизика. 2019. Т. 12, № 4. С. 14– 20. EDN ZFISBQ. doi:10.7868/S2073667319040026

8. Королев Ю. П., Королев П. Ю. Оперативный прогноз локальных цунами по данным ближайших к очагам глубоководных станций, содержащим шумы сейсмического происхождения // Геосистемы переходных зон. 2020. Т. 4, № 4. С. 447–473. https://doi.org/10.30730/gtrz.2020.4.4.447-460.461-473

9. Гусяков В. К. Цунами на Дальневосточном побережье России: историческая перспектива и современная проблематика // Геология и геофизика. 2016. Т. 57, № 9. С. 1601–1615. https://doi.org/10.15372/GiG20160901

10. Gusiakov V. K. Relationship of tsunami intensity to source earthquake magnitude as retrieved from historical data // Pure and Applied Geophysics. 2011. Vol. 168, iss. 11. P. 2033–2041. https://doi.org/10.1007/s00024-011-0286-2

11. Королев Ю. П., Лоскутов А. В. О достоверном оперативном прогнозе цунами // Проблемы анализа риска. 2018. Т. 15, № 1. С. 26–33. https://doi.org/10.32686/1812-5220- 2018-15-1-26-33

12. Satake K. Inversion of tsunami waveforms for the estimation of a fault heterogeneity: method and numerical experiments // Journal of Physics of the Earth. 1987. Vol. 35, iss. 3. P. 241– 254. https://doi.org/10.4294/jpe1952.35.241

13. Titov V. V. Tsunami forecasting // Tsunamis. Cambridge, MA ; London, England : Harvard University Press, 2009. P. 367–396. (The Sea: Ideas and Observations on Progress in the Study of the Seas ; vol. 15).

14. A methodology for near-field tsunami inundation forecasting: Application to the 2011 Tohoku tsunami / A. R. Gusman [et al.] // Journal of Geophysical Research: Solid Earth. 2014. Vol. 119, iss. 11. P. 8186–8206. https://doi.org/10.1002/2014JB010958

15. Time Reversal Imaging of the Tsunami Source / M. J. Hossen [et al.] // Pure and Applied Geophysics. 2015. Vol. 172, iss. 3–4. P. 969–984. https://doi.org/10.1007/s00024-014-1014-5

16. Mulia I. E., Asano T. Initial tsunami source estimation by inversion with an intelligent selection of model parameters and time delays // Journal of Geophysical Research: Oceans. 2016. Vol. 121, iss. 1. P. 441–456. https://doi.org/10.1002/2015JC010877

17. Mulia I. E., Gusman A. R., Satake K. Optimal design for placements of tsunami observing systems to accurately characterize the inducing earthquake // Geophysical Research Letters. 2017. Vol. 44, iss. 24. P. 12106–12115. https://doi.org/10.1002/2017GL075791

18. Sea surface network optimization for tsunami forecasting in the near field: application to the 2015 Illapel earthquake / P. Navarrete [et al.] // Geophysical Journal International. 2020. Vol. 221, iss. 3. P. 1640–1650. https://doi.org/10.1093/gji/ggaa098

19. Tsunami data assimilation without a dense observation network / Y. Wang [et al.] // Geophysical Research Letters. 2019. Vol. 46, iss. 4. P. 2045–2053. https://doi.org/10.1029/2018GL080930

20. Far-field tsunami data assimilation for the 2015 Illapel earthquake / Y. Wang [et al.] // Geophysical Journal International. 2019. Vol. 219, iss. 1. P. 514–521. https://doi.org/10.1093/gji/ggz309

21. Новые данные о проявлениях цунами на тихоокеанском побережье России по инструментальным измерениям 2009–2010 гг. / Г. В. Шевченко [и др.] // Доклады Академии наук. 2011. Т. 438, № 6. С. 823–828. EDN NXQPHF.

22. Королев Ю. П., Храмушин В. Н. Об оперативном прогнозе цунами 1 апреля 2014 г. вблизи побережья Курильских островов // Метеорология и гидрология. 2016. № 4. С. 86–93. EDN VSZHUD.

23. Okal E. A. The quest for wisdom: lessons from 17 tsunamis, 2004–2014 // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015. Vol. 373, iss. 2053. 20140370. https://doi.org/10.1098/rsta.2014.0370

24. Smith W. H. F., Sandwell D. T. Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry // Journal of Geophysical Research: Solid Earth. 1994. Vol. 99, iss. B11. P. 21803–21824. https://doi.org/10.1029/94JB00988

25. Smith W. H. F., Sandwell D. T. Global sea floor topography from satellite altimetry and ship depth soundings // Science. 1997. Vol. 277, iss. 5334. P. 1956–1962. doi:10.1126/science.277.5334.1956

26. The 15 August 2007 Peru Earthquake and Tsunami: Influence of the Source Characteristics on the Tsunami Heights / H. Hébert [et al.] // Pure and Applied Geophysics. 2009. Vol. 166, iss. 1–2. P. 211–232. https://doi.org/10.1007/s00024-008-0439-0

27. Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines / Y. Wei [et al.] // Geophysical Research Letters. 2008. Vol. 35, iss. 4. L04609. https://doi.org/10.1029/2007GL032250

28. Source estimate and tsunami forecast from far-field deep-ocean tsunami waveforms – The 27 February 2010 Mw 8.8 Maule earthquake / M. Yoshimoto [et al.] // Geophysical Research Letters. 2016. Vol. 43, iss. 2. P. 659–665. https://doi.org/10.1002/2015GL067181

29. An C., Sepúlveda I., Liu P. L.-F. Tsunami source and its validation of the 2014 Iquique, Chile, Earthquake // Geophysical Research Letters. 2014. Vol. 41, iss. 11. P. 3988–3994. https://doi.org/10.1002/2014GL060567

30. Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data / A. R. Gusman [et al.] // Geophysical Research Letters. 2015. Vol. 42, iss. 4. P. 1053–1060. https://doi.org/10.1002/2014GL062604

31. Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 Mw 8.2 Iquique, Chile Earthquake / M. Heidarzadeh [et al.] // Pure and Applied Geophysics. 2015. Vol. 172, iss. 3–4. P. 719–730. https://doi.org/10.1007/s00024-014-0983-8

32. Real-Time Assessment of the 16 September 2015 Chile Tsunami and Implications for NearField Forecast / L. Tang [et al.] // The Chile-2015 (Illapel) Earthquake and Tsunami. Cham : Birkhäuser, 2017. P. 267–285. https://doi.org/10.1007/978-3-319-57822-4_19

33. Fast evaluation of tsunami waves heights around Kamchatka and Kuril Islands // M. Lavrentiev [et al.] // Science of Tsunami Hazards. 2019. Vol. 38, no. 1. P. 1–13. URL: http://www.tsunamisociety.org/STHVol38N1Y2019.pdf (дата обращения 25.05.2022).

Morskoy Gidrofizicheskiy Zhurnal. 2023; 39: 342-358

Evaluation of the Express Method Effectiveness in Short-Term Forecasting on the Examples of the Peruvian (2007) and the Chilean (2010, 2014 and 2015) Tsunamis

Korolev Yu. P.

https://doi.org/10.29039/0233-7584-2023-3-342-358

Abstract

Purpose. The aim of the work is to study the possibility of real-time tsunami forecasting based on the data from the deep-ocean tsunameters.

Methods and Results. The express method makes it possible to compute in advance the waveforms of the expected tsunami in the ocean, as well as near the coast. Forecasting requires seismological information on the start time and coordinates of the earthquake epicenter only, and also the data from one deep-ocean tsunameter obtained in real time. The data from the deep-ocean tsunameters closest to the tsunami sources with the duration equal to the tsunami first half-period (the first period) were used in the numerical experiments. The results of computing tsumamis for 2007–2015 agree quite well with the tsunami forms recorded at the deep-sea stations in the ocean in different directions from the source. The quality of computations in the article is comparable to the computation quality of the other authors. A tsunami forecast at the given points is possible immediately after receiving the information on passing of the tsunami first period through the deep-sea tsunameter closest to the source.

Conclusions. In contrast to the other methods, no reconstructing of a seismic source neither a giant base of synthetic mareograms is required for the express method. The express method can be used for tsunami forecasting in those areas for which other methods are not applicable (for example, there is no a database of synthetic mareograms), namely the coast of the northwestern Pacific Ocean. 

References

1. Opyt modernizatsii rossiiskoi sistemy preduprezhdeniya o tsunami / A. V. Frolov [i dr.] // Meteorologiya i gidrologiya. 2012. № 6. S. 5–21. EDN OYSKXF.

2. Whitmore P. M., Sokolowski T. J. Predicting tsunami amplitudes along the North American coast from tsunamis generated in the Northwest Pacific Ocean during tsunami warnings // Science of Tsunami Hazards. 1996. Vol. 14, no. 3. P. 147–166. URL: http://tsunamisociety.org/STHVol14N3Y1996.pdf (data obrashcheniya: 15.05.2023).

3. Inverse algorithm for tsunami forecasts / Y. Wei [et al.] // Journal of Waterway, Ports, Coastal, and Ocean Engineering. 2003. Vol. 129, iss. 2. P. 60–69. https://doi.org/10.1061/(asce)0733-950x(2003)129:2(60)

4. Real-time tsunami forecasting: Challenges and solutions / F. I. Gonzalez [et al.] // Matematicheskie metody v geofizike : Trudy Mezhdunarodnoi konferentsii. V 2 chastyakh. Novosibirsk : IVMiMG SO RAN, 2003. Ch. I. S. 225–228.

5. Extraction of tsunami source coefficients via inversion of DART® buoy data / D. B. Percival [et al.] // Natural Hazards. 2011. Vol. 58, iss. 1. P. 567–590. https://doi.org/10.1007/s11069- 010-9688-1

6. Korolev Yu. P. An approximate method of short-term tsunami forecast and the hindcasting of some recent events // Natural Hazards and Earth System Sciences. 2011. Vol. 11, iss. 11. P. 3081–3091. https://doi.org/10.5194/nhess-11-3081-2011

7. Korolev Yu. P. O vozmozhnosti operativnogo prognoza lokal'nykh tsunami na Kuril'skikh ostrovakh // Fundamental'naya i prikladnaya gidrofizika. 2019. T. 12, № 4. S. 14– 20. EDN ZFISBQ. doi:10.7868/S2073667319040026

8. Korolev Yu. P., Korolev P. Yu. Operativnyi prognoz lokal'nykh tsunami po dannym blizhaishikh k ochagam glubokovodnykh stantsii, soderzhashchim shumy seismicheskogo proiskhozhdeniya // Geosistemy perekhodnykh zon. 2020. T. 4, № 4. S. 447–473. https://doi.org/10.30730/gtrz.2020.4.4.447-460.461-473

9. Gusyakov V. K. Tsunami na Dal'nevostochnom poberezh'e Rossii: istoricheskaya perspektiva i sovremennaya problematika // Geologiya i geofizika. 2016. T. 57, № 9. S. 1601–1615. https://doi.org/10.15372/GiG20160901

10. Gusiakov V. K. Relationship of tsunami intensity to source earthquake magnitude as retrieved from historical data // Pure and Applied Geophysics. 2011. Vol. 168, iss. 11. P. 2033–2041. https://doi.org/10.1007/s00024-011-0286-2

11. Korolev Yu. P., Loskutov A. V. O dostovernom operativnom prognoze tsunami // Problemy analiza riska. 2018. T. 15, № 1. S. 26–33. https://doi.org/10.32686/1812-5220- 2018-15-1-26-33

12. Satake K. Inversion of tsunami waveforms for the estimation of a fault heterogeneity: method and numerical experiments // Journal of Physics of the Earth. 1987. Vol. 35, iss. 3. P. 241– 254. https://doi.org/10.4294/jpe1952.35.241

13. Titov V. V. Tsunami forecasting // Tsunamis. Cambridge, MA ; London, England : Harvard University Press, 2009. P. 367–396. (The Sea: Ideas and Observations on Progress in the Study of the Seas ; vol. 15).

14. A methodology for near-field tsunami inundation forecasting: Application to the 2011 Tohoku tsunami / A. R. Gusman [et al.] // Journal of Geophysical Research: Solid Earth. 2014. Vol. 119, iss. 11. P. 8186–8206. https://doi.org/10.1002/2014JB010958

15. Time Reversal Imaging of the Tsunami Source / M. J. Hossen [et al.] // Pure and Applied Geophysics. 2015. Vol. 172, iss. 3–4. P. 969–984. https://doi.org/10.1007/s00024-014-1014-5

16. Mulia I. E., Asano T. Initial tsunami source estimation by inversion with an intelligent selection of model parameters and time delays // Journal of Geophysical Research: Oceans. 2016. Vol. 121, iss. 1. P. 441–456. https://doi.org/10.1002/2015JC010877

17. Mulia I. E., Gusman A. R., Satake K. Optimal design for placements of tsunami observing systems to accurately characterize the inducing earthquake // Geophysical Research Letters. 2017. Vol. 44, iss. 24. P. 12106–12115. https://doi.org/10.1002/2017GL075791

18. Sea surface network optimization for tsunami forecasting in the near field: application to the 2015 Illapel earthquake / P. Navarrete [et al.] // Geophysical Journal International. 2020. Vol. 221, iss. 3. P. 1640–1650. https://doi.org/10.1093/gji/ggaa098

19. Tsunami data assimilation without a dense observation network / Y. Wang [et al.] // Geophysical Research Letters. 2019. Vol. 46, iss. 4. P. 2045–2053. https://doi.org/10.1029/2018GL080930

20. Far-field tsunami data assimilation for the 2015 Illapel earthquake / Y. Wang [et al.] // Geophysical Journal International. 2019. Vol. 219, iss. 1. P. 514–521. https://doi.org/10.1093/gji/ggz309

21. Novye dannye o proyavleniyakh tsunami na tikhookeanskom poberezh'e Rossii po instrumental'nym izmereniyam 2009–2010 gg. / G. V. Shevchenko [i dr.] // Doklady Akademii nauk. 2011. T. 438, № 6. S. 823–828. EDN NXQPHF.

22. Korolev Yu. P., Khramushin V. N. Ob operativnom prognoze tsunami 1 aprelya 2014 g. vblizi poberezh'ya Kuril'skikh ostrovov // Meteorologiya i gidrologiya. 2016. № 4. S. 86–93. EDN VSZHUD.

23. Okal E. A. The quest for wisdom: lessons from 17 tsunamis, 2004–2014 // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015. Vol. 373, iss. 2053. 20140370. https://doi.org/10.1098/rsta.2014.0370

24. Smith W. H. F., Sandwell D. T. Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry // Journal of Geophysical Research: Solid Earth. 1994. Vol. 99, iss. B11. P. 21803–21824. https://doi.org/10.1029/94JB00988

25. Smith W. H. F., Sandwell D. T. Global sea floor topography from satellite altimetry and ship depth soundings // Science. 1997. Vol. 277, iss. 5334. P. 1956–1962. doi:10.1126/science.277.5334.1956

26. The 15 August 2007 Peru Earthquake and Tsunami: Influence of the Source Characteristics on the Tsunami Heights / H. Hébert [et al.] // Pure and Applied Geophysics. 2009. Vol. 166, iss. 1–2. P. 211–232. https://doi.org/10.1007/s00024-008-0439-0

27. Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines / Y. Wei [et al.] // Geophysical Research Letters. 2008. Vol. 35, iss. 4. L04609. https://doi.org/10.1029/2007GL032250

28. Source estimate and tsunami forecast from far-field deep-ocean tsunami waveforms – The 27 February 2010 Mw 8.8 Maule earthquake / M. Yoshimoto [et al.] // Geophysical Research Letters. 2016. Vol. 43, iss. 2. P. 659–665. https://doi.org/10.1002/2015GL067181

29. An C., Sepúlveda I., Liu P. L.-F. Tsunami source and its validation of the 2014 Iquique, Chile, Earthquake // Geophysical Research Letters. 2014. Vol. 41, iss. 11. P. 3988–3994. https://doi.org/10.1002/2014GL060567

30. Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data / A. R. Gusman [et al.] // Geophysical Research Letters. 2015. Vol. 42, iss. 4. P. 1053–1060. https://doi.org/10.1002/2014GL062604

31. Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 Mw 8.2 Iquique, Chile Earthquake / M. Heidarzadeh [et al.] // Pure and Applied Geophysics. 2015. Vol. 172, iss. 3–4. P. 719–730. https://doi.org/10.1007/s00024-014-0983-8

32. Real-Time Assessment of the 16 September 2015 Chile Tsunami and Implications for NearField Forecast / L. Tang [et al.] // The Chile-2015 (Illapel) Earthquake and Tsunami. Cham : Birkhäuser, 2017. P. 267–285. https://doi.org/10.1007/978-3-319-57822-4_19

33. Fast evaluation of tsunami waves heights around Kamchatka and Kuril Islands // M. Lavrentiev [et al.] // Science of Tsunami Hazards. 2019. Vol. 38, no. 1. P. 1–13. URL: http://www.tsunamisociety.org/STHVol38N1Y2019.pdf (data obrashcheniya 25.05.2022).