Морской гидрофизический журнал. 2023; 39: 249-265
Исследование суточной динамики вертикального распределения метана в аэробной зоне Черного моря в комплексе с акустическими исследованиями звукорассеивающих слоев
Малахова Т. В., Артёмов Ю. Г., Хурчак A. И., Решетник Л. В., Федирко А. В., Егоров В. Н.
https://doi.org/10.29039/0233-7584-2023-2-249-265Аннотация
Цель. Оценка суточной динамики вертикального распределения CH4 в кислородной зоне Черного моря на различных по глубине станциях в комплексе с акустическими исследованиями звукорассеивающих слоев (ЗРС) – цель данной работы.
Методы и результаты. Исследования проводили в 113-м рейсе НИС «Профессор Водяницкий» (июнь 2020 г.) в верхнем 100-метровом слое на глубоководной станции (1570 м) в северо-восточной части Черного моря и на мелководной станции (39 м) в Ялтинском заливе. Обнаружены отличия в вертикальном распределении концентрации СН4 в воде этих районов. Суточный диапазон концентраций СН4 в поверхностном слое воды (0–1 м) составил 0,8–16 нмоль/л и 0,2–7 нмоль/л в мелководном и глубоководном районе соответственно. Показана высокая изменчивость потоков на границе вода – атмосфера в течение суток: от стока СН4 из атмосферы в воду до эмиссии, достигающей 3 мкмоль/м2·сут СН4, в атмосферу.
Выводы. Максимальные потоки СН4 в атмосферу на обеих станциях наблюдали в ночные часы. Показано, что атмосферная эмиссия СН4 не является значимым фактором в его перераспределении в воде, так как рассчитанные величины суточного удельного потока СН4 на границе атмосфера – вода составляют доли процента от его запасов в столбе воды. Установлен сходный характер суточной динамики вертикального распределения СН4 и ЗРС в аэробном слое глубоководной станции. На фоне общей высокой вариабельности данных для отдельных временны́х диапазонов получены значимые коэффициенты детерминации между концентрацией СН4 и коэффициентом звукорассеяния слоя ml' как характеристикой количества биомассы.
Список литературы
1. Reeburgh W. S. Oceanic Methane Biogeochemistry // Chemical Reviews. 2007. Vol. 107, iss. 2. P. 486–513. https://doi:10.1021/cr050362v
2. Brough T., Rayment W., Dawson S. Using a recreational grade echosounder to quantify the potential prey field of coastal predators // PLoS ONE. 2019. Vol. 14, iss. 5. e0217013. https://doi.org/10.1371/journal.pone.0217013
3. Karl D. M., Tilbrook B. D. Production and transport of methane in oceanic particulate organic matter // Nature. 1994. Vol. 368. P. 732–734. https://doi.org/10.1038/368732a0
4. Bižic M., Grossart H.-P., Ionescu D. Methane Paradox // eLS. Chichester : John Wiley & Sons, Ltd., 2020. P. 1–11. https://doi.org/10.1002/9780470015902.a0028892
5. Биогеохимический цикл метана на северо-западном шельфе Черного моря / И. И. Русанов [и др.] // Микробиология. 2002. Т. 71, № 4. С. 558–566.
6. Biogenic Gas (CH4, N20, DMS) Emission to the Atmosphere from Near-shore and Shelf Waters of the North-western Black Sea / D. Amouroux [et al.] // Estuarine, Coastal and Shelf Science. 2002. Vol. 54. iss. 3. P. 575–587. https://doi.org/10.1006/ecss.2000.0666
7. Егоров А. В. Некоторые черты распределения метана в водной толще северо-восточной части Черного моря // Комплексные исследования северо-восточной части Черного моря. М. : Наука, 2002. С. 183–190.
8. Aerobic production of methane in the sea / D. M. Karl [et al.] // Nature Geoscience. 2008. Vol. 1, iss. 7. P. 473–478. doi:10.1038/ngeo234
9. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean / E. Damm [et al.] // Biogeoscience. 2010. Vol. 7, iss. 3. P. 1099–1108. https://doi.org/10.5194/bg-7-1099-2010
10. Microbial methane production in oxygenated water column of an oligotrophic lake / H.-P. Grossart [et al.] // Proceedings of the National Academy of Sciences of the United States of America. 2011. Vol. 108, iss. 49. P. 19657–19661. doi:10.1073/pnas.1110716108
11. Methane Production in Oxic Lake Waters Potentially Increases Aquatic Methane Flux to Air / K. W. Tang [et al.] // Environmental Science & Technology Letters. 2016. Vol. 3, iss. 6. P. 227–233. https://doi.org/10.1021/acs.estlett.6b00150
12. Lilley M. D., Baross J. A., Gordon L. I. Dissolved hydrogen and methane in Saanich Inlet, British Columbia // Deep-Sea Research Part A. Oceanographic Research Papers. 1982. Vol. 29, iss. 12. P. 1471–1484. https://doi.org/10.1016/0198-0149(82)90037-1
13. Oremland R.S. Methanogenic activity in plankton samples and fish intestines. A mechanism for in situ methanogenesis in oceanic surface waters // Limnology and Oceanography. 1979. Vol. 24, iss. 6. P. 1136–1141. doi:10.4319/lo.1979.24.6.1136
14. Sieburth J. M. Contrary habitats for redox-specific processes: Methanogenesis in oxic waters and oxidation in anoxic // Microbes in the sea / Ed. M. A. Sleight. Chichester, U. K. : Ellis-Horwood, 1987. P. 11–38.
15. Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment / T. Klintzsch [et al.] // Biogeosciences. 2019. Vol. 16, iss. 20. P. 4129–4144. https://doi.org/10.5194/bg-16-4129-2019
16. Evidence for methane production by the marine algae emiliania huxleyi / K. Lenhart [et al.] // Biogeosciences. 2016. Vol. 13, iss. 10. P. 3163–3174. https://doi.org/10.5194/bg-13-3163-2016
17. Evidence for methane production by saprotrophic fungi / K. Lenhart [et al.] // Nature Communications. 2012. Vol. 3. 1046. doi:10.1038/ncomms2049
18. Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium / K. R. Fixen [et al.] // Proceedings of the National Academy of Sciences of the United States of America. 2006. Vol. 113, iss. 36. P. 10163–10167. https://doi.org/10.1073/pnas.1611043113
19. A pathway for biological methane production using bacterial iron-only nitrogenase / Y. Zheng [et al.] // Nature Microbiology. 2018. Vol. 3, iss. 3. P. 281–286. doi:10.1038/s41564-017-0091-5
20. DelSontro T., del Giorgio P. A., Prairie Y. T. No Longer a Paradox: The Interaction Between Physical Transport and Biological Processes Explains the Spatial Distribution of Surface Water Methane Within and Across Lakes // Ecosystems. 2018. Vol. 21, iss. 6. P. 1073–1087. doi:10.1007/s10021-017-0205-1
21. Contribution of oxic methane production to surface methane emission in lakes and its global importance / M. Günthel [et al.] // Nature Communications. 2019. Vol. 10, iss. 1. 5497. doi:10.1038/s41467-019-13320-0
22. Marty D. G. Methanogenic bacteria in seawater // Limnology and Oceanography. 1993. Vol. 38. P. 452–456.
23. de Angelis M. A., Lee C. Methane production during zooplankton grazing on marine phytoplankton // Limnology and Oceanography.1994. Vol. 39, iss. 6. P. 1298–1308. doi:10.4319/lo.1994.39.6.1298
24. The contribution of zooplankton to methane supersaturation in the oxygenated upper waters of the central Baltic Sea / O. Schmale [et al.] // Limnology and Oceanography. 2018. Vol. 63, iss. 1. P. 412–430. https://doi.org/10.1002/lno.10640
25. Effects of temperature and light on methane production of widespread marine phytoplankton / T. Klintzsch [et al.] // Biogeosciences. 2020. Vol. 125, iss. 9. e2020JG005793. https://doi.org/10.1029/2020JG005793
26. Егоров В. Н., Артемов Ю. Г., Гулин С. Б. Метановые сипы в Черном море: средообразующая и экологическая роль. Севастополь : ЭКОСИ-Гидрофизика, 2011. 405 с.
27. Dissolved methane during hypoxic events at the Boknis Eck time series station (Eckernförde Bay, SW Baltic Sea) / H. W. Bange [et al.] // Biogeosciences. 2010. Vol. 7, iss. 4. P. 1279–1284. https://doi.org/10.5194/bg-7-1279-2010
28. Sudheesh V., Gupta G. V. M., Naqvi S. W. A. Massive Methane Loss During Seasonal Hypoxia/Anoxia in the Nearshore Waters of Southeastern Arabian Sea // Frontiers in Marine Science. 2020. Vol. 7. 324. doi:10.3389/fmars.2020.00324
29. Особенности распределения метана в эвфотическом слое северной части Черного моря в летний сезон 2018 года (по данным 102-го рейса НИС «Профессор Водяницкий») / Т. В. Малахова [и др.] // Морской гидрофизический журнал. 2020. Т. 36, № 2. С. 186–201.
30. Kolb B., Ettre L. S. Static Headspace-Gas Chromatography. Theory and Practice. New Jersey, Hoboken : John Wiley & Sons, 2006. 349 p.
31. Распределение метана в воде и донных осадках на восточном сахалинском побережье, шельфе и склоне Охотского моря / А. И. Обжиров [и др.] // Вестник Дальневосточного отделения Российской академии наук. 2012. № 6 (166). C. 32–41.
32. Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited // Limnology and Oceanography. 2014. Vol. 12, iss. 6. P. 351–362. https://doi.org/10.4319/lom.2014.12.351
33. Wiesenburg D. A., Guinasso Jr. N. L. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water // Journal of Chemical and Engineering Data. 1979. Vol. 24. iss. 4. P. 356–360. https://doi.org/10.1021/je60083a006
34. Андреева И. Б. Звукорассеивающие слои – акустические неоднородности толщи вод океана // Акустический журнал. 1999. Т. 45, № 4. С. 437–444.
35. Recreational Fish-Finders—An Inexpensive Alternative to Scientific Echo-Sounders for Unravelling the Links between Marine Top Predators and Their Prey / A. M. McInnes [et al.] // PLoS ONE. 2015. Vol. 10, iss. 11. e0140936. https://doi:10.1371/journal.pone.0140936
36. Brough T., Rayment W., Dawson S. Using a recreational grade echosounder to quantify the potential prey field of coastal predators // PLoS ONE. 2019. Vol. 14, iss. 5. e0217013. https://doi.org/10.1371/journal.pone.0217013
37. Makarov M. M., Kucher K. M., Naumova E. Yu. Vertical distribution of zooplankton after rapid change in temperature and chlorophyll concentration // Limnology and Freshwater Biology. 2019. Vol. 1. P. 177–180. https://doi.org/10.31951/2658-3518-2019-A-1-177
38. Буланов В. А. К вопросу об оценке распределения биомассы в деятельном слое океана по данным о рассеянии звука // Подводные исследования и робототехника. 2008. № 1 (5). С. 58–65.
39. Artemov Yu. G. Software support for investigation of natural methane seeps by hydroacoustic method // Marine Ecological Journal. 2006. Vol. 5, iss. 1. P. 57 – 71.
40. Леин А. Ю., Иванов М. В. Биогеохимический цикл метана в океане. Москва : Наука, 2009. 576 с.
41. Dissolved Methane in Coastal Waters of the Northeastern Black Sea / E. S. Izhitskaya [et al.] // Water. 2022. Vol. 14, iss. 5. 732. https://doi.org/10.3390/w14050732
42. Inter-Comparison of the Spatial Distribution of Methane in the Water Column From Seafloor Emissions at Two Sites in the Western Black Sea Using a Multi-Technique Approach / R. Grilli [et al.] // Frontiers in Earth Science. 2021. Vol. 9. 626372. doi:10.3389/feart.2021.62
43. Sommer S., Schmidt M., Linke P. Continuous inline mapping of a dissolved methane plume at a blowout site in the Central North Sea UK using a membrane inlet mass spectrometer – Water column stratification impedes immediate methane release into the atmosphere // Marine and Petroleum Geology. 2015. Vol. 68, Part B. P. 766–775. https://doi.org/10.1016/j.marpetgeo.2015.08.020
Morskoy Gidrofizicheskiy Zhurnal. 2023; 39: 249-265
Studying Diurnal Dynamics of Vertical Methane Distribution in the Black Sea Aerobic Zone Combined with Acoustic Research of the Sound-Scattering Layers
Malakhova T. V., Artemov Yu. G., Khurchak A. I., Reshetnik L. V., Fedirko A. V., Egorov V. N.
https://doi.org/10.29039/0233-7584-2023-2-249-265Abstract
Purpose. The purpose of the study is to assess the diurnal dynamics of CH4 vertical distribution in the aerobic zone of the Black Sea at the stations of different depths joint with surveying the sound scattering layers (SSL).
Methods and Results. The surveys were performed in the 113th cruise of the R/V “Professor Vodyanitsky” (June, 2020) in the upper 100-m layer at the deep-water station (1570 m) in the northeastern Black Sea, and at the shallow-water station (39 m) in the Yalta Bay. The differences in vertical distribution of the CH4 concentration in the seawater in these areas were found. Diurnal range of the CH4 concentrations in the surface water layer (0–1 m) was 0.8–16 nmol/l and 0.2–7 nmol/l for the shallow and deep-water areas, respectively. Shown was the fluxes’ high variability at the water – atmosphere boundary in course of a day, namely, from the atmospheric CH4 inflow to the seawater up to the CH4 emission (up to 3 μmol/m2day) to the atmosphere.
Conclusions. The maximum CH4 fluxes to the atmosphere recorded at both stations were observed at night. It was shown that the atmospheric CH4 emission to seawater was not a significant factor in the CH4 redistribution in a water column since the calculated values of the atmosphere – seawater specific daily CH4 flux constituted the fractions of a percent of its store in the water column. Diurnal dynamics of the vertical CH4 distribution and SSL in the aerobic layer of the deep-water station was revealed to be of a similar pattern. Against high variability of the data for the individual time ranges, obtained were significant determination coefficients between the CH4 concentration and the soundscattering coefficient of ml' layer as a characteristic of the biomass amount.
References
1. Reeburgh W. S. Oceanic Methane Biogeochemistry // Chemical Reviews. 2007. Vol. 107, iss. 2. P. 486–513. https://doi:10.1021/cr050362v
2. Brough T., Rayment W., Dawson S. Using a recreational grade echosounder to quantify the potential prey field of coastal predators // PLoS ONE. 2019. Vol. 14, iss. 5. e0217013. https://doi.org/10.1371/journal.pone.0217013
3. Karl D. M., Tilbrook B. D. Production and transport of methane in oceanic particulate organic matter // Nature. 1994. Vol. 368. P. 732–734. https://doi.org/10.1038/368732a0
4. Bižic M., Grossart H.-P., Ionescu D. Methane Paradox // eLS. Chichester : John Wiley & Sons, Ltd., 2020. P. 1–11. https://doi.org/10.1002/9780470015902.a0028892
5. Biogeokhimicheskii tsikl metana na severo-zapadnom shel'fe Chernogo morya / I. I. Rusanov [i dr.] // Mikrobiologiya. 2002. T. 71, № 4. S. 558–566.
6. Biogenic Gas (CH4, N20, DMS) Emission to the Atmosphere from Near-shore and Shelf Waters of the North-western Black Sea / D. Amouroux [et al.] // Estuarine, Coastal and Shelf Science. 2002. Vol. 54. iss. 3. P. 575–587. https://doi.org/10.1006/ecss.2000.0666
7. Egorov A. V. Nekotorye cherty raspredeleniya metana v vodnoi tolshche severo-vostochnoi chasti Chernogo morya // Kompleksnye issledovaniya severo-vostochnoi chasti Chernogo morya. M. : Nauka, 2002. S. 183–190.
8. Aerobic production of methane in the sea / D. M. Karl [et al.] // Nature Geoscience. 2008. Vol. 1, iss. 7. P. 473–478. doi:10.1038/ngeo234
9. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean / E. Damm [et al.] // Biogeoscience. 2010. Vol. 7, iss. 3. P. 1099–1108. https://doi.org/10.5194/bg-7-1099-2010
10. Microbial methane production in oxygenated water column of an oligotrophic lake / H.-P. Grossart [et al.] // Proceedings of the National Academy of Sciences of the United States of America. 2011. Vol. 108, iss. 49. P. 19657–19661. doi:10.1073/pnas.1110716108
11. Methane Production in Oxic Lake Waters Potentially Increases Aquatic Methane Flux to Air / K. W. Tang [et al.] // Environmental Science & Technology Letters. 2016. Vol. 3, iss. 6. P. 227–233. https://doi.org/10.1021/acs.estlett.6b00150
12. Lilley M. D., Baross J. A., Gordon L. I. Dissolved hydrogen and methane in Saanich Inlet, British Columbia // Deep-Sea Research Part A. Oceanographic Research Papers. 1982. Vol. 29, iss. 12. P. 1471–1484. https://doi.org/10.1016/0198-0149(82)90037-1
13. Oremland R.S. Methanogenic activity in plankton samples and fish intestines. A mechanism for in situ methanogenesis in oceanic surface waters // Limnology and Oceanography. 1979. Vol. 24, iss. 6. P. 1136–1141. doi:10.4319/lo.1979.24.6.1136
14. Sieburth J. M. Contrary habitats for redox-specific processes: Methanogenesis in oxic waters and oxidation in anoxic // Microbes in the sea / Ed. M. A. Sleight. Chichester, U. K. : Ellis-Horwood, 1987. P. 11–38.
15. Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment / T. Klintzsch [et al.] // Biogeosciences. 2019. Vol. 16, iss. 20. P. 4129–4144. https://doi.org/10.5194/bg-16-4129-2019
16. Evidence for methane production by the marine algae emiliania huxleyi / K. Lenhart [et al.] // Biogeosciences. 2016. Vol. 13, iss. 10. P. 3163–3174. https://doi.org/10.5194/bg-13-3163-2016
17. Evidence for methane production by saprotrophic fungi / K. Lenhart [et al.] // Nature Communications. 2012. Vol. 3. 1046. doi:10.1038/ncomms2049
18. Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium / K. R. Fixen [et al.] // Proceedings of the National Academy of Sciences of the United States of America. 2006. Vol. 113, iss. 36. P. 10163–10167. https://doi.org/10.1073/pnas.1611043113
19. A pathway for biological methane production using bacterial iron-only nitrogenase / Y. Zheng [et al.] // Nature Microbiology. 2018. Vol. 3, iss. 3. P. 281–286. doi:10.1038/s41564-017-0091-5
20. DelSontro T., del Giorgio P. A., Prairie Y. T. No Longer a Paradox: The Interaction Between Physical Transport and Biological Processes Explains the Spatial Distribution of Surface Water Methane Within and Across Lakes // Ecosystems. 2018. Vol. 21, iss. 6. P. 1073–1087. doi:10.1007/s10021-017-0205-1
21. Contribution of oxic methane production to surface methane emission in lakes and its global importance / M. Günthel [et al.] // Nature Communications. 2019. Vol. 10, iss. 1. 5497. doi:10.1038/s41467-019-13320-0
22. Marty D. G. Methanogenic bacteria in seawater // Limnology and Oceanography. 1993. Vol. 38. P. 452–456.
23. de Angelis M. A., Lee C. Methane production during zooplankton grazing on marine phytoplankton // Limnology and Oceanography.1994. Vol. 39, iss. 6. P. 1298–1308. doi:10.4319/lo.1994.39.6.1298
24. The contribution of zooplankton to methane supersaturation in the oxygenated upper waters of the central Baltic Sea / O. Schmale [et al.] // Limnology and Oceanography. 2018. Vol. 63, iss. 1. P. 412–430. https://doi.org/10.1002/lno.10640
25. Effects of temperature and light on methane production of widespread marine phytoplankton / T. Klintzsch [et al.] // Biogeosciences. 2020. Vol. 125, iss. 9. e2020JG005793. https://doi.org/10.1029/2020JG005793
26. Egorov V. N., Artemov Yu. G., Gulin S. B. Metanovye sipy v Chernom more: sredoobrazuyushchaya i ekologicheskaya rol'. Sevastopol' : EKOSI-Gidrofizika, 2011. 405 s.
27. Dissolved methane during hypoxic events at the Boknis Eck time series station (Eckernförde Bay, SW Baltic Sea) / H. W. Bange [et al.] // Biogeosciences. 2010. Vol. 7, iss. 4. P. 1279–1284. https://doi.org/10.5194/bg-7-1279-2010
28. Sudheesh V., Gupta G. V. M., Naqvi S. W. A. Massive Methane Loss During Seasonal Hypoxia/Anoxia in the Nearshore Waters of Southeastern Arabian Sea // Frontiers in Marine Science. 2020. Vol. 7. 324. doi:10.3389/fmars.2020.00324
29. Osobennosti raspredeleniya metana v evfoticheskom sloe severnoi chasti Chernogo morya v letnii sezon 2018 goda (po dannym 102-go reisa NIS «Professor Vodyanitskii») / T. V. Malakhova [i dr.] // Morskoi gidrofizicheskii zhurnal. 2020. T. 36, № 2. S. 186–201.
30. Kolb B., Ettre L. S. Static Headspace-Gas Chromatography. Theory and Practice. New Jersey, Hoboken : John Wiley & Sons, 2006. 349 p.
31. Raspredelenie metana v vode i donnykh osadkakh na vostochnom sakhalinskom poberezh'e, shel'fe i sklone Okhotskogo morya / A. I. Obzhirov [i dr.] // Vestnik Dal'nevostochnogo otdeleniya Rossiiskoi akademii nauk. 2012. № 6 (166). C. 32–41.
32. Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited // Limnology and Oceanography. 2014. Vol. 12, iss. 6. P. 351–362. https://doi.org/10.4319/lom.2014.12.351
33. Wiesenburg D. A., Guinasso Jr. N. L. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water // Journal of Chemical and Engineering Data. 1979. Vol. 24. iss. 4. P. 356–360. https://doi.org/10.1021/je60083a006
34. Andreeva I. B. Zvukorasseivayushchie sloi – akusticheskie neodnorodnosti tolshchi vod okeana // Akusticheskii zhurnal. 1999. T. 45, № 4. S. 437–444.
35. Recreational Fish-Finders—An Inexpensive Alternative to Scientific Echo-Sounders for Unravelling the Links between Marine Top Predators and Their Prey / A. M. McInnes [et al.] // PLoS ONE. 2015. Vol. 10, iss. 11. e0140936. https://doi:10.1371/journal.pone.0140936
36. Brough T., Rayment W., Dawson S. Using a recreational grade echosounder to quantify the potential prey field of coastal predators // PLoS ONE. 2019. Vol. 14, iss. 5. e0217013. https://doi.org/10.1371/journal.pone.0217013
37. Makarov M. M., Kucher K. M., Naumova E. Yu. Vertical distribution of zooplankton after rapid change in temperature and chlorophyll concentration // Limnology and Freshwater Biology. 2019. Vol. 1. P. 177–180. https://doi.org/10.31951/2658-3518-2019-A-1-177
38. Bulanov V. A. K voprosu ob otsenke raspredeleniya biomassy v deyatel'nom sloe okeana po dannym o rasseyanii zvuka // Podvodnye issledovaniya i robototekhnika. 2008. № 1 (5). S. 58–65.
39. Artemov Yu. G. Software support for investigation of natural methane seeps by hydroacoustic method // Marine Ecological Journal. 2006. Vol. 5, iss. 1. P. 57 – 71.
40. Lein A. Yu., Ivanov M. V. Biogeokhimicheskii tsikl metana v okeane. Moskva : Nauka, 2009. 576 s.
41. Dissolved Methane in Coastal Waters of the Northeastern Black Sea / E. S. Izhitskaya [et al.] // Water. 2022. Vol. 14, iss. 5. 732. https://doi.org/10.3390/w14050732
42. Inter-Comparison of the Spatial Distribution of Methane in the Water Column From Seafloor Emissions at Two Sites in the Western Black Sea Using a Multi-Technique Approach / R. Grilli [et al.] // Frontiers in Earth Science. 2021. Vol. 9. 626372. doi:10.3389/feart.2021.62
43. Sommer S., Schmidt M., Linke P. Continuous inline mapping of a dissolved methane plume at a blowout site in the Central North Sea UK using a membrane inlet mass spectrometer – Water column stratification impedes immediate methane release into the atmosphere // Marine and Petroleum Geology. 2015. Vol. 68, Part B. P. 766–775. https://doi.org/10.1016/j.marpetgeo.2015.08.020
События
-
Журнал «Вестник Самарского государственного экономического университета» теперь на Elpub >>>
11 ноя 2025 | 14:28 -
К платформе Elpub присоединился журнал «Crede Experto: транспорт, общество, образование, язык» >>>
11 ноя 2025 | 14:26 -
К платформе Elpub присоединился журнал «Eurasian Journal of Economic and Business Studies» >>>
5 ноя 2025 | 08:43 -
Журнал «Весці Нацыянальнай акадэміі навук Беларусі: Серыя фізіка-тэхнічных наву» принят в DOAJ >>>
5 ноя 2025 | 08:42 -
Журнал «Ученые записки Российской академии предпринимательства» принят в DOAJ >>>
5 ноя 2025 | 08:41
