Морской гидрофизический журнал. 2022; 38: 372-388
Ансамбли опасных гидрометеорологических явлений: математическое моделирование, системы поддержки принятия решений, геоинформационные системы (обзор)
https://doi.org/10.22449/0233-7584-2022-4-372-388Аннотация
Цель. Выполнен анализ современного состояния исследований и достижений в области опасных природных (в том числе гидрометеорологических) явлений и их ансамблей (мультиопасных явлений) на основе работ, опубликованных в профильных рейтинговых международных и российских научных журналах и монографиях.
Методы и результаты. Рассмотрены современные методы математического моделирования мультиопасных гидрометеорологических явлений, методы оценки взаимосвязей между опасными и мультиопасными явлениями, существующие системы поддержки принятия решений и методы оценки рисков возникновения опасных и мультиопасных природных явлений. Выполнен обзор ансамблевых моделей и возможностей облачных вычислений; исследован опыт интеграции геоинформационных систем и результатов дистанционного зондирования Земли в моделях. Представлены примеры разработки в разных странах платформ для моделирования и систем поддержки принятия решений при возникновении опасных явлений.
Выводы. Показано, что проблемы, связанные с прогнозированием, мониторингом и минимизацией последствий опасных природных явлений и их сочетаний, требуют междисциплинарных решений и взаимодействия между всеми заинтересованными сторонами – обществом, властью, наукой, бизнесом. Важно разрабатывать и внедрять планы по интегрированному управлению в регионах, особенно подверженных рискам. Первостепенное значение имеют данные натурных наблюдений. На страновом уровне необходима разработка комплексной системы моделирования для учета сложных процессов, какими являются опасные явления. Отдельно необходимо учитывать особенности стихийных бедствий, происходящих в северных районах нашей страны, для которых характерны зачастую экстремальные фоновые показатели погодных условий, труднодоступность и удаленность, отсутствие необходимой инфраструктуры для спасения людей и ликвидации последствий.
Список литературы
1. Natural disaster hotspots: A global risk analysis / M. Dilley [et al.]. Washington, DC : World Bank, 2005. 132 p. URL: https://openknowledge.worldbank.org/handle/10986/7376 (date of access: 19.04.2022).
2. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment / V. Gallina [et al.] // Journal of Environmental Management. 2016. Vol. 168. P. 123–132. https://doi.org/10.1016/j.jenvman.2015.11.011
3. Curt C. Multirisk: What trends in recent works? – A bibliometric analysis // Science of The Total Environment. 2021. Vol. 763. 142951. https://doi.org/10.1016/j.scitotenv.2020.142951
4. Multi-hazard risk assessment using GIS in urban areas: a case study for the city of Turrialba, Costa Rica / C. J. van Westen [et al.] // Proceedings of the regional workshop on Best Practices in Disaster Mitigation (Bali, Indonesia, 22–24 September, 2002). Bali, 2002. Р. 120–136.
5. Basic principles of multi-risk assessment: a case study in Italy / W. Marzocchi [et al.] // Natural Hazards. 2012. Vol. 62, iss. 2. P. 551–573. https://doi.org/10.1007/s11069-012-0092-x
6. Swift: A GPU based coupled hydrodynamic/hydraulic framework for urban flood prediction / R. Cohen [et al.] // Proceeding of the Eleventh International Conference on CFD in the Minerals and Process Industries. Melbourne, Australia : CSIRO, 2015. P. 1–6.
7. Recent development and application of a rapid flood spreading method / J. Lhomme [et al.] // Flood Risk Management: Research and Practice. London : Taylor & Francis Group, 2009. P. 15–24.
8. Role of earth observation data in disaster response and recovery: from science to capacity building / G. Schumann [et al.] // Earth Science Satellite Applications. Cham : Springer, 2016. Р. 119–146. https://doi.org/10.1007/978-3-319-33438-7_5
9. Cloud Computing in natural hazard modeling systems: Current research trends and future directions / K. Ujjwal [et al.] // International Journal of Disaster Risk Reduction. 2019. Vol. 38. 101188. https://doi.org/10.1016/j.ijdrr.2019.101188
10. Schneider P. J., Schauer B. A. HAZUS—its development and its future // Natural Hazards Review. 2006. Vol. 7, iss. 2. Р. 40–44. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(40)
11. Pranantyo I. R., Fadmastuti M., Chandra F. InaSAFE applications in disaster preparedness // AIP Conference Proceedings. 2015. Vol. 1658, iss. 1. 060001. https://doi.org/10.1063/1.4915053
12. Newham L. T. H., Jakeman A. J., Letcher R. A. Stakeholder participation in modelling for integrated catchment assessment and management: An Australian case study // International Journal of River Basin Management. 2007. Vol. 5, iss. 2. P. 79–91. https://doi.org/10.1080/15715124.2007.9635308
13. Quantitative multi-risk analysis for natural hazards: a framework for multi-risk modelling / J. Schmidt [et al.] // Natural Hazards. 2011. Vol. 58, iss. 3. Р. 1169–1192. https://doi.org/10.1007/s11069-011-9721-z
14. Hagedorn R., Doblas-Reyes F. J., Palmer T. N. The rationale behind the success of multi-model ensembles in seasonal forecasting – I. Basic concept // Tellus A: Dynamic Meteorology and Oceanography. 2005. Vol. 57, iss. 3. P. 219–233. https://doi.org/10.3402/tellusa.v57i3.14657
15. Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis / A. Ahmadalipour [et al.] // Theoretical and Applied Climatology. 2017. Vol. 128, iss. 1–2. P. 71–87. https://doi.org/10.1007/s00704-015-1695-4
16. Raju K. S., Kumar D. N. Impact of climate change on water resources with modeling techniques and case studies. Singapore : Springer, 2018. 266 p. https://doi.org/10.1007/978-981-10-6110-3
17. Impact of global climate change on stream low flows: A case study of the Great Miami River watershed, Ohio, USA / S. Shrestha [et al.] // International Journal of Agricultural and Biological Engineering. 2019. Vol. 12, no. 1. P. 84–95.
18. Impacts of climate change on runoffs in East Azerbaijan, Iran / M. Zarghami [et al.] // Global and Planetary Change. 2011. Vol. 78, iss. 3–4. P. 137–146. https://doi.org/10.1016/j.gloplacha.2011.06.003
19. Large-scale flood hazard assessment under climate change: A case study / A. Shadmehr i Toosi [et al.] // Ecological Engineering. 2020. Vol. 147. 105765. https://doi.org/10.1016/j.ecoleng.2020.105765
20. Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? / C. Yang [et al.] // International Journal of Digital Earth. 2011. Vol. 4, iss. 4. P. 305–329. https://doi.org/10.1080/17538947.2011.587547
21. Huang Q., Li J., Li Z. A geospatial hybrid cloud platform based on multi-sourced computing and model resources for geosciences // International Journal of Digital Earth. 2018. Vol. 11, iss. 12. P. 1184–1204. https://doi.org/10.1080/17538947.2017.1385652
22. Emergency response in natural disaster management: Allocation and scheduling of rescue units / F. Wex [et al.] // European Journal of Operational Research. 2014. Vol. 235, iss. 3. P. 697–708. https://doi.org/10.1016/j.ejor.2013.10.029
23. Van Westen C. J. Remote sensing for natural disaster management // International archives of photogrammetry and remote sensing. 2000. Vol. 33, part B7. P. 1609–1617. URL: https://www.isprs.org/proceedings/xxxiii/congress/part7/1609_XXXIII-part7.pdf (date of access: 25.03.2022).
24. Laituri M., Kodrich K. On line disaster response community: People as sensors of high magnitude disasters using internet GIS // Sensors. 2008. Vol. 8, iss. 5. P. 3037–3055. https://doi.org/10.3390/s8053037
25. Jeyaseelan A. T. Droughts & floods assessment and monitoring using remote sensing and GIS // Satellite Remote Sensing and GIS Applications in Agricultural Meteorology: Proceedings of the Training Workshop, 7–11 July, 2003, Dehra Dun, India. Geneva : WMO, 2004. P. 291– 313. URL: http://www.wamis.org/agm/pubs/agm8/Paper-14.pdf (date of access: 25.03.2022).
26. An analysis of geospatial technologies for risk and natural disaster management / L. A. Manfré [et al.] // ISPRS International Journal of Geo-Information. 2012. Vol. 1, no. 2. P. 166–185. https://doi.org/10.3390/ijgi1020166
27. Montoya L. Geo-data acquisition through mobile GIS and digital video: an urban disaster management perspective // Environmental Modelling & Software. 2003. Vol. 18, iss. 10. P. 869– 876. https://doi.org/10.1016/S1364-8152(03)00105-1
28. Cutter S. L. GI science, disasters, and emergency management // Transactions in GIS. 2003. Vol. 7, iss. 4. P. 439–446. https://doi.org/10.1111/1467-9671.00157
29. Satellite image analysis for disaster and crisis-management support / S. Voigt [et al.] // IEEE Transactions on Geoscience and Remote Sensing. 2007. Vol. 45, no. 6. P. 1520–1528. https://doi.org/10.1109/TGRS.2007.895830
30. SparkCloud: a cloud-based elastic bushfire simulation service / S. Garg [et al.] // Remote Sensing. 2018. Vol. 10, iss. 1. 74. https://doi.org/10.3390/rs10010074
31. Building Model as a Service to support geosciences / Z. Li [et al.] // Computers, Environment and Urban Systems. 2017. Vol. 61, part B. P. 141–152. https://doi.org/10.1016/j.compenvurbsys.2014.06.004
32. Integrating CyberGIS gateway with Windows Azure: a case study on MODFLOW groundwater simulation / B. Behzad [et al.] // Proceedings of the ACM SIGSPATIAL Second International Workshop on High Performance and Distributed Geographic Information Systems. Chicago : Association for Computing Machinery, 2011. P. 26–29. doi:10.1145/2070770.2070774
33. Virtual Fire: A web-based GIS platform for forest fire control / K. Kalabokidis [et al.] // Ecological Informatics. 2013. Vol. 16. P. 62–69. https://doi.org/10.1016/j.ecoinf.2013.04.007
34. A secure big data stream analytics framework for disaster management on the cloud / D. Puthal [et al.] // 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2016. P. 1218–1225. https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0170
35. Al-Fares M., Loukissas A., Vahdat A. A scalable, commodity data center network architecture // ACM SIGCOMM Computer Communication Review. 2008. Vol. 38, iss. 4. P. 63–74. https://doi.org/10.1145/1402946.1402967
36. Rossi C., Heyi M. H., Scullino F. A service oriented cloud‐based architecture for mobile geolocated emergency services // Concurrency and Computation: Practice and Experience. 2017. Vol. 29, iss. 11. e4051. https://doi.org/10.1002/cpe.4051
37. Community-based cloud for emergency management / J. Li [et al.] // 2011 6th International Conference on System of Systems Engineering. IEEE, 2011. P. 55–60. https://doi.org/10.1109/SYSOSE.2011.5966573
38. Armagedom – a tool for seismic risk assessment illustrated with applications / O. Sedan [et al.] // Journal of Earthquake Engineering. 2013. Vol. 17, iss. 2. P. 253–281. https://doi.org/10.1080/13632469.2012.726604
39. Мезомасштабное моделирование экстремальных ветров над Охотским морем и островом Сахалин / А. В. Кислов [и др.] // Известия РАН. Физика атмосферы и океана. 2018. Т. 54, № 4. С. 381–385. doi:10.1134/S0002351518040090
40. Дианский Н. А., Панасенкова И. И., Фомин В. В. Исследование отклика верхнего слоя Баренцева моря на прохождение интенсивного полярного циклона в начале января 1975 года // Морской гидрофизический журнал. 2019. Т. 35, № 6. С. 530–548. doi:10.22449/0233-7584-2019-6-530-548
41. Циркуляция вод у северо-восточного побережья острова Сахалин при прохождении трех типов глубоких циклонов над Охотским морем / Н. А. Дианский [и др.] // Метеорология и гидрология. 2020. № 1. С. 45–58.
42. Fleischhauer M. Spatial relevance of natural and technological hazards // Natural and technological hazards and risks affecting the spatial development of European regions. Vammalan Kirjapaino Oy : Geological Survey of Finland, 2006. P. 7–16. (Geological Survey of Finland ; special paper 42).
43. Wipulanusat W., Nakrod S., Prabnarong P. Multi-hazard risk assessment using GIS and RS applications: a case study of Pak Phanang Basin // Walailak Journal of Science and Technology. 2009. Vol. 6. iss. 1. P. 109–125. doi:10.2004/wjst.v6i1.76
44. O'Keefe P., Westgate K., Wisner B. Taking the Naturalness out of Natural Disasters // Nature. 1976. Vol. 260. P. 566–567. https://doi.org/10.1038/260566a0
45. Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness / F. H. Norris [et al.] // American Journal of Community Psychology. 2008. Vol. 41, iss. 1– 2. P. 127–150. https://doi.org/10.1007/s10464-007-9156-6
46. A methodological approach for the definition of multi‐risk maps at regional level: first application / A. Carpignano [et al.] // Journal of Risk Research. 2009. Vol. 12, iss. 3–4. P. 513–534. https://doi.org/10.1080/13669870903050269
47. Zuccaro G., Leone M. F., Martucci C. Future research and innovation priorities in the field of natural hazards, disaster risk reduction, disaster risk management and climate change adaptation: a shared vision from the ESPREssO project // International Journal of Disaster Risk Reduction. 2020. Vol. 51. 101783. https://doi.org/10.1016/j.ijdrr.2020.101783
48. Loat R. Risk management of natural hazards in Switzerland. Bern, 2010. 15 p. URL: https://www.sistemaprotezionecivile.it/allegati/1149_Svizzera_Risk_Management.pdf (date of access: 01.05.2022).
49. Bell R., Glade T. Multi-hazard analysis in natural risk assessments // Risk Analysis IV / Editedby C. A. Brebbia. WIT Press, 2004. P. 197–206. (WIT Transactions on Ecology and the Environment ; vol. 77). URL: https://www.witpress.com/elibrary/wit-transactions-onecology-and-the-environment/77/14298 (date of access: 19.04.2022). doi:10.2495/RISK040181
50. A review of hydro-meteorological hazard, vulnerability, and risk assessment frameworks and indicators in the context of nature-based solutions / M. A. R. Shah [et al.] // International Journal of Disaster Risk Reduction. 2020. Vol. 50. 101728. https://doi.org/10.1016/j.ijdrr.2020.101728
51. Carrick N. A., Ostendorf B. Development of a spatial Decision Support System (DSS) for the Spencer Gulf penaeid prawn fishery, South Australia // Environmental Modelling & Software. 2007. Vol. 22, iss. 2. P. 137–148. https://doi.org/10.1016/j.envsoft.2005.07.025
52. Integrated assessment of agricultural policies with dynamic land use change modelling / H. van Delden [et al.] // Ecological Modelling. 2010. Vol. 221, iss. 18. P. 2153–2166. https://doi.org/10.1016/j.ecolmodel.2010.03.023
53. A decision support system for environmental effects monitoring / W. G. Booty [et al.] // Environmental Modelling & Software. 2009. Vol. 24, iss. 8. P. 889–900. https://doi.org/10.1016/j.envsoft.2009.02.001
54. The WILDSPACE™ decision support system / I. W. Wong [et al.] // Environmental Modelling & Software. 2003. Vol. 18, iss. 6. P. 521–530. https://doi.org/10.1016/S1364-8152(03)00027-6
55. Simulating urban development scenarios for Wuhan / Y. Shi [et al.] // 2012 6th International Association for China Planning Conference (IACP). IEEE, 2012. P. 1–13. https://doi.org/10.1109/IACP.2012.6342974
56. Моделирование штормового волнения в Баренцевом море / С. А. Мысленков [и др.] // Вестник Московского университета. Серия 5. География. 2015. № 6. С. 65–75. URL: https://vestnik5.geogr.msu.ru/jour/article/view/195?locale=ru_RU (дата обращения: 12.12.2020).
57. Nafziger J., She Y., Hicks F. Dynamic river ice processes in a river delta network // Cold Regions Science and Technology. 2019. Vol. 158. P. 275–287. https://doi.org/10.1016/j.coldregions.2018.09.005
58. Decision support system development for integrated management of European coastal lagoons / M. Casini [et al.] // Environmental Modelling & Software. 2015. Vol. 64. P. 47–57. https://doi.org/10.1016/j.envsoft.2014.11.008
59. Mysiak J., Giupponi C., Rosato P. Towards the development of a decision support system for water resource management // Environmental Modelling & Software. 2005. Vol. 20, iss. 2. P. 203–214. https://doi.org/10.1016/j.envsoft.2003.12.019
60. Decision support systems for risk-based management of contaminated sites / A. Marcomini, G. W. Suter II, A. Critto (eds.). New York : Springer, 2008. 436 p. https://doi.org/10.1007/978-0-387-09722-0
61. Коронкевич Н. И., Барабанова Е. А., Зайцева И. С. Наиболее опасные проявления экстремальных гидрологических ситуаций на территории России // Известия РАН. Серия географическая. 2010. № 6. С. 40–47.
62. Geertman S., Stillwell J. Planning support systems: an introduction // Planning support systems in practice / S. Geertman, J. Stillwell (eds.). Berlin ; Heidelberg : Springer, 2003. P. 3–22. https://doi.org/10.1007/978-3-540-24795-1_1
63. McIntosh B. S., Seaton R. A. F., Jeffrey P. Tools to think with? Towards understanding the use of computer-based support tools in policy relevant research // Environmental Modelling & Software. 2007. Vol. 22, iss. 5. P. 640–648. https://doi.org/10.1016/j.envsoft.2005.12.015
64. How can we make progress with decision support systems in landscape and river basin management? Lessons learned from a comparative analysis of four different decision support systems / M. Volk [et al.] // Environmental Management. 2010. Vol. 46, iss. 6. P. 834–849. https://doi.org/10.1007/s00267-009-9417-2
65. Argent R. M. An overview of model integration for environmental applications–components, frameworks and semantics // Environmental Modelling & Software. 2004. Vol. 19, iss. 3. P. 219–234. https://doi.org/10.1016/S1364-8152(03)00150-6
Morskoy Gidrofizicheskiy Zhurnal. 2022; 38: 372-388
Hydrometeorological Phenomena and Multi-Hazards: Mathematical Modelling, Decision Support Systems, Geoinformation Systems (Review)
Yaitskaya N. A., Magaeva A. A.
https://doi.org/10.22449/0233-7584-2022-4-372-388Abstract
Purpose. The article represents the analysis of current state of research and achievements in the field of natural hazards (including hydrometeorological ones), and their ensembles (multi-hazards) based on the papers published in the specialized international and Russian scientific journals and monographs.
Methods and Results. Considered are the modern methods for mathematical modeling of hydrometeorological multi-hazards, the methods for assessing the relations between the hazards and multi-hazards, the existing decision support systems, and the methods for assessing the risks of occurrence of hazards and multi-hazards. The ensemble models and the possibilities of cloud computing were reviewed; the experience of integrating the geoinformation systems and the results of the Earth remote sensing in models was studied. Examples of the modeling platforms and the decision support systems (developed in different countries) intended for application in case of the natural hazards, are represented.
Conclusions. It is shown that solution of the problems including forecasting, monitoring and minimizing the consequences of natural hazards and their combinations requires interdisciplinary solutions, on the one hand, and interaction between all the stakeholders – society, government, science and business, on the other. It is important to develop and implement an integrated management in the regions that are particularly at risk. Field observations are of primary importance. Within the framework of the country, an integrated modeling system taking into account complex processes such as hazards, should be necessarily developed. Special attention should be paid to the peculiarities of natural disasters occurring in the northern regions of our country, since they are often characterized by extreme background weather conditions, inaccessibility and remoteness, lack of the infrastructure required for saving people and eliminating the consequences.
References
1. Natural disaster hotspots: A global risk analysis / M. Dilley [et al.]. Washington, DC : World Bank, 2005. 132 p. URL: https://openknowledge.worldbank.org/handle/10986/7376 (date of access: 19.04.2022).
2. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment / V. Gallina [et al.] // Journal of Environmental Management. 2016. Vol. 168. P. 123–132. https://doi.org/10.1016/j.jenvman.2015.11.011
3. Curt C. Multirisk: What trends in recent works? – A bibliometric analysis // Science of The Total Environment. 2021. Vol. 763. 142951. https://doi.org/10.1016/j.scitotenv.2020.142951
4. Multi-hazard risk assessment using GIS in urban areas: a case study for the city of Turrialba, Costa Rica / C. J. van Westen [et al.] // Proceedings of the regional workshop on Best Practices in Disaster Mitigation (Bali, Indonesia, 22–24 September, 2002). Bali, 2002. R. 120–136.
5. Basic principles of multi-risk assessment: a case study in Italy / W. Marzocchi [et al.] // Natural Hazards. 2012. Vol. 62, iss. 2. P. 551–573. https://doi.org/10.1007/s11069-012-0092-x
6. Swift: A GPU based coupled hydrodynamic/hydraulic framework for urban flood prediction / R. Cohen [et al.] // Proceeding of the Eleventh International Conference on CFD in the Minerals and Process Industries. Melbourne, Australia : CSIRO, 2015. P. 1–6.
7. Recent development and application of a rapid flood spreading method / J. Lhomme [et al.] // Flood Risk Management: Research and Practice. London : Taylor & Francis Group, 2009. P. 15–24.
8. Role of earth observation data in disaster response and recovery: from science to capacity building / G. Schumann [et al.] // Earth Science Satellite Applications. Cham : Springer, 2016. R. 119–146. https://doi.org/10.1007/978-3-319-33438-7_5
9. Cloud Computing in natural hazard modeling systems: Current research trends and future directions / K. Ujjwal [et al.] // International Journal of Disaster Risk Reduction. 2019. Vol. 38. 101188. https://doi.org/10.1016/j.ijdrr.2019.101188
10. Schneider P. J., Schauer B. A. HAZUS—its development and its future // Natural Hazards Review. 2006. Vol. 7, iss. 2. R. 40–44. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(40)
11. Pranantyo I. R., Fadmastuti M., Chandra F. InaSAFE applications in disaster preparedness // AIP Conference Proceedings. 2015. Vol. 1658, iss. 1. 060001. https://doi.org/10.1063/1.4915053
12. Newham L. T. H., Jakeman A. J., Letcher R. A. Stakeholder participation in modelling for integrated catchment assessment and management: An Australian case study // International Journal of River Basin Management. 2007. Vol. 5, iss. 2. P. 79–91. https://doi.org/10.1080/15715124.2007.9635308
13. Quantitative multi-risk analysis for natural hazards: a framework for multi-risk modelling / J. Schmidt [et al.] // Natural Hazards. 2011. Vol. 58, iss. 3. R. 1169–1192. https://doi.org/10.1007/s11069-011-9721-z
14. Hagedorn R., Doblas-Reyes F. J., Palmer T. N. The rationale behind the success of multi-model ensembles in seasonal forecasting – I. Basic concept // Tellus A: Dynamic Meteorology and Oceanography. 2005. Vol. 57, iss. 3. P. 219–233. https://doi.org/10.3402/tellusa.v57i3.14657
15. Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis / A. Ahmadalipour [et al.] // Theoretical and Applied Climatology. 2017. Vol. 128, iss. 1–2. P. 71–87. https://doi.org/10.1007/s00704-015-1695-4
16. Raju K. S., Kumar D. N. Impact of climate change on water resources with modeling techniques and case studies. Singapore : Springer, 2018. 266 p. https://doi.org/10.1007/978-981-10-6110-3
17. Impact of global climate change on stream low flows: A case study of the Great Miami River watershed, Ohio, USA / S. Shrestha [et al.] // International Journal of Agricultural and Biological Engineering. 2019. Vol. 12, no. 1. P. 84–95.
18. Impacts of climate change on runoffs in East Azerbaijan, Iran / M. Zarghami [et al.] // Global and Planetary Change. 2011. Vol. 78, iss. 3–4. P. 137–146. https://doi.org/10.1016/j.gloplacha.2011.06.003
19. Large-scale flood hazard assessment under climate change: A case study / A. Shadmehr i Toosi [et al.] // Ecological Engineering. 2020. Vol. 147. 105765. https://doi.org/10.1016/j.ecoleng.2020.105765
20. Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? / C. Yang [et al.] // International Journal of Digital Earth. 2011. Vol. 4, iss. 4. P. 305–329. https://doi.org/10.1080/17538947.2011.587547
21. Huang Q., Li J., Li Z. A geospatial hybrid cloud platform based on multi-sourced computing and model resources for geosciences // International Journal of Digital Earth. 2018. Vol. 11, iss. 12. P. 1184–1204. https://doi.org/10.1080/17538947.2017.1385652
22. Emergency response in natural disaster management: Allocation and scheduling of rescue units / F. Wex [et al.] // European Journal of Operational Research. 2014. Vol. 235, iss. 3. P. 697–708. https://doi.org/10.1016/j.ejor.2013.10.029
23. Van Westen C. J. Remote sensing for natural disaster management // International archives of photogrammetry and remote sensing. 2000. Vol. 33, part B7. P. 1609–1617. URL: https://www.isprs.org/proceedings/xxxiii/congress/part7/1609_XXXIII-part7.pdf (date of access: 25.03.2022).
24. Laituri M., Kodrich K. On line disaster response community: People as sensors of high magnitude disasters using internet GIS // Sensors. 2008. Vol. 8, iss. 5. P. 3037–3055. https://doi.org/10.3390/s8053037
25. Jeyaseelan A. T. Droughts & floods assessment and monitoring using remote sensing and GIS // Satellite Remote Sensing and GIS Applications in Agricultural Meteorology: Proceedings of the Training Workshop, 7–11 July, 2003, Dehra Dun, India. Geneva : WMO, 2004. P. 291– 313. URL: http://www.wamis.org/agm/pubs/agm8/Paper-14.pdf (date of access: 25.03.2022).
26. An analysis of geospatial technologies for risk and natural disaster management / L. A. Manfré [et al.] // ISPRS International Journal of Geo-Information. 2012. Vol. 1, no. 2. P. 166–185. https://doi.org/10.3390/ijgi1020166
27. Montoya L. Geo-data acquisition through mobile GIS and digital video: an urban disaster management perspective // Environmental Modelling & Software. 2003. Vol. 18, iss. 10. P. 869– 876. https://doi.org/10.1016/S1364-8152(03)00105-1
28. Cutter S. L. GI science, disasters, and emergency management // Transactions in GIS. 2003. Vol. 7, iss. 4. P. 439–446. https://doi.org/10.1111/1467-9671.00157
29. Satellite image analysis for disaster and crisis-management support / S. Voigt [et al.] // IEEE Transactions on Geoscience and Remote Sensing. 2007. Vol. 45, no. 6. P. 1520–1528. https://doi.org/10.1109/TGRS.2007.895830
30. SparkCloud: a cloud-based elastic bushfire simulation service / S. Garg [et al.] // Remote Sensing. 2018. Vol. 10, iss. 1. 74. https://doi.org/10.3390/rs10010074
31. Building Model as a Service to support geosciences / Z. Li [et al.] // Computers, Environment and Urban Systems. 2017. Vol. 61, part B. P. 141–152. https://doi.org/10.1016/j.compenvurbsys.2014.06.004
32. Integrating CyberGIS gateway with Windows Azure: a case study on MODFLOW groundwater simulation / B. Behzad [et al.] // Proceedings of the ACM SIGSPATIAL Second International Workshop on High Performance and Distributed Geographic Information Systems. Chicago : Association for Computing Machinery, 2011. P. 26–29. doi:10.1145/2070770.2070774
33. Virtual Fire: A web-based GIS platform for forest fire control / K. Kalabokidis [et al.] // Ecological Informatics. 2013. Vol. 16. P. 62–69. https://doi.org/10.1016/j.ecoinf.2013.04.007
34. A secure big data stream analytics framework for disaster management on the cloud / D. Puthal [et al.] // 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2016. P. 1218–1225. https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0170
35. Al-Fares M., Loukissas A., Vahdat A. A scalable, commodity data center network architecture // ACM SIGCOMM Computer Communication Review. 2008. Vol. 38, iss. 4. P. 63–74. https://doi.org/10.1145/1402946.1402967
36. Rossi C., Heyi M. H., Scullino F. A service oriented cloud‐based architecture for mobile geolocated emergency services // Concurrency and Computation: Practice and Experience. 2017. Vol. 29, iss. 11. e4051. https://doi.org/10.1002/cpe.4051
37. Community-based cloud for emergency management / J. Li [et al.] // 2011 6th International Conference on System of Systems Engineering. IEEE, 2011. P. 55–60. https://doi.org/10.1109/SYSOSE.2011.5966573
38. Armagedom – a tool for seismic risk assessment illustrated with applications / O. Sedan [et al.] // Journal of Earthquake Engineering. 2013. Vol. 17, iss. 2. P. 253–281. https://doi.org/10.1080/13632469.2012.726604
39. Mezomasshtabnoe modelirovanie ekstremal'nykh vetrov nad Okhotskim morem i ostrovom Sakhalin / A. V. Kislov [i dr.] // Izvestiya RAN. Fizika atmosfery i okeana. 2018. T. 54, № 4. S. 381–385. doi:10.1134/S0002351518040090
40. Dianskii N. A., Panasenkova I. I., Fomin V. V. Issledovanie otklika verkhnego sloya Barentseva morya na prokhozhdenie intensivnogo polyarnogo tsiklona v nachale yanvarya 1975 goda // Morskoi gidrofizicheskii zhurnal. 2019. T. 35, № 6. S. 530–548. doi:10.22449/0233-7584-2019-6-530-548
41. Tsirkulyatsiya vod u severo-vostochnogo poberezh'ya ostrova Sakhalin pri prokhozhdenii trekh tipov glubokikh tsiklonov nad Okhotskim morem / N. A. Dianskii [i dr.] // Meteorologiya i gidrologiya. 2020. № 1. S. 45–58.
42. Fleischhauer M. Spatial relevance of natural and technological hazards // Natural and technological hazards and risks affecting the spatial development of European regions. Vammalan Kirjapaino Oy : Geological Survey of Finland, 2006. P. 7–16. (Geological Survey of Finland ; special paper 42).
43. Wipulanusat W., Nakrod S., Prabnarong P. Multi-hazard risk assessment using GIS and RS applications: a case study of Pak Phanang Basin // Walailak Journal of Science and Technology. 2009. Vol. 6. iss. 1. P. 109–125. doi:10.2004/wjst.v6i1.76
44. O'Keefe P., Westgate K., Wisner B. Taking the Naturalness out of Natural Disasters // Nature. 1976. Vol. 260. P. 566–567. https://doi.org/10.1038/260566a0
45. Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness / F. H. Norris [et al.] // American Journal of Community Psychology. 2008. Vol. 41, iss. 1– 2. P. 127–150. https://doi.org/10.1007/s10464-007-9156-6
46. A methodological approach for the definition of multi‐risk maps at regional level: first application / A. Carpignano [et al.] // Journal of Risk Research. 2009. Vol. 12, iss. 3–4. P. 513–534. https://doi.org/10.1080/13669870903050269
47. Zuccaro G., Leone M. F., Martucci C. Future research and innovation priorities in the field of natural hazards, disaster risk reduction, disaster risk management and climate change adaptation: a shared vision from the ESPREssO project // International Journal of Disaster Risk Reduction. 2020. Vol. 51. 101783. https://doi.org/10.1016/j.ijdrr.2020.101783
48. Loat R. Risk management of natural hazards in Switzerland. Bern, 2010. 15 p. URL: https://www.sistemaprotezionecivile.it/allegati/1149_Svizzera_Risk_Management.pdf (date of access: 01.05.2022).
49. Bell R., Glade T. Multi-hazard analysis in natural risk assessments // Risk Analysis IV / Editedby C. A. Brebbia. WIT Press, 2004. P. 197–206. (WIT Transactions on Ecology and the Environment ; vol. 77). URL: https://www.witpress.com/elibrary/wit-transactions-onecology-and-the-environment/77/14298 (date of access: 19.04.2022). doi:10.2495/RISK040181
50. A review of hydro-meteorological hazard, vulnerability, and risk assessment frameworks and indicators in the context of nature-based solutions / M. A. R. Shah [et al.] // International Journal of Disaster Risk Reduction. 2020. Vol. 50. 101728. https://doi.org/10.1016/j.ijdrr.2020.101728
51. Carrick N. A., Ostendorf B. Development of a spatial Decision Support System (DSS) for the Spencer Gulf penaeid prawn fishery, South Australia // Environmental Modelling & Software. 2007. Vol. 22, iss. 2. P. 137–148. https://doi.org/10.1016/j.envsoft.2005.07.025
52. Integrated assessment of agricultural policies with dynamic land use change modelling / H. van Delden [et al.] // Ecological Modelling. 2010. Vol. 221, iss. 18. P. 2153–2166. https://doi.org/10.1016/j.ecolmodel.2010.03.023
53. A decision support system for environmental effects monitoring / W. G. Booty [et al.] // Environmental Modelling & Software. 2009. Vol. 24, iss. 8. P. 889–900. https://doi.org/10.1016/j.envsoft.2009.02.001
54. The WILDSPACE™ decision support system / I. W. Wong [et al.] // Environmental Modelling & Software. 2003. Vol. 18, iss. 6. P. 521–530. https://doi.org/10.1016/S1364-8152(03)00027-6
55. Simulating urban development scenarios for Wuhan / Y. Shi [et al.] // 2012 6th International Association for China Planning Conference (IACP). IEEE, 2012. P. 1–13. https://doi.org/10.1109/IACP.2012.6342974
56. Modelirovanie shtormovogo volneniya v Barentsevom more / S. A. Myslenkov [i dr.] // Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. 2015. № 6. S. 65–75. URL: https://vestnik5.geogr.msu.ru/jour/article/view/195?locale=ru_RU (data obrashcheniya: 12.12.2020).
57. Nafziger J., She Y., Hicks F. Dynamic river ice processes in a river delta network // Cold Regions Science and Technology. 2019. Vol. 158. P. 275–287. https://doi.org/10.1016/j.coldregions.2018.09.005
58. Decision support system development for integrated management of European coastal lagoons / M. Casini [et al.] // Environmental Modelling & Software. 2015. Vol. 64. P. 47–57. https://doi.org/10.1016/j.envsoft.2014.11.008
59. Mysiak J., Giupponi C., Rosato P. Towards the development of a decision support system for water resource management // Environmental Modelling & Software. 2005. Vol. 20, iss. 2. P. 203–214. https://doi.org/10.1016/j.envsoft.2003.12.019
60. Decision support systems for risk-based management of contaminated sites / A. Marcomini, G. W. Suter II, A. Critto (eds.). New York : Springer, 2008. 436 p. https://doi.org/10.1007/978-0-387-09722-0
61. Koronkevich N. I., Barabanova E. A., Zaitseva I. S. Naibolee opasnye proyavleniya ekstremal'nykh gidrologicheskikh situatsii na territorii Rossii // Izvestiya RAN. Seriya geograficheskaya. 2010. № 6. S. 40–47.
62. Geertman S., Stillwell J. Planning support systems: an introduction // Planning support systems in practice / S. Geertman, J. Stillwell (eds.). Berlin ; Heidelberg : Springer, 2003. P. 3–22. https://doi.org/10.1007/978-3-540-24795-1_1
63. McIntosh B. S., Seaton R. A. F., Jeffrey P. Tools to think with? Towards understanding the use of computer-based support tools in policy relevant research // Environmental Modelling & Software. 2007. Vol. 22, iss. 5. P. 640–648. https://doi.org/10.1016/j.envsoft.2005.12.015
64. How can we make progress with decision support systems in landscape and river basin management? Lessons learned from a comparative analysis of four different decision support systems / M. Volk [et al.] // Environmental Management. 2010. Vol. 46, iss. 6. P. 834–849. https://doi.org/10.1007/s00267-009-9417-2
65. Argent R. M. An overview of model integration for environmental applications–components, frameworks and semantics // Environmental Modelling & Software. 2004. Vol. 19, iss. 3. P. 219–234. https://doi.org/10.1016/S1364-8152(03)00150-6
События
-
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52 -
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32 -
Журнал «Творчество и современность» присоединился к Elpub! >>>
27 мая 2025 | 12:38