Журналов:     Статей:        

Морской гидрофизический журнал. 2022; 38: 345-357

Временная изменчивость скорости вымывания аэрозолей в Севастопольском регионе: натурные наблюдения

Кременчуцкий Д. А.

https://doi.org/10.22449/0233-7584-2022-4-345-357

Аннотация

Цель. Выявление особенностей сезонной и межгодовой изменчивости скорости вымывания аэрозолей и выделение факторов, определяющих эту изменчивость на исследуемых масштабах времени, – цель настоящего исследования.
Методы и результаты. Оценки скорости вымывания в период 2012–2020 гг. были проведены по натурным данным о временной изменчивости концентрации 7Ве на атмосферных аэрозолях и потоке 7Ве с «влажными» атмосферными выпадениями. С использованием корреляционного анализа получены оценки влияния количества и частоты выпадения осадков на сезонную и межгодовую изменчивость скорости вымывания. Множественный регрессионный анализ был использован для построения моделей регрессии.
Выводы. Скорость вымывания изменяется в пределах 0,21–1,40 см·с–1 и составляет в среднем 0,62 ± 0,29 см·с–1. Установлено, что ее сезонная изменчивость определяется количеством и частотой выпадения осадков. Межгодовая изменчивость скорости вымывания определяется только количеством выпавших осадков. По результатам исследований предложено две регрессионные модели. Одна модель позволяет описать сезонную изменчивость скорости вымывания, другая – межгодовую изменчивость этого параметра. В обеих моделях используются соответствующие временные ряды данных об изменчивости количества выпавших осадков в качестве предикторов. Результаты валидации показывают, что погрешности получаемых оценок составляют 21,1 и 12,9% для сезонных и годовых величин скорости вымывания соответственно.

Список литературы

1. Вареник А. В., Калинская Д. В., Мыслина М. А. Исследование взвешенных микрочастиц в атмосфере береговой зоны Черного моря по натурным и спутниковым данным // Морской гидрофизический журнал. 2021. Т. 37, № 3. С. 350–361. https://doi.org/10.22449/0233-7584-2021-3-350-361

2. Prospero J. M. Saharan Dust Transport Over the North Atlantic Ocean and Mediterranean: An Overview // The Impact of Desert Dust Across the Mediterranean / Eds. S. Guerzoni, R. Chester. Dordrecht : Springer, 1996. P. 133–151. (Environmental Science and Technology Library book series, vol. 11). https://doi.org/10.1007/978-94-017-3354-0_13

3. Prospero J. M. The Chemical and Physical Properties of Marine Eerosols: An Introduction // Chemistry of Marine Water and Sediments / Eds. A. Gianguzza, E. Pelizzetti, S. Sammartano. Berlin, Heidelberg : Springer, 2002. P. 35–82. ( https://doi.org/10.1007/978-3-662-04935-8_2

4. Numerical simulation of the intra-annual evolution of beryllium-7 (7Ве) in the surface layer of the Black Sea / D. A. Kremenchutskii [et al.] // Environmental Science and Pollution Research. 2018. Vol. 25. Р. 11120–11127. https://doi.org/10.1007/s11356-018-1269-y

5. Role of suspended matter in controlling beryllium-7 (7Be) in the Black Sea surface layer / D. A. Kremenchutskii [et al.] // Journal of Marine Systems. 2021. Vol. 217. 103513. https://doi.org/10.1016/j.jmarsys.2021.103513

6. Kadko D., Landing W. M., Buck C. S. Quantifying Atmospheric Trace Element Deposition Over the Ocean on a Global Scale With Satellite Rainfall Products // Geophysical Research Letters. 2020. Vol. 47, iss. 7. e2019GL086357. https://doi.org/10.1029/2019GL086357

7. Вареник А. В. Влияние выбросов от стационарных источников на загрязнение атмосферных осадков неорганическим азотом на примере г. Севастополя // Морской гидрофизический журнал. 2020. Т. 36, № 3. С. 277–286. https://doi.org/10.22449/0233-7584-2020-3-277-286

8. Varenik A. V., Konovalov S. K. Variations in Concentrations and Ratio of Soluble Forms of Nutrients in Atmospheric Depositions and Effects for Marine Coastal Areas of Crimea, Black Sea // Applied Sciences. 2021. Vol. 11, iss. 23. 11509. https://doi.org/10.3390/app112311509

9. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability / C. M. Moore [et al.] // Nature Geoscience. 2009. Vol. 2. P. 867–871. https://doi.org/10.1038/ngeo667

10. Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron / G. S. Okin [et al.] // Global Biogeochemical Cycles. 2011. Vol. 25, iss. 2. GB2022. https://doi.org/10.1029/2010GB003858

11. Baker A. R., Jickells T. D. Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT) // Progress in Oceanography. 2017. Vol. 158. P. 41–51. https://doi.org/10.1016/j.pocean.2016.10.002

12. Вареник А. В., Козловская О. Н., Симонова Ю. В. Оценка поступления биогенных элементов с атмосферными выпадениями в районе Южного берега Крыма (Кацивели) в 2010 – 2015 годах // Морской гидрофизический журнал. 2016. Т. 32, № 5. C. 65–75. https://doi.org/10.22449/0233-7584-2016-5-65-75

13. Varenik A. V., Kalinskaya D. V. The Effect of Dust Transport on the Concentration of Chlorophyll-A in the Surface Layer of the Black Sea // Applied Sciences. 2021. Vol. 11, iss. 10. P. 4692. https://doi.org/10.3390/app11104692

14. Morel F. M. M., Milligan A. J., Saito M. A. Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients // The Oceans and Marine Geochemistry / Ed. H. Elderfield. Oxford : Elsevier, 2003. P. 113–143. https://doi.org/10.1016/B0-08-043751-6/06108-9

15. Morel F. M. M., Price N. M. The Biogeochemical Cycles of Trace Metals in the Oceans // Science. 2003. Vol. 300, iss. 5621. P. 944–947. https://doi.org/10.1126/science.1083545

16. A global dataset of atmospheric 7Be and 210Pb measurements: annual air concentration and depositional flux / F. Zhang [et al.] // Earth System Science Data. 2021. Vol. 13, iss. 6. P. 2963– 2994. https://doi.org/10.5194/essd-13-2963-2021

17. Ioannidou A. 7Be aerosols and their deposition on the sea: a possible method to estimate trace metals deposition on the sea // Journal of Environmental Radioactivity. 2012. Vol. 108. P. 29– 32. https://doi.org/10.1016/j.jenvrad.2011.11.012

18. Kremenchutskii D. A. Influence of precipitation on the daily beryllium-7 (7Be) activity concentration in the atmospheric surface layer // Journal of Environmental Radioactivity. 2021. Vol. 237. 106722. https://doi.org/10.1016/j.jenvrad.2021.106722

19. 7Be spatial and temporal pattern in southwest of Europe (Spain): Evaluation of a predictive model / E. Chham [et al.] // Chemosphere. 2018. Vol. 205. P. 194–202. https://doi.org/10.1016/j.chemosphere.2018.04.099

20. Meteorological Factors Controlling 7Be Activity Concentrations in the Atmospheric Surface Layer in Northern Spain / N. Alegria [et al.] // Atmosphere. 2020. Vol. 11, iss. 12. 1340. https://doi.org/10.3390/atmos11121340

21. Baskaran M., Coleman C. H., Santschi P. H. Atmospheric depositional fluxes of 7Be and 210Pb at Galveston and College Station, Texas // Journal of Geophysical Research. Atmospheres. 1993. Vol. 98, iss. D11. P. 20555–20571. https://doi.org/10.1029/93JD02182

22. Othman I., Al-Masri M. S., Hassan M. Fallout of 7Be in Damascus City // Journal of Radioanalytical and Nuclear Chemistry. 1998. Vol. 238, iss. 1–2. P. 187–192. https://doi.org/10.1007/BF02385379

23. Fogh C. L., Roed J., Andersson K. G. Radionuclide resuspension and mixed deposition at different heights // Journal of Environmental Radioactivity. 1999. Vol. 46, iss. 1. P. 67–75. https://doi.org/10.1016/S0265-931X(98)00130-1

24. Ioannidou A., Papastefanou C. Precipitation scavenging of 7Be and 137Cs radionuclides in air // Journal of Environmental Radioactivity. 2006. Vol. 85, iss. 1. P. 121–136. https://doi.org/10.1016/j.jenvrad.2005.06.005

25. Saleh I. H., Abdel-Halim A. A. 7Be in soil, deposited dust and atmospheric air and its using to infer soil erosion along Alexandria region, Egypt // Journal of Environmental Radioactivity. 2017. Vol. 172. P. 24–29. https://doi.org/10.1016/j.jenvrad.2017.03.005

26. Analysis of the influence of solar activity and atmospheric factors on 7Be air concentration by seasonal-trend decomposition / M. C. Bas [et al.] // Atmospheric Environment. 2016. Vol. 145. P. 147–157. https://doi.org/10.1016/j.atmosenv.2016.09.027

27. Pinero-García F., Ferro-García M. A. Evolution and solar modulation of 7Be during the solar cycle 23 // Journal of Radioanalytical and Nuclear Chemistry. 2013. Vol. 296. P. 1193–1204. https://doi.org/10.1007/s10967-012-2373-y

28. A climatology of 7Be in surface air in European Union / M. A. Hernández-Ceballos [et al.] // Journal of Environmental Radioactivity. 2015. Vol. 141. P. 62–70. https://doi.org/10.1016/j.jenvrad.2014.12.003

29. Doering C., Akber R. Beryllium-7 in near-surface air and deposition at Brisbane, Australia // Journal of Environmental Radioactivity. 2008. Vol. 99, iss. 3. P. 461–467. https://doi.org/10.1016/j.jenvrad.2007.08.017

30. Depositional fluxes and concentrations of 7Be and 210Pb in bulk precipitation and aerosols at the interface of Atlantic and Mediterranean coasts in Spain / R. L. Lozano [et al.] // Journal of Geophysical Research. Atmospheres. 2011. Vol. 116, iss. D18. D18213. https://doi.org

Morskoy Gidrofizicheskiy Zhurnal. 2022; 38: 345-357

Temporal Variability of Aerosol Wet Deposition Velocity in the Sevastopol Region: Observational Data

Kremenchutskii D. A.

https://doi.org/10.22449/0233-7584-2022-4-345-357

Abstract

Purpose. The study is purposed at identifying both the features of seasonal and interannual variability of the aerosol wet deposition velocity and the factors that determine this variability on the time scales under study.
Methods and Results. The deposition velocity in 2012–2020 was estimated using the field data on temporal variability of the 7Be concentration on atmospheric aerosols and the 7Be “wet” deposition fluxes. The correlation analysis permitted to assess quantitatively the influence of the precipitation amount and frequency upon the seasonal and interannual variability of the deposition velocity. The multiple regression analysis was applied for constructing the regression models.
Conclusions. The deposition velocity varies from 0.21 to 1.40 cm·s–1 and averages 0.62 ± 0.29 cm s–1. It has been established that its seasonal variability is conditioned by the amount and frequency of precipitation, whereas its interannual variability – by the precipitation amount only. Based on the obtained results, two regression models were proposed. The first model describes seasonal variability of the deposition velocity, while the second one – the interannual variability of this parameter. The corresponding time series of precipitation variability data are used in both models as predictors. The validation results indicate that the errors in the obtained estimates constitute 21.1 and 12.9% for the seasonal and annual values of wet deposition velocity, respectively.

References

1. Varenik A. V., Kalinskaya D. V., Myslina M. A. Issledovanie vzveshennykh mikrochastits v atmosfere beregovoi zony Chernogo morya po naturnym i sputnikovym dannym // Morskoi gidrofizicheskii zhurnal. 2021. T. 37, № 3. S. 350–361. https://doi.org/10.22449/0233-7584-2021-3-350-361

2. Prospero J. M. Saharan Dust Transport Over the North Atlantic Ocean and Mediterranean: An Overview // The Impact of Desert Dust Across the Mediterranean / Eds. S. Guerzoni, R. Chester. Dordrecht : Springer, 1996. P. 133–151. (Environmental Science and Technology Library book series, vol. 11). https://doi.org/10.1007/978-94-017-3354-0_13

3. Prospero J. M. The Chemical and Physical Properties of Marine Eerosols: An Introduction // Chemistry of Marine Water and Sediments / Eds. A. Gianguzza, E. Pelizzetti, S. Sammartano. Berlin, Heidelberg : Springer, 2002. P. 35–82. ( https://doi.org/10.1007/978-3-662-04935-8_2

4. Numerical simulation of the intra-annual evolution of beryllium-7 (7Ve) in the surface layer of the Black Sea / D. A. Kremenchutskii [et al.] // Environmental Science and Pollution Research. 2018. Vol. 25. R. 11120–11127. https://doi.org/10.1007/s11356-018-1269-y

5. Role of suspended matter in controlling beryllium-7 (7Be) in the Black Sea surface layer / D. A. Kremenchutskii [et al.] // Journal of Marine Systems. 2021. Vol. 217. 103513. https://doi.org/10.1016/j.jmarsys.2021.103513

6. Kadko D., Landing W. M., Buck C. S. Quantifying Atmospheric Trace Element Deposition Over the Ocean on a Global Scale With Satellite Rainfall Products // Geophysical Research Letters. 2020. Vol. 47, iss. 7. e2019GL086357. https://doi.org/10.1029/2019GL086357

7. Varenik A. V. Vliyanie vybrosov ot statsionarnykh istochnikov na zagryaznenie atmosfernykh osadkov neorganicheskim azotom na primere g. Sevastopolya // Morskoi gidrofizicheskii zhurnal. 2020. T. 36, № 3. S. 277–286. https://doi.org/10.22449/0233-7584-2020-3-277-286

8. Varenik A. V., Konovalov S. K. Variations in Concentrations and Ratio of Soluble Forms of Nutrients in Atmospheric Depositions and Effects for Marine Coastal Areas of Crimea, Black Sea // Applied Sciences. 2021. Vol. 11, iss. 23. 11509. https://doi.org/10.3390/app112311509

9. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability / C. M. Moore [et al.] // Nature Geoscience. 2009. Vol. 2. P. 867–871. https://doi.org/10.1038/ngeo667

10. Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron / G. S. Okin [et al.] // Global Biogeochemical Cycles. 2011. Vol. 25, iss. 2. GB2022. https://doi.org/10.1029/2010GB003858

11. Baker A. R., Jickells T. D. Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT) // Progress in Oceanography. 2017. Vol. 158. P. 41–51. https://doi.org/10.1016/j.pocean.2016.10.002

12. Varenik A. V., Kozlovskaya O. N., Simonova Yu. V. Otsenka postupleniya biogennykh elementov s atmosfernymi vypadeniyami v raione Yuzhnogo berega Kryma (Katsiveli) v 2010 – 2015 godakh // Morskoi gidrofizicheskii zhurnal. 2016. T. 32, № 5. C. 65–75. https://doi.org/10.22449/0233-7584-2016-5-65-75

13. Varenik A. V., Kalinskaya D. V. The Effect of Dust Transport on the Concentration of Chlorophyll-A in the Surface Layer of the Black Sea // Applied Sciences. 2021. Vol. 11, iss. 10. P. 4692. https://doi.org/10.3390/app11104692

14. Morel F. M. M., Milligan A. J., Saito M. A. Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients // The Oceans and Marine Geochemistry / Ed. H. Elderfield. Oxford : Elsevier, 2003. P. 113–143. https://doi.org/10.1016/B0-08-043751-6/06108-9

15. Morel F. M. M., Price N. M. The Biogeochemical Cycles of Trace Metals in the Oceans // Science. 2003. Vol. 300, iss. 5621. P. 944–947. https://doi.org/10.1126/science.1083545

16. A global dataset of atmospheric 7Be and 210Pb measurements: annual air concentration and depositional flux / F. Zhang [et al.] // Earth System Science Data. 2021. Vol. 13, iss. 6. P. 2963– 2994. https://doi.org/10.5194/essd-13-2963-2021

17. Ioannidou A. 7Be aerosols and their deposition on the sea: a possible method to estimate trace metals deposition on the sea // Journal of Environmental Radioactivity. 2012. Vol. 108. P. 29– 32. https://doi.org/10.1016/j.jenvrad.2011.11.012

18. Kremenchutskii D. A. Influence of precipitation on the daily beryllium-7 (7Be) activity concentration in the atmospheric surface layer // Journal of Environmental Radioactivity. 2021. Vol. 237. 106722. https://doi.org/10.1016/j.jenvrad.2021.106722

19. 7Be spatial and temporal pattern in southwest of Europe (Spain): Evaluation of a predictive model / E. Chham [et al.] // Chemosphere. 2018. Vol. 205. P. 194–202. https://doi.org/10.1016/j.chemosphere.2018.04.099

20. Meteorological Factors Controlling 7Be Activity Concentrations in the Atmospheric Surface Layer in Northern Spain / N. Alegria [et al.] // Atmosphere. 2020. Vol. 11, iss. 12. 1340. https://doi.org/10.3390/atmos11121340

21. Baskaran M., Coleman C. H., Santschi P. H. Atmospheric depositional fluxes of 7Be and 210Pb at Galveston and College Station, Texas // Journal of Geophysical Research. Atmospheres. 1993. Vol. 98, iss. D11. P. 20555–20571. https://doi.org/10.1029/93JD02182

22. Othman I., Al-Masri M. S., Hassan M. Fallout of 7Be in Damascus City // Journal of Radioanalytical and Nuclear Chemistry. 1998. Vol. 238, iss. 1–2. P. 187–192. https://doi.org/10.1007/BF02385379

23. Fogh C. L., Roed J., Andersson K. G. Radionuclide resuspension and mixed deposition at different heights // Journal of Environmental Radioactivity. 1999. Vol. 46, iss. 1. P. 67–75. https://doi.org/10.1016/S0265-931X(98)00130-1

24. Ioannidou A., Papastefanou C. Precipitation scavenging of 7Be and 137Cs radionuclides in air // Journal of Environmental Radioactivity. 2006. Vol. 85, iss. 1. P. 121–136. https://doi.org/10.1016/j.jenvrad.2005.06.005

25. Saleh I. H., Abdel-Halim A. A. 7Be in soil, deposited dust and atmospheric air and its using to infer soil erosion along Alexandria region, Egypt // Journal of Environmental Radioactivity. 2017. Vol. 172. P. 24–29. https://doi.org/10.1016/j.jenvrad.2017.03.005

26. Analysis of the influence of solar activity and atmospheric factors on 7Be air concentration by seasonal-trend decomposition / M. C. Bas [et al.] // Atmospheric Environment. 2016. Vol. 145. P. 147–157. https://doi.org/10.1016/j.atmosenv.2016.09.027

27. Pinero-García F., Ferro-García M. A. Evolution and solar modulation of 7Be during the solar cycle 23 // Journal of Radioanalytical and Nuclear Chemistry. 2013. Vol. 296. P. 1193–1204. https://doi.org/10.1007/s10967-012-2373-y

28. A climatology of 7Be in surface air in European Union / M. A. Hernández-Ceballos [et al.] // Journal of Environmental Radioactivity. 2015. Vol. 141. P. 62–70. https://doi.org/10.1016/j.jenvrad.2014.12.003

29. Doering C., Akber R. Beryllium-7 in near-surface air and deposition at Brisbane, Australia // Journal of Environmental Radioactivity. 2008. Vol. 99, iss. 3. P. 461–467. https://doi.org/10.1016/j.jenvrad.2007.08.017

30. Depositional fluxes and concentrations of 7Be and 210Pb in bulk precipitation and aerosols at the interface of Atlantic and Mediterranean coasts in Spain / R. L. Lozano [et al.] // Journal of Geophysical Research. Atmospheres. 2011. Vol. 116, iss. D18. D18213. https://doi.org