Морской гидрофизический журнал. 2022; 38: 34-52
Особенности образования следов циклонов (колебаний температуры воды) в районе мыса Свободного, юго-восточная часть острова Сахалин
Ковалев П. Д., Сквайр В. А., Ковалев Д. П., Зайцев А. И.
https://doi.org/10.22449/0233-7584-2022-1-34-52Аннотация
Цель. Цель работы – изучение особенностей формирования следов циклонов после регулярного прохождения циклонов над районом измерения волнения и оценка параметров внутренних волн в следе по данным натурных наблюдений.
Методы и результаты. Представлен анализ данных полевых наблюдений морских волн и температуры воды. Измерения проводились прибором АРВ-К14 (автономный регистратор волнения и температуры воды) в районе мыса Свободного на юго-восточном побережье острова Сахалин на глубине около 8 м. Полученные временны́е ряды колебаний уровня моря и температуры продолжительностью около полутора месяцев подвергались спектральному анализу с применением программных средств. Обнаружены доминирующие колебания температуры, достигающие 8,5 °C, c периодом 13,1 ч в верхнем квазиоднородном слое океана. Данные колебания были идентифицированы как следы циклонов в стадии их релаксации. Принимая во внимание синоптические обстоятельства, существующие во время прохождения нескольких циклонов и связанных с ними штормов в районе наблюдения, авторы исследовали наличие или отсутствие следа.
Выводы. Показано, что если следующий шторм приходит раньше, чем через 10 дней после предыдущего, то след может быть короче или даже отсутствовать из-за активного перемешивания воды в верхнем квазиоднородном слое океана. Значение коэффициента Î в выражении w = = (1 + Î) f, связывающего доминирующую частоту w внутренних волн, т. е. почти инерционных колебаний в следе за каждым тайфуном, с инерционной частотой f (параметром Кориолиса, определяемым географической широтой акватории, где распространяются волны), для полученных данных близко к значению, предложенному в работе Э. Кунзе. С использованием формулы Дж. Ф. Прайса определены характерные горизонтальные длины внутренних волн в направлении перемещения внутри следов циклонов, движущихся со скоростью 15–35 узлов. Эти длины составляют от 304,6 до 1066,1 км.
Список литературы
1. Observed oceanic response over the upper continental slope and outer shelf during hurricane Ivan / W. J. Teague [et al.] // Journal of Physical Oceanography. 2007. Vol. 37, iss. 9. P. 2181–2206. https://doi.org/10.1175/JPO3115.1
2. Термическая реакция океана на прохождение урагана «Элла» / К. Н. Федоров [и др.] // Океанология. 1979. Т. 19, № 6. С. 992–1001.
3. Brooks D. A. The wake of Hurricane Allen in the western Gulf of Mexico // Journal of Physical Oceanography. 1983. Vol. 13, iss. 1. P. 117–129. https://doi.org/10.1175/1520-0485(1983)013<0117:TWOHAI>2.0.CO;2
4. Shay L. K., Elsberry R. L. Near-inertial ocean current response to Hurricane Frederic // Journal of Physical Oceanography. 1987. Vol. 17, iss. 8. P. 1249–1269. https://doi.org/10.1175/1520-0485(1987)017<1249:NIOCRT>2.0.CO;2
5. Brink K. H. Observations of the response of thermocline currents to a hurricane // Journal of Physical Oceanography. 1989. Vol. 19, iss. 7. P. 1017–1022. https://doi.org/10.1175/1520-0485(1989)019<1017:OOTROT>2.0.CO;2
6. Leaman K. D., Sanford T. B. Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles // Journal of Geophysical Research. 1975. Vol. 80, iss. 15. P. 1975–1978. https://doi.org/10.1029/JC080i015p01975
7. D’Asaro E. A., Perkins H. A near-inertial internal wave spectrum for the Sargasso Sea in late summer // Journal of Physical Oceanography. 1984. Vol. 14, iss. 3. P. 489–505. https://doi.org/10.1175/1520-0485(1984)014<0489:ANIIWS>2.0.CO;2
8. Pinkel R. Doppler sonar observations of internal waves: The wavenumber-frequency spec-trum // Journal of Physical Oceanography. 1984. Vol. 14, iss. 8. P. 1249–1270. https://doi.org/10.1175/1520-0485(1984)014<1249:DSOOIW>2.0.CO;2
9. Sanford T. B. Spatial structure of thermocline and abyssal internal waves in the Sargasso Sea // Deep Sea Research Part II: Topical Studies in Oceanography. 2013. Vol. 85. P. 195–209. https://doi.org/10.1016/j.dsr2.2012.07.021
10. Rossby C.-G. On the mutual adjustment of pressure and velocity distributions in certain simple current systems // Journal of Marine Research. 1938. Vol. 1, iss. 1. P. 15–28. URL: https://images.peabody.yale.edu/publications/jmr/jmr01-01-02.pdf (date of access: 11.01.2022).
11. The structure of near-inertial waves during ocean storms / H. Qi [et al.] // Journal of Physical Oceanography. 1995. Vol. 25, iss. 11. P. 2853–2871. https://doi.org/10.1175/1520-0485(1995)025<2853:TSONIW>2.0.CO;2
12. Morozov E. G., Velarde M. G. Inertial oscillations as deep ocean response to hurricanes // Journal of Oceanography. 2008. Vol. 64, iss. 4. P. 495–509. https://doi.org/10.1007/s10872-008-0042-0
13. Alford M. H., Cronin M. F., Klymak J. M. Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the northeast Pacific // Journal of Physical Oceanography. 2012. Vol. 42, iss. 6. P. 889–909. https://doi.org/10.1175/JPO-D-11-092.1
14. Pollard R. T., Millard Jr. R. C. Comparison between observed and simulated wind-generated inertial oscillations // Deep Sea Research and Oceanographic Abstracts. 1970. Vol. 17, iss. 4. P. 813–821. https://doi.org/10.1016/0011-7471(70)90043-4
15. D’Asaro E. A. The energy flux from the wind to near-inertial motions in the surface mixed layer // Journal of Physical Oceanography. 1985. Vol 15, iss. 8. P. 1043–1059. https://doi.org/10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2
16. Alford M. H. Improved global maps and 54-year history of win-work on ocean inertial mo-tions // Geophysical Research Letters. 2003. Vol. 30, iss. 8. 1424. doi:10.1029/2002GL016614
17. Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea / S. Guan [et al.] // Journal of Geophysical Research: Oceans. 2014. Vol. 119, iss. 5. P. 3134–3157. https://doi.org/10.1002/2013JC009661
18. Sanford T. B., Price J. F., Girton J. B. Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats // Journal of Physical Oceanography. 2011. Vol. 41, iss. 6. P. 1041–1056. https://doi.org/10.1175/2010JPO4313.1
19. Shallow ocean response to tropical cyclones observed on the continental shelf of the north-western South China Sea / B. Yang [et al.] // Journal of Geophysical Research: Oceans. 2015. Vol. 120, iss. 5. P. 3817–3836. https://doi.org/10.1002/2015JC010783
20. Near-inertial internal gravity waves in the ocean / M. H. Alford [et al.] // Annual Review of Marine Science. 2016. Vol. 8. P. 95–123. https://doi.org/10.1146/annurev-marine-010814-015746
21. Price J. F. Internal wave wake of a moving storm. Part I. Scales, energy budget and observa-tions // Journal of Physical Oceanography. 1983. Vol. 13, iss. 6. P. 949–965. https://doi.org/10.1175/1520-0485(1983)013<0949:IWWOAM>2.0.CO;2
22. Price J. F. Upper ocean response to a hurricane // Journal of Physical Oceanography. 1981. Vol. 11, iss. 2. P. 153–175. https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
23. Gregg M. C. Diapycnal mixing in the thermocline: A review // Journal of Geophysical Research: Oceans. 1987. Vol. 92, iss. C5. P. 5249–5286. https://doi.org/10.1029/JC092iC05p05249
24. Alford M. H. Redistribution of energy available for ocean mixing by long-range propagation of internal waves // Nature. 2003. Vol. 423. P. 159–162. doi:10.1038/nature01628
25. Forristall G. Z., Larrabee R. D., Mercier R. S. Combined oceanographic criteria for deepwater structures in the Gulf of Mexico // The 23d Offshore Technology Conference, Houston, TX, 1991. Paper OTC6541. P. 377–390. https://doi.org/10.4043/6541-MS
26. Иванов В. П., Пудов В. Д. Структура термического следа тайфуна «Тесс» в океане и оценка некоторых параметров энергообмена при штормовых условиях // Тайфун-75 / Под ред. В. Н. Иванова, Н. И. Павлова. Л. : Гидрометеоиздат, 1977. Т. 1. С. 66–82.
27. Пудов В. Д., Варфоломеев А. А., Федоров К. Н. Вертикальная структура следа тайфуна в верхнем слое океана // Океанология. 1978. Т. 18, вып. 2. С. 218–225.
28. Плеханов Ф. А., Ковалев Д. П. Программа комплексной обработки и анализа временных рядов данных уровня моря на основе авторских алгоритмов // Геоинформатика. 2016. № 1. С. 44–53. URL: http://geoinformatika.ru/wp-content/uploads/2020/06/Geo2016_1_44-53-1.pdf (дата обращения: 21.01.2021.
29. Kunze E. Near-inertial wave propagation in geostrophic shear // Journal of Physical Oceanog-raphy. 1985. Vol. 15, iss. 5. P. 544–565. https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2
30. Price J. F., Sanford T. B., Forristall G. Z. Forced stage response to a moving hurricane // Journal of Physical Oceanography. 1994. Vol. 24, iss. 2. P. 233–260. https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2
31. Garrett C. What is the ‘‘near-inertial’’ band and why is it different from the rest of the internal wave spectrum? // Journal of Physical Oceanography. 2001. Vol. 31, iss. 4. P. 962–971. https://doi.org/10.1175/1520-0485(2001)031<0962:WITNIB>2.0.CO;2
32. Observation of near-inertial oscillations induced by energy transformation during typhoons / H. Hou [et al.] // Energies. 2019. Vol. 12, iss. 1. 99. doi:10.3390/en12010099
33. Gill A. E. On the behavior of internal waves in the wakes of storms // Journal of Physical Oceanography. 1984. Vol. 14, iss. 7. P. 1129–1151. https://doi.org/10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2
34. Zervakis V., Levine M. D. Near-inertial energy propagation from the mixed layer: Theoretical considerations // Journal of Physical Oceanography. 1995. Vol. 25, iss. 11. P. 2872–2889. https://doi.org/10.1175/1520-0485(1995)025<2872:NIEPFT>2.0.CO;2
35. The impact of seasonal changes in stratification on the dynamics of internal waves in the Sea of Okhotsk / O. Kurkina [et al.] // Estonian Journal of Earth Sciences. 2017. Vol. 66, iss. 4. P. 238–255. http://doi.org/10.3176/earth.2017.20
36. Nurser A. J. G., Bacon S. The Rossby radius in the Arctic Ocean // Ocean Science. 2014. Vol. 10, iss. 6. P. 967–975. doi:10.5194/os-10-967-2014
37. Near-inertial ocean response to tropical cyclone forcing on the Australian North-West Shelf / M. D. Rayson [et al.] // Journal of Geophysical Research: Oceans. 2015. Vol. 120, iss. 12. P. 7722–7751. doi:10.1002/2015JC010868
38. Степанов Д. В. Оценка бароклинного радиуса деформации Россби в Охотском море // Метеорология и гидрология. 2017. № 9. С. 83–89.
39. Observation of near-inertial wave reflections within the thermostad layer of an anticyclonic mesoscale eddy / S.-S. Byun [et al.] // Geophysical Research Letters. 2010. Vol. 37, iss. 1. L01606. doi:10.1029/2009GL041601
40. Kawaguchi Y., Wagawa T., Igeta Y. Near-inertial internal waves and multiple-inertial oscilla-tions trapped by negative vorticity anomaly in the central Sea of Japan // Progress in Ocean-ography. 2020. Vol. 181. 102240. https://doi.org/10.1016/j.pocean.2019.102240
41. Mesoscale-dependent near-inertial internal waves and microscale turbulence in the Tsushima Warm Current / Y. Kawaguchi [et al.] // Journal of Oceanography. 2021. Vol. 77, iss. 2. P. 155–171. doi:10.1007/s10872-020-00583-1
42. Garrett C. J. R., Munk W. H. Space-time scales of internal waves // Geophysical Fluid Dy-namics. 1972. Vol. 3, iss. 3. P. 225–264. https://doi.org/10.1080/03091927208236082
Morskoy Gidrofizicheskiy Zhurnal. 2022; 38: 34-52
Features of Formation of the Cyclone Wakes (Fluctuations In Seawater Temperature) in the Area of Cape Svobodny, the Southeastern Part of the Sakhalin Island
Kovalev P. D., Squire V. A., Kovalev D. P., Zaytsev A. I.
https://doi.org/10.22449/0233-7584-2022-1-34-52Abstract
Purpose. The purpose of the work is to study the peculiarities of formation of the cyclone wakes after the regular passage of cyclones over the area of the wave measurements, and to estimate the internal wave parameters in the track according to the field observations.
Methods and Results. The analysis of data from the field observations of the sea waves and water temperature is presented. The measurements were carried out by the ARW-K14 device (autonomous recorder of the waves and water temperature) in the area of the Cape Svobodny on the southeastern coast of the Sakhalin Island at the depth about 8 m. The obtained time series of the sea level and temperature fluctuations lasting about one and a half months were subjected to spectral analysis using software. The dominant temperature fluctuations reaching 8.5 °C with a 13.1 h period were detected in the upper mixed layer of the ocean. These fluctuations were identified as the cyclone wakes in the
stage of their relaxation. Taking into account the synoptic circumstances that exist during the passage of several cyclones and the associated storms in the observation area, the authors investigated the presence or absence of a trace.
Conclusions. It is shown that if the next storm arrives earlier than 10 days after the previous one, the trace may be shorter or even absent due to active water mixing in the upper mixed layer of the ocean. As for the data obtained, the value of the coefficient Î in the expression w = (1 + Î) f, which connects the dominant frequency w of internal waves, i.e. almost inertial oscillations in the trace of each typhoon, with the inertial frequency f (the Coriolis parameter determined by the geographical latitude of the water area where the waves propagate), is close to the value proposed in the paper by E. Kunze. Using the formula of J. F. Price, the characteristic horizontal lengths of internal waves in the direction of movement inside the wakes of the cyclones moving at a speed 15–35 knots, are determined. These lengths rage from 304.6 to 1066.1 km.
References
1. Observed oceanic response over the upper continental slope and outer shelf during hurricane Ivan / W. J. Teague [et al.] // Journal of Physical Oceanography. 2007. Vol. 37, iss. 9. P. 2181–2206. https://doi.org/10.1175/JPO3115.1
2. Termicheskaya reaktsiya okeana na prokhozhdenie uragana «Ella» / K. N. Fedorov [i dr.] // Okeanologiya. 1979. T. 19, № 6. S. 992–1001.
3. Brooks D. A. The wake of Hurricane Allen in the western Gulf of Mexico // Journal of Physical Oceanography. 1983. Vol. 13, iss. 1. P. 117–129. https://doi.org/10.1175/1520-0485(1983)013<0117:TWOHAI>2.0.CO;2
4. Shay L. K., Elsberry R. L. Near-inertial ocean current response to Hurricane Frederic // Journal of Physical Oceanography. 1987. Vol. 17, iss. 8. P. 1249–1269. https://doi.org/10.1175/1520-0485(1987)017<1249:NIOCRT>2.0.CO;2
5. Brink K. H. Observations of the response of thermocline currents to a hurricane // Journal of Physical Oceanography. 1989. Vol. 19, iss. 7. P. 1017–1022. https://doi.org/10.1175/1520-0485(1989)019<1017:OOTROT>2.0.CO;2
6. Leaman K. D., Sanford T. B. Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles // Journal of Geophysical Research. 1975. Vol. 80, iss. 15. P. 1975–1978. https://doi.org/10.1029/JC080i015p01975
7. D’Asaro E. A., Perkins H. A near-inertial internal wave spectrum for the Sargasso Sea in late summer // Journal of Physical Oceanography. 1984. Vol. 14, iss. 3. P. 489–505. https://doi.org/10.1175/1520-0485(1984)014<0489:ANIIWS>2.0.CO;2
8. Pinkel R. Doppler sonar observations of internal waves: The wavenumber-frequency spec-trum // Journal of Physical Oceanography. 1984. Vol. 14, iss. 8. P. 1249–1270. https://doi.org/10.1175/1520-0485(1984)014<1249:DSOOIW>2.0.CO;2
9. Sanford T. B. Spatial structure of thermocline and abyssal internal waves in the Sargasso Sea // Deep Sea Research Part II: Topical Studies in Oceanography. 2013. Vol. 85. P. 195–209. https://doi.org/10.1016/j.dsr2.2012.07.021
10. Rossby C.-G. On the mutual adjustment of pressure and velocity distributions in certain simple current systems // Journal of Marine Research. 1938. Vol. 1, iss. 1. P. 15–28. URL: https://images.peabody.yale.edu/publications/jmr/jmr01-01-02.pdf (date of access: 11.01.2022).
11. The structure of near-inertial waves during ocean storms / H. Qi [et al.] // Journal of Physical Oceanography. 1995. Vol. 25, iss. 11. P. 2853–2871. https://doi.org/10.1175/1520-0485(1995)025<2853:TSONIW>2.0.CO;2
12. Morozov E. G., Velarde M. G. Inertial oscillations as deep ocean response to hurricanes // Journal of Oceanography. 2008. Vol. 64, iss. 4. P. 495–509. https://doi.org/10.1007/s10872-008-0042-0
13. Alford M. H., Cronin M. F., Klymak J. M. Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the northeast Pacific // Journal of Physical Oceanography. 2012. Vol. 42, iss. 6. P. 889–909. https://doi.org/10.1175/JPO-D-11-092.1
14. Pollard R. T., Millard Jr. R. C. Comparison between observed and simulated wind-generated inertial oscillations // Deep Sea Research and Oceanographic Abstracts. 1970. Vol. 17, iss. 4. P. 813–821. https://doi.org/10.1016/0011-7471(70)90043-4
15. D’Asaro E. A. The energy flux from the wind to near-inertial motions in the surface mixed layer // Journal of Physical Oceanography. 1985. Vol 15, iss. 8. P. 1043–1059. https://doi.org/10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2
16. Alford M. H. Improved global maps and 54-year history of win-work on ocean inertial mo-tions // Geophysical Research Letters. 2003. Vol. 30, iss. 8. 1424. doi:10.1029/2002GL016614
17. Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea / S. Guan [et al.] // Journal of Geophysical Research: Oceans. 2014. Vol. 119, iss. 5. P. 3134–3157. https://doi.org/10.1002/2013JC009661
18. Sanford T. B., Price J. F., Girton J. B. Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats // Journal of Physical Oceanography. 2011. Vol. 41, iss. 6. P. 1041–1056. https://doi.org/10.1175/2010JPO4313.1
19. Shallow ocean response to tropical cyclones observed on the continental shelf of the north-western South China Sea / B. Yang [et al.] // Journal of Geophysical Research: Oceans. 2015. Vol. 120, iss. 5. P. 3817–3836. https://doi.org/10.1002/2015JC010783
20. Near-inertial internal gravity waves in the ocean / M. H. Alford [et al.] // Annual Review of Marine Science. 2016. Vol. 8. P. 95–123. https://doi.org/10.1146/annurev-marine-010814-015746
21. Price J. F. Internal wave wake of a moving storm. Part I. Scales, energy budget and observa-tions // Journal of Physical Oceanography. 1983. Vol. 13, iss. 6. P. 949–965. https://doi.org/10.1175/1520-0485(1983)013<0949:IWWOAM>2.0.CO;2
22. Price J. F. Upper ocean response to a hurricane // Journal of Physical Oceanography. 1981. Vol. 11, iss. 2. P. 153–175. https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
23. Gregg M. C. Diapycnal mixing in the thermocline: A review // Journal of Geophysical Research: Oceans. 1987. Vol. 92, iss. C5. P. 5249–5286. https://doi.org/10.1029/JC092iC05p05249
24. Alford M. H. Redistribution of energy available for ocean mixing by long-range propagation of internal waves // Nature. 2003. Vol. 423. P. 159–162. doi:10.1038/nature01628
25. Forristall G. Z., Larrabee R. D., Mercier R. S. Combined oceanographic criteria for deepwater structures in the Gulf of Mexico // The 23d Offshore Technology Conference, Houston, TX, 1991. Paper OTC6541. P. 377–390. https://doi.org/10.4043/6541-MS
26. Ivanov V. P., Pudov V. D. Struktura termicheskogo sleda taifuna «Tess» v okeane i otsenka nekotorykh parametrov energoobmena pri shtormovykh usloviyakh // Taifun-75 / Pod red. V. N. Ivanova, N. I. Pavlova. L. : Gidrometeoizdat, 1977. T. 1. S. 66–82.
27. Pudov V. D., Varfolomeev A. A., Fedorov K. N. Vertikal'naya struktura sleda taifuna v verkhnem sloe okeana // Okeanologiya. 1978. T. 18, vyp. 2. S. 218–225.
28. Plekhanov F. A., Kovalev D. P. Programma kompleksnoi obrabotki i analiza vremennykh ryadov dannykh urovnya morya na osnove avtorskikh algoritmov // Geoinformatika. 2016. № 1. S. 44–53. URL: http://geoinformatika.ru/wp-content/uploads/2020/06/Geo2016_1_44-53-1.pdf (data obrashcheniya: 21.01.2021.
29. Kunze E. Near-inertial wave propagation in geostrophic shear // Journal of Physical Oceanog-raphy. 1985. Vol. 15, iss. 5. P. 544–565. https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2
30. Price J. F., Sanford T. B., Forristall G. Z. Forced stage response to a moving hurricane // Journal of Physical Oceanography. 1994. Vol. 24, iss. 2. P. 233–260. https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2
31. Garrett C. What is the ‘‘near-inertial’’ band and why is it different from the rest of the internal wave spectrum? // Journal of Physical Oceanography. 2001. Vol. 31, iss. 4. P. 962–971. https://doi.org/10.1175/1520-0485(2001)031<0962:WITNIB>2.0.CO;2
32. Observation of near-inertial oscillations induced by energy transformation during typhoons / H. Hou [et al.] // Energies. 2019. Vol. 12, iss. 1. 99. doi:10.3390/en12010099
33. Gill A. E. On the behavior of internal waves in the wakes of storms // Journal of Physical Oceanography. 1984. Vol. 14, iss. 7. P. 1129–1151. https://doi.org/10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2
34. Zervakis V., Levine M. D. Near-inertial energy propagation from the mixed layer: Theoretical considerations // Journal of Physical Oceanography. 1995. Vol. 25, iss. 11. P. 2872–2889. https://doi.org/10.1175/1520-0485(1995)025<2872:NIEPFT>2.0.CO;2
35. The impact of seasonal changes in stratification on the dynamics of internal waves in the Sea of Okhotsk / O. Kurkina [et al.] // Estonian Journal of Earth Sciences. 2017. Vol. 66, iss. 4. P. 238–255. http://doi.org/10.3176/earth.2017.20
36. Nurser A. J. G., Bacon S. The Rossby radius in the Arctic Ocean // Ocean Science. 2014. Vol. 10, iss. 6. P. 967–975. doi:10.5194/os-10-967-2014
37. Near-inertial ocean response to tropical cyclone forcing on the Australian North-West Shelf / M. D. Rayson [et al.] // Journal of Geophysical Research: Oceans. 2015. Vol. 120, iss. 12. P. 7722–7751. doi:10.1002/2015JC010868
38. Stepanov D. V. Otsenka baroklinnogo radiusa deformatsii Rossbi v Okhotskom more // Meteorologiya i gidrologiya. 2017. № 9. S. 83–89.
39. Observation of near-inertial wave reflections within the thermostad layer of an anticyclonic mesoscale eddy / S.-S. Byun [et al.] // Geophysical Research Letters. 2010. Vol. 37, iss. 1. L01606. doi:10.1029/2009GL041601
40. Kawaguchi Y., Wagawa T., Igeta Y. Near-inertial internal waves and multiple-inertial oscilla-tions trapped by negative vorticity anomaly in the central Sea of Japan // Progress in Ocean-ography. 2020. Vol. 181. 102240. https://doi.org/10.1016/j.pocean.2019.102240
41. Mesoscale-dependent near-inertial internal waves and microscale turbulence in the Tsushima Warm Current / Y. Kawaguchi [et al.] // Journal of Oceanography. 2021. Vol. 77, iss. 2. P. 155–171. doi:10.1007/s10872-020-00583-1
42. Garrett C. J. R., Munk W. H. Space-time scales of internal waves // Geophysical Fluid Dy-namics. 1972. Vol. 3, iss. 3. P. 225–264. https://doi.org/10.1080/03091927208236082
События
- 
        Научный периодический электронный рецензируемый студенческий журнал «Scientia Juvenum» теперь на Elpub >>>
        
 30 окт 2025 | 12:58
- 
        Журнал «Северо-Кавказский юридический вестник» присоединился к  Elpub >>>
        
 29 окт 2025 | 12:53
- 
        К платформе Elpub присоединился журнал «Государственное и муниципальное управление. Ученые записки» >>>
        
 29 окт 2025 | 12:52
- 
        Журнал «Природопользование» присоединился к  Elpub >>>
        
 27 окт 2025 | 12:07
- 
        Журнал «Вестник Сибирского государственного университета путей сообщения» присоединился к  Elpub! >>>
        
 23 окт 2025 | 11:23
 
                                                             
 
