Журналов:     Статей:        

Морской гидрофизический журнал. 2021; 37: 233-246

Биооптические характеристики прибрежных вод Черного моря вблизи Севастополя: оценка точности спутниковых продуктов, восстановленных по данным MODIS и VIIRS

Скороход Е. Ю., Чурилова Т. Я., Ефимова Т. В., Моисеева Н. А., Суслин В. В.

https://doi.org/10.22449/0233-7584-2021-2-233-246

Аннотация

Цель. Цель работы − оценить точность спутниковых продуктов для прибрежных вод Севастополя, восстановленных стандартными алгоритмами по данным спектрорадиометров MODIS, установленных на искусственных спутниках Земли Aqua и Terra, и VIIRS на спутнике Suomi NPP.

Методы и результаты. Отбор проб in situ проводился на станции, расположенной на расстоянии двух миль от бухты Севастопольской в точке с координатами 44° 37' 26" с. ш. и 33° 26' 05" в. д. Для определения концентрации хлорофилла а использовали спектрофотометрический метод. Спектральные показатели поглощения света оптически активными компонентами измеряли в соответствии с современным протоколом NASA. Использовались данные MODIS и VIIRS 2-го уровня с пространственным разрешением 1 км вокруг станции. Обработку спутниковых данных проводили при помощи программного обеспечения SeaDAS 7.5.3, разработанного NASA. Исследование показало, что содержание оптически активных компонентов в прибрежных водах Севастополя по даннымMODIS и VIIRS при использовании стандартных алгоритмов определяется некорректно: в сравнении с данными измерений in situ значения концентрации хлорофилла а в среднем весной меньше в 1,6 раза, а летом – больше в 1,4 раза; вклад пигментов фитопланктона в общее поглощение света на длине волны 443 нм в среднем меньше в 8,7 раза; поглощение света окрашенным растворенным органическим веществом в сумме с неживой взвесью в среднем больше в 2,2 раза.

Выводы. Стандартные алгоритмы NASA не применимы для расчета биооптических показателей вод (концентрация хлорофилла a, показатель поглощения света пигментами фитопланктона и показатель поглощения света окрашенным растворенным органическим веществом в сумме с неживой взвесью) в прибрежном районе Черного моря вблизи Севастополя. Чтобы использовать спутниковые данные для экологического мониторинга, необходимо развивать региональный алгоритм, учитывающий оптические особенности вод в этом районе, в частности в сложной прибрежной зоне.

Список литературы

1. State of the Environment of the Black Sea (2001 – 2006/7) / T. Oguz (ed.). Istanbul, Turkey, 2008. 448 p. (Publications of the Commission on the Protection of the Black Sea Against Pollution (BSC) ; 2008-3).

2. Surface chlorophyll in the Black Sea over 1978–1986 derived from satellite and in situ data / О. V. Kopelevich [et al.] // Journal of Marine Systems. 2002. Vol. 36, iss. 3–4. P. 145−160. doi:10.1016/S0924-7963(02)00184-7

3. Ерлов Н. Г. Оптика моря. Л. : Гидрометиздат, 1980. 248 с.

4. Kirk J. T. O. Light and photosynthesis in aquatic ecosystems. 3d edition. Cambridge : Cambridge University Press, 2011. 662 p.

5. Gordon H. R., Wang M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm // Applied Optics. 1994. Vol. 33, iss. 3. P. 443−452. doi:10.1364/ao.33.000443

6. Сравнение стандартных продуктов со спектрорадиометров MODIS Aqua/Terra и VIIRS с результатами биооптических измерений в прибрежных водах Севастополя / Е. Ю. Скороход [и др.] // Понт Эвксинский – 2019 : материалы XI Всероссийской научно-практической конференции молодых ученых по проблемам водных экосистем, посвященной памяти д. б. н., проф. С. Б. Гулина, г. Севастополь, 23–27 сентября 2019 г. Севастополь, 2019. С. 134–135.

7. Jeffrey S. W., Humphrey G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton // Biochemie und Physiology der Pflanzen. 1975. Vol. 167, iss. 2. P. 191–194.

8. Roesler C. S. In Situ Bio-Optical Observations on NERACOOS Buoy A01 (2005–2017): multichannel calibrated chlorophyll fluorescence, turbidity, and multispectral incident irradiance and upwelling radiance. Boston : Massachusetts Water Resources Authority, 2018. 19 p.

9. Twardowski M., Röttgers R., Stramski D. The absorption Coefficient, An Overview // IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation. Dartmouth, NS, Canada, 2018. Vol. 1.0 : Inherent Optical Property Measurements and Protocols: Absorption Coefficient. Chapter 1. P. 1–17. http://dx.doi.org/10.25607/OBP-119

10. Estimation of the spectral absorption coefficients of phytoplankton in the sea / M. Kishino [et al.] // Bulletin of Marine Science. 1985. Vol. 37, no. 2. P. 634–642.

11. Tassan S., Ferrari G. M. An alternative approach to absorption measurements of aquatic particles retained on filters // Limnology and Oceanography. 1995. Vol. 40, iss. 8. P. 1358–1368. https://doi.org/10.4319/lo.1995.40.8.1358

12. Ocean color chlorophyll algorithms for SeaWiFS / J. E. O’Reilly [et al.] // Journal of Geophysical Research: Oceans. 1998. Vol. 103, iss. C11. P. 24937–24953. https://doi.org/10.1029/98JC02160

13. Hu C., Lee Z., Franz B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on the three-band reflectance difference // Journal of Geophysical Research: Oceans. 2012. Vol. 117, iss. C1. C01011. doi:10.1029/2011JC007395

14. Retrieving marine inherent optical properties from satellites using temperature and salinitydependent backscattering by seawater / P. J. Werdell [et al.] // Optics Express. 2013. Vol. 21, iss. 26. P. 32611–32622. doi:10.1364/OE.21.032611

15. Generalized ocean color inversion model for retrieving marine inherent optical properties / P. J. Werdell [et al.] // Applied Optics. 2013. Vol. 52, iss. 10. P. 2019–2037. http://doi.org/10.1364/ao.52.002019

16. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization / A. Bricaud [et al.] // Journal of Geophysical Research: Oceans. 1995. Vol. 100, iss. C7. P. 13321–13332. doi:10.1029/95JC00463

17. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models / A. Bricaud [et al.] // Journal of Geophysical Research: Oceans. 1998. Vol. 103, iss. C13. P. 31033–31044.

18. Cleveland J. S. Regional models for phytoplankton absorption as a function of chlorophyll a concentration // Journal of Geophysical Research: Oceans. 1995. Vol. 100, iss. C7. P. 13333–13344. https://doi.org/10.1029/95JC00532

19. Light absorption properties of southeastern Bering Sea waters: Analysis, parameterization and implications for remote sensing / P. Naik [et al.] // Remote Sensing of Environment. 2013. Vol. 134. P. 120–134. doi:10.1016/j.rse.2013.03.004

20. Light Absorption by Phytoplankton in the Upper Mixed Layer of the Black Sea: Seasonality and Parametrization / T. Churilova [et al.] // Frontiers in Marine Science. 2017. Vol. 4. 90. doi:10.3389/fmars.2017.00090

21. Dynamics in pigment concentration and light absorption by phytoplankton, non-algal particles and colored dissolved organic matter in the Black Sea coastal waters (near Sevastopol) / T. Efimova [et al.] // Proceedings of SPIE. 2018. Vol. 10833 : 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 108336C. doi:10.1117/12.2504657

22. Suslin V., Churilova T. A regional algorithm for separating light absorption by chlorophyll-a and coloured detrital matter in the Black Sea, using 480–560 nm bands from ocean colour scanners // International Journal of Remote Sensing. 2016. Vol. 37, iss. 18. P. 4380–4400. doi:10.1080/01431161.2016.1211350

23. Phytoplankton absorption predicts patterns in primary productivity in Australian coastal shelf waters / C. M. Robinson [et al.] // Estuarine, Coastal and Shelf Science. 2017. Vol. 192. P. 1−16. doi:10.1016/j.ecss.2017.04.12

24. Annual variability in light absorption by particles and colored dissolved organic matter in the Crimean coastal waters (the Black Sea) / T. Churilova [et al.] // Proceedings of SPIE. 2017. Vol. 10466 : 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 104664B. doi:10.1117/12.2288339

25. Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms / M. Darecki [et al.] // Continental Shelf Research. 2003. Vol. 23, iss. 3−4. P. 237–250. doi:10.1016/s0278-4343(02)00222-4

26. Light absorption properties and absorption budget of Southeast Pacific waters / A. Bricaud [et al.] // Journal of Geophysical Research: Oceans. 2010. Vol. 115, iss. C8. C08009. doi:10.1029/2009JC005517

27. Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance / J. Campbell [et al.] // Global Biogeochemical Cycles. 2002. Vol. 16, iss. 3. P. 9-1–9-15. doi:10.1029/2001GB001444

28. Реанализ долговременных рядов изменения биомассы фитопланктона в открытой части Черного моря по результатам натурных и спутниковых наблюдений / О. В. Кривенко [и др.] // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. Севастополь : МГИ, 2012. Вып. 26, т. 2. С. 185–194.

29. The Effect of Optical Properties on Secchi Depth and Implications for Eutrophication Management / E. T. Harvey [et al.] // Frontiers in Marine Science. 2019. Vol. 5. 496. doi:10.3389/fmars.2018.00496

30. Markager S., Vincent W. F. Light absorption by phytoplankton: development of a matching parameter for algal photosynthesis under different spectral regimes // Journal of Plankton Research. 2001. Vol. 23, iss. 12. P. 1373–1384. https://doi.org/10.1093/plankt/23.12.1373

31. Bracher A. U., Tilzer M. M. Underwater light field and phytoplankton absorbance in different surface water masses of the Atlantic sector of the Southern Ocean // Polar Biology. 2001. Vol. 24, iss. 9. P. 687–696. https://doi.org/10.1007/s003000100269

32. «Цветение» фитопланктона и фотосинтетически активная радиация в прибрежных во- дах / Т. Я. Чурилова [и др.] // Журнал прикладной спектроскопии. 2019. Т. 86, № 6. С. 976−985.

33. Morel A., Prieur L. Analysis of variations in ocean color // Limnology and Oceanography. 1977. Vol. 22, iss. 4. P. 709−722. https://doi.org/10.4319/lo.1977.22.4.0709

34. Phytoplankton light absorption in the deep chlorophyll maximum layer of the Black Sea / T. Churilova [et al.] // European Journal of Remote Sensing. 2019. Vol. 52, iss. sup. 1. P. 123−136. doi:10.1080/22797254.2018.1533389

Morskoy Gidrofizicheskiy Zhurnal. 2021; 37: 233-246

Bio-Optical Characteristics of the Black Sea Coastal Waters near Sevastopol: Assessment of the MODIS and VIIRS Products Accuracy

Skorokhod E. Yu., Churilova T. Ya., Efimova T. V., Moiseeva N. A., Suslin V. V.

https://doi.org/10.22449/0233-7584-2021-2-233-246

Abstract

Purpose. The purpose of the work is to evaluate accuracy of the satellite products for the coastal waters near Sevastopol, reconstructed by the standard algorithms based on the MODIS and VIIRS (installed at the artificial Earth satellites Aqua and Terra, and at Suomi NPP, respectively) data.

Methods and Results. In situ sampling was carried out at the station (44°37'26" N and 33°26'05" E) located at a distance of two miles from the Sevastopol Bay. The chlorophyll a concentration was measured by the spectrophotometric method. The spectral light absorption coefficients by optically active components were measured in accordance with the current NASA protocol. The spectroradiometers MODIS and VIIRS Level 2 data with spatial resolution 1 km in nadir around the in situ station (44°37'26"±0°00'32" N and 33°26'05"±0°00'54" E) were used. The satellite products were processed by the SeaDAS 7.5.3 software developed in NASA. The research showed that the standard NASA algorithms being applied to the MODIS and VIIRS data, yielded incorrect values of the optically active components’ content in the Black Sea coastal waters near Sevastopol as compared to the data of in situ measurements in the same region: the satellite-derived “chlorophyll a concentration” was on average 1.6 times lower in spring, and 1.4 times higher in summer; the contribution of phytoplankton pigments to total light absorption at 443 nm was underestimated in 8.7 times; the light absorption by colored detrital organic matter was overestimated in 2.2 times.

Conclusions. The NASA standard algorithms are inapplicable to calculating bio-optical indices in the coastal waters of the Black Sea near Sevastopol since they provide incorrect values of the satellite products (Ca-s, aph-s(443) and aCDM-s(443)). Operative ecological monitoring based on satellite data requires development of a regional algorithm taking into account the seawater optical features in the region and in the coastal zone, in particular.

References

1. State of the Environment of the Black Sea (2001 – 2006/7) / T. Oguz (ed.). Istanbul, Turkey, 2008. 448 p. (Publications of the Commission on the Protection of the Black Sea Against Pollution (BSC) ; 2008-3).

2. Surface chlorophyll in the Black Sea over 1978–1986 derived from satellite and in situ data / O. V. Kopelevich [et al.] // Journal of Marine Systems. 2002. Vol. 36, iss. 3–4. P. 145−160. doi:10.1016/S0924-7963(02)00184-7

3. Erlov N. G. Optika morya. L. : Gidrometizdat, 1980. 248 s.

4. Kirk J. T. O. Light and photosynthesis in aquatic ecosystems. 3d edition. Cambridge : Cambridge University Press, 2011. 662 p.

5. Gordon H. R., Wang M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm // Applied Optics. 1994. Vol. 33, iss. 3. P. 443−452. doi:10.1364/ao.33.000443

6. Sravnenie standartnykh produktov so spektroradiometrov MODIS Aqua/Terra i VIIRS s rezul'tatami bioopticheskikh izmerenii v pribrezhnykh vodakh Sevastopolya / E. Yu. Skorokhod [i dr.] // Pont Evksinskii – 2019 : materialy XI Vserossiiskoi nauchno-prakticheskoi konferentsii molodykh uchenykh po problemam vodnykh ekosistem, posvyashchennoi pamyati d. b. n., prof. S. B. Gulina, g. Sevastopol', 23–27 sentyabrya 2019 g. Sevastopol', 2019. S. 134–135.

7. Jeffrey S. W., Humphrey G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton // Biochemie und Physiology der Pflanzen. 1975. Vol. 167, iss. 2. P. 191–194.

8. Roesler C. S. In Situ Bio-Optical Observations on NERACOOS Buoy A01 (2005–2017): multichannel calibrated chlorophyll fluorescence, turbidity, and multispectral incident irradiance and upwelling radiance. Boston : Massachusetts Water Resources Authority, 2018. 19 p.

9. Twardowski M., Röttgers R., Stramski D. The absorption Coefficient, An Overview // IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation. Dartmouth, NS, Canada, 2018. Vol. 1.0 : Inherent Optical Property Measurements and Protocols: Absorption Coefficient. Chapter 1. P. 1–17. http://dx.doi.org/10.25607/OBP-119

10. Estimation of the spectral absorption coefficients of phytoplankton in the sea / M. Kishino [et al.] // Bulletin of Marine Science. 1985. Vol. 37, no. 2. P. 634–642.

11. Tassan S., Ferrari G. M. An alternative approach to absorption measurements of aquatic particles retained on filters // Limnology and Oceanography. 1995. Vol. 40, iss. 8. P. 1358–1368. https://doi.org/10.4319/lo.1995.40.8.1358

12. Ocean color chlorophyll algorithms for SeaWiFS / J. E. O’Reilly [et al.] // Journal of Geophysical Research: Oceans. 1998. Vol. 103, iss. C11. P. 24937–24953. https://doi.org/10.1029/98JC02160

13. Hu C., Lee Z., Franz B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on the three-band reflectance difference // Journal of Geophysical Research: Oceans. 2012. Vol. 117, iss. C1. C01011. doi:10.1029/2011JC007395

14. Retrieving marine inherent optical properties from satellites using temperature and salinitydependent backscattering by seawater / P. J. Werdell [et al.] // Optics Express. 2013. Vol. 21, iss. 26. P. 32611–32622. doi:10.1364/OE.21.032611

15. Generalized ocean color inversion model for retrieving marine inherent optical properties / P. J. Werdell [et al.] // Applied Optics. 2013. Vol. 52, iss. 10. P. 2019–2037. http://doi.org/10.1364/ao.52.002019

16. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization / A. Bricaud [et al.] // Journal of Geophysical Research: Oceans. 1995. Vol. 100, iss. C7. P. 13321–13332. doi:10.1029/95JC00463

17. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models / A. Bricaud [et al.] // Journal of Geophysical Research: Oceans. 1998. Vol. 103, iss. C13. P. 31033–31044.

18. Cleveland J. S. Regional models for phytoplankton absorption as a function of chlorophyll a concentration // Journal of Geophysical Research: Oceans. 1995. Vol. 100, iss. C7. P. 13333–13344. https://doi.org/10.1029/95JC00532

19. Light absorption properties of southeastern Bering Sea waters: Analysis, parameterization and implications for remote sensing / P. Naik [et al.] // Remote Sensing of Environment. 2013. Vol. 134. P. 120–134. doi:10.1016/j.rse.2013.03.004

20. Light Absorption by Phytoplankton in the Upper Mixed Layer of the Black Sea: Seasonality and Parametrization / T. Churilova [et al.] // Frontiers in Marine Science. 2017. Vol. 4. 90. doi:10.3389/fmars.2017.00090

21. Dynamics in pigment concentration and light absorption by phytoplankton, non-algal particles and colored dissolved organic matter in the Black Sea coastal waters (near Sevastopol) / T. Efimova [et al.] // Proceedings of SPIE. 2018. Vol. 10833 : 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 108336C. doi:10.1117/12.2504657

22. Suslin V., Churilova T. A regional algorithm for separating light absorption by chlorophyll-a and coloured detrital matter in the Black Sea, using 480–560 nm bands from ocean colour scanners // International Journal of Remote Sensing. 2016. Vol. 37, iss. 18. P. 4380–4400. doi:10.1080/01431161.2016.1211350

23. Phytoplankton absorption predicts patterns in primary productivity in Australian coastal shelf waters / C. M. Robinson [et al.] // Estuarine, Coastal and Shelf Science. 2017. Vol. 192. P. 1−16. doi:10.1016/j.ecss.2017.04.12

24. Annual variability in light absorption by particles and colored dissolved organic matter in the Crimean coastal waters (the Black Sea) / T. Churilova [et al.] // Proceedings of SPIE. 2017. Vol. 10466 : 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 104664B. doi:10.1117/12.2288339

25. Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms / M. Darecki [et al.] // Continental Shelf Research. 2003. Vol. 23, iss. 3−4. P. 237–250. doi:10.1016/s0278-4343(02)00222-4

26. Light absorption properties and absorption budget of Southeast Pacific waters / A. Bricaud [et al.] // Journal of Geophysical Research: Oceans. 2010. Vol. 115, iss. C8. C08009. doi:10.1029/2009JC005517

27. Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance / J. Campbell [et al.] // Global Biogeochemical Cycles. 2002. Vol. 16, iss. 3. P. 9-1–9-15. doi:10.1029/2001GB001444

28. Reanaliz dolgovremennykh ryadov izmeneniya biomassy fitoplanktona v otkrytoi chasti Chernogo morya po rezul'tatam naturnykh i sputnikovykh nablyudenii / O. V. Krivenko [i dr.] // Ekologicheskaya bezopasnost' pribrezhnoi i shel'fovoi zon i kompleksnoe ispol'zovanie resursov shel'fa. Sevastopol' : MGI, 2012. Vyp. 26, t. 2. S. 185–194.

29. The Effect of Optical Properties on Secchi Depth and Implications for Eutrophication Management / E. T. Harvey [et al.] // Frontiers in Marine Science. 2019. Vol. 5. 496. doi:10.3389/fmars.2018.00496

30. Markager S., Vincent W. F. Light absorption by phytoplankton: development of a matching parameter for algal photosynthesis under different spectral regimes // Journal of Plankton Research. 2001. Vol. 23, iss. 12. P. 1373–1384. https://doi.org/10.1093/plankt/23.12.1373

31. Bracher A. U., Tilzer M. M. Underwater light field and phytoplankton absorbance in different surface water masses of the Atlantic sector of the Southern Ocean // Polar Biology. 2001. Vol. 24, iss. 9. P. 687–696. https://doi.org/10.1007/s003000100269

32. «Tsvetenie» fitoplanktona i fotosinteticheski aktivnaya radiatsiya v pribrezhnykh vo- dakh / T. Ya. Churilova [i dr.] // Zhurnal prikladnoi spektroskopii. 2019. T. 86, № 6. S. 976−985.

33. Morel A., Prieur L. Analysis of variations in ocean color // Limnology and Oceanography. 1977. Vol. 22, iss. 4. P. 709−722. https://doi.org/10.4319/lo.1977.22.4.0709

34. Phytoplankton light absorption in the deep chlorophyll maximum layer of the Black Sea / T. Churilova [et al.] // European Journal of Remote Sensing. 2019. Vol. 52, iss. sup. 1. P. 123−136. doi:10.1080/22797254.2018.1533389