Журналов:     Статей:        

Морской гидрофизический журнал. 2019; 35: 171-184

Сезонная изменчивость суточного хода температуры поверхностного слоя Черного моря по данным сканера SEVIRI

Рубакина В. А., Кубряков А. А., Станичный С. В.

https://doi.org/10.22449/0233-7584-2019-2-171-184

Аннотация

Введение. Суточные изменения температуры поверхности моря влияют на тепло- и газообмен океана с атмосферой, стратификацию и вертикальное перемешивание в верхнем слое.

Материалы и методы. Используются данные сканера SEVIRI за 2015 г. о температуре поверхностного слоя Черного моря с дискретностью 1 ч.

Анализ результатов. Прогрев верхнего слоя наблюдается с 6:00 до максимума температуры в 17:00, а охлаждение − с 19:00 до минимума в 5:00 следующего утра. Наибольшие средние суточные отклонения температуры поверхности моря от среднемесячных значений наблюдались в весенне-летний период (± 0,8°С), наименьшие – в осенне-зимний (± 0,1−0,2°С). В отдельных областях амплитуда суточного хода температуры поверхности моря превышала 5°С и достигала экстремально высоких значений 7−7,2°С. Эти интенсивные события дневного прогрева связаны со штилевыми условиями, которые наиболее часто наблюдаются в мае. Наибольшие амплитуды суточного хода температуры наблюдаются в юго-восточном районе и в прибрежной части юго-западного района Черного моря. Такое пространственное распределение связано с присутствием зоны ветровой тени, которую формируют Кавказские и Понтийские горы.

Обсуждение и заключение. В представленной работе на основе высокочастотных измерений радиометра SEVIRI изучены особенности пространственной и сезонной изменчивости суточного хода температуры поверхности Черного моря и ее связь с ветровыми характеристиками в различные сезоны. 

Список литературы

1. Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extreme / E. P. Meredith [et al.] // Nature Geoscience. 2015. Vol. 8, no. 8. P. 615–619. doi:10.1038/ngeo2483

2. Ефимов В. В., Барабанов В. С. Бризовая циркуляция в Черноморском регионе // Морской гидрофизический журнал. 2009. № 5. С. 23–36. URL: http://мгфж.рф/images/files/2009/05/200905_02.pdf (дата обращения: 15.05.2018).

3. Efimov V. V., Krupin A. V. Breeze circulation in the Black Sea region // Russian Meteorology and Hydrology. 2016. Vol. 41, iss. 4. P. 240–246. https://doi.org/10.3103/S1068373916040026

4. The diurnal cycle of sea-surface temperature and estimation of the heat budget of the Mediterranean Sea / S. Marullo [et al.] // Journal of Geophysical Research: Oceans. 2016. Vol. 121, iss. 11. P. 8351–8367. https://doi.org/10.1002/2016JC012192

5. Does direct impact of SST on short wind waves matter for scatterometry? / S. A. Grodsky [et al.] // Geophysical Research Letters. 2012. Vol. 39, iss. 12. P. 1–6. https://doi.org/10.1029/2012GL052091

6. The Aquarius salinity retrieval algorithm / T. Meissner [et al.] // 2012 IEEE International Geoscience and Remote Sensing Symposium: Proceedings. IEEE, 2012. P. 386–388. doi:10.1109/IGARSS.2012.6351557

7. A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave / Imager (SSM/I) observations / T. J. Greenwald [et al.] // Journal of Geophysical Research: Atmospheres. 1993. Vol. 98, iss. D10. Р. 18471–18488. https://doi.org/10.1029/93JD00339

8. Castro S. L., Wick G. A., Buck J. J. H. Comparison of diurnal warming estimates from unpumped Argo data and SEVIRI satellite observations // Remote Sensing of Environment. 2014. Vol. 140. P. 789–799. https://doi.org/10.1016/j.rse.2013.08.042

9. Gentemann C. L., Minnett P. J., Le Borgne P., Merchant C. J. Multi-satellite measurements of large diurnal warming events // Geophysical Research Letters. 2008. Vol. 35, iss. 22. L22602. https://doi.org/10.1029/2008GL035730

10. A diurnal-cycle resolving sea surface temperature product for the tropical Atlantic / S. Marullo [et al.] // Journal of Geophysical Research: Oceans. 2010. Vol. 115, iss. C5. C05011. https://doi.org/10.1029/2009JC005466

11. Diurnal warm-layer events in the western Mediterranean and European shelf seas / C. J. Merchant [et al.] // Geophysical Research Letters. 2008. Vol. 35, iss. 4. L04601. https://doi.org/10.1029/2007GL033071

12. An empirical model for the statistics of sea surface diurnal warming / M. J. Filipiak [et al.] // Ocean Science. 2012. Vol. 8, iss. 2. P. 197–209. https://doi.org/10.5194/os-8-197-2012

13. Karagali I., Høyer J. L. Characterisation and quantification of regional diurnal SST cycles from SEVIRI // Ocean Science. 2014. Vol. 10, iss. 5. P. 745–758. https://doi.org/10.5194/os10-745-2014

14. Акимов Е. А., Станичный С. В., Полонский А. Б. Использование данных сканера SEVIRI для оценки температуры поверхностного слоя Черного моря // Морской гидрофизический журнал. 2014. № 6. C. 37–46. URL: https://elibrary.ru/item.asp?id=22760986 (дата обращения: 15.11.2018).

15. Saunders P. M. The temperature at the ocean-air interface // Journal of the Atmospheric Sciences. 1967. Vol. 24, no. 3. P. 269–273. https://doi.org/10.1175/1520-0469(1967)0242.0.CO;2

16. The ERA Interim reanalysis: configuration and performance of the data assimilation system // Quarterly Journal of the royal meteorological society. 2011. Vol. 137, iss. 656. P. 553–597. https://doi.org/10.1002/qj.828

17. Comparing satellite and meteorological data on wind velocity over the Black Sea / A. V. Garmashov [et al.] // Izvestiya, Atmospheric and Oceanic Physics. 2016. Vol. 52, iss. 3. P. 309–316. https://doi.org/10.1134/S000143381603004X

18. Efimov V. V., Anisimov A. E. Climatic parameters of wind-field variability in the Black Sea region: Numerical reanalysis of regional atmospheric circulation // Izvestiya, Atmospheric and Oceanic Physics. 2011. Vol. 47, iss. 3. P. 350–361. https://doi.org/10.1134/S0001433811030030

19. Гидрометеорологические условия морей Украины. Том 2: Черное море / Ю. П. Ильин [и др.]. Севастополь : ЭКОСИ-Гидрофизика, 421 с. URL: https://sogoin.ru/wpcontent/files/gumt2.PDF (дата обращения: 15.11.2018).

20. Formation of the coastal current in the Black Sea caused by spatially inhomogeneous wind forcing upon the upper quasi-homogeneous layer / A. G. Zatsepin [et al.] // Oceanology. 2008. Vol. 48, iss. 2. P. 159–174. https://doi.org/10.1134/S0001437008020021

21. Efimov V. V., Barabanov V. S. Anomalies of the Black Sea surface temperature and modeling of intense cold anomaly formation in September 2014 // Izvestiya, Atmospheric and Oceanic Physics. 2017. Vol. 53, iss. 3. P. 343–351. https://doi.org/10.1134/S0001433817030057

22. Ефимов В. В., Комаровская О. И. Формирование крупномасштабной холодной аномалии поверхностной температуры Черного моря по спутниковым данным // Современные проблемы дистанционного зондирования Земли из космоса. 2017. Т. 14, № 7. С. 238–249. doi: 10.21046/2070-7401-2017-14-7-238-249

23. Observations of a quasi-tropical cyclone over the Black Sea / V. V. Efimov [et al.] // Russian Meteorology and Hydrology. 2008. Vol. 33, iss. 4. P. 233–239. https://doi.org/10.3103/S1068373908040067

24. Clayson C. A., Bogdanoff A. S. The effect of diurnal sea surface temperature warming on climatological air – sea fluxes // Journal of Climate. 2013. Vol. 26, no. 8. P. 2546–2556. https://doi.org/10.1175/JCLI-D-12-00062.1

Morskoy Gidrofizicheskiy Zhurnal. 2019; 35: 171-184

Seasonal Variability of the Diurnal Cycle of the Black Sea Surface Temperature from the SEVIRI Satellite Measurements

Rubakina V. A., Kubryakov A. A., Stanichny S. V.

https://doi.org/10.22449/0233-7584-2019-2-171-184

Abstract

Introduction. Heat and gas exchange between the ocean and the atmosphere, and stratification and vertical mixing in the sea upper layer are subjected to the diurnal variations of the sea surface temperature.

Data and methods. The data obtained by the scanner SEVIRI in 2015 (time resolution is 1 hour) are used to study seasonal and spatial variability of the sea surface temperature diurnal cycle in the Black Sea.

Results. During a day, the upper layer heats from 6:00 to 17:00 (the highest temperature) and then cools from 19:00 to 5:00 (the next morning) up to its minimum. The largest diurnal deviations of the sea surface temperature from the average seasonal ones are observed in spring-summer (± 0.8°С), whereas the lowest deviations are typical of the autumn-winter period (± 0.1−0.2°С). A few cases when the diurnal heating is high were detected and analyzed. In some regions, the amplitude of the sea surface temperature diurnal cycle exceeded 5°C and reached its extreme values 7–7.2°C. The low wind speed (less than 4 m/s) is an important reason of these extreme events. The most often intensive diurnal heating is due to the low wind conditions which are highly frequently observed in May. In winter the values of the sea surface temperature diurnal amplitude are minimum and do not exceed 1.5°C. Since April, they sharply increase and reach their maximum 2.4°C in May. The most significant sea surface temperature diurnal amplitude is observed in the Black Sea southeast region and in its southwest coastal part. Such spatial distribution is a result of the wind shadow zone which is formed by the Caucasian and Pontic mountains.

Discussion and conclusion. The features of spatial and seasonal variability of the Black Sea surface temperature diurnal cycle, and its relation to the wind characteristics in different seasons are studied based on the SEVIRI scanner high-frequency measurements. 

References

1. Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extreme / E. P. Meredith [et al.] // Nature Geoscience. 2015. Vol. 8, no. 8. P. 615–619. doi:10.1038/ngeo2483

2. Efimov V. V., Barabanov V. S. Brizovaya tsirkulyatsiya v Chernomorskom regione // Morskoi gidrofizicheskii zhurnal. 2009. № 5. S. 23–36. URL: http://mgfzh.rf/images/files/2009/05/200905_02.pdf (data obrashcheniya: 15.05.2018).

3. Efimov V. V., Krupin A. V. Breeze circulation in the Black Sea region // Russian Meteorology and Hydrology. 2016. Vol. 41, iss. 4. P. 240–246. https://doi.org/10.3103/S1068373916040026

4. The diurnal cycle of sea-surface temperature and estimation of the heat budget of the Mediterranean Sea / S. Marullo [et al.] // Journal of Geophysical Research: Oceans. 2016. Vol. 121, iss. 11. P. 8351–8367. https://doi.org/10.1002/2016JC012192

5. Does direct impact of SST on short wind waves matter for scatterometry? / S. A. Grodsky [et al.] // Geophysical Research Letters. 2012. Vol. 39, iss. 12. P. 1–6. https://doi.org/10.1029/2012GL052091

6. The Aquarius salinity retrieval algorithm / T. Meissner [et al.] // 2012 IEEE International Geoscience and Remote Sensing Symposium: Proceedings. IEEE, 2012. P. 386–388. doi:10.1109/IGARSS.2012.6351557

7. A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave / Imager (SSM/I) observations / T. J. Greenwald [et al.] // Journal of Geophysical Research: Atmospheres. 1993. Vol. 98, iss. D10. R. 18471–18488. https://doi.org/10.1029/93JD00339

8. Castro S. L., Wick G. A., Buck J. J. H. Comparison of diurnal warming estimates from unpumped Argo data and SEVIRI satellite observations // Remote Sensing of Environment. 2014. Vol. 140. P. 789–799. https://doi.org/10.1016/j.rse.2013.08.042

9. Gentemann C. L., Minnett P. J., Le Borgne P., Merchant C. J. Multi-satellite measurements of large diurnal warming events // Geophysical Research Letters. 2008. Vol. 35, iss. 22. L22602. https://doi.org/10.1029/2008GL035730

10. A diurnal-cycle resolving sea surface temperature product for the tropical Atlantic / S. Marullo [et al.] // Journal of Geophysical Research: Oceans. 2010. Vol. 115, iss. C5. C05011. https://doi.org/10.1029/2009JC005466

11. Diurnal warm-layer events in the western Mediterranean and European shelf seas / C. J. Merchant [et al.] // Geophysical Research Letters. 2008. Vol. 35, iss. 4. L04601. https://doi.org/10.1029/2007GL033071

12. An empirical model for the statistics of sea surface diurnal warming / M. J. Filipiak [et al.] // Ocean Science. 2012. Vol. 8, iss. 2. P. 197–209. https://doi.org/10.5194/os-8-197-2012

13. Karagali I., Høyer J. L. Characterisation and quantification of regional diurnal SST cycles from SEVIRI // Ocean Science. 2014. Vol. 10, iss. 5. P. 745–758. https://doi.org/10.5194/os10-745-2014

14. Akimov E. A., Stanichnyi S. V., Polonskii A. B. Ispol'zovanie dannykh skanera SEVIRI dlya otsenki temperatury poverkhnostnogo sloya Chernogo morya // Morskoi gidrofizicheskii zhurnal. 2014. № 6. C. 37–46. URL: https://elibrary.ru/item.asp?id=22760986 (data obrashcheniya: 15.11.2018).

15. Saunders P. M. The temperature at the ocean-air interface // Journal of the Atmospheric Sciences. 1967. Vol. 24, no. 3. P. 269–273. https://doi.org/10.1175/1520-0469(1967)0242.0.CO;2

16. The ERA Interim reanalysis: configuration and performance of the data assimilation system // Quarterly Journal of the royal meteorological society. 2011. Vol. 137, iss. 656. P. 553–597. https://doi.org/10.1002/qj.828

17. Comparing satellite and meteorological data on wind velocity over the Black Sea / A. V. Garmashov [et al.] // Izvestiya, Atmospheric and Oceanic Physics. 2016. Vol. 52, iss. 3. P. 309–316. https://doi.org/10.1134/S000143381603004X

18. Efimov V. V., Anisimov A. E. Climatic parameters of wind-field variability in the Black Sea region: Numerical reanalysis of regional atmospheric circulation // Izvestiya, Atmospheric and Oceanic Physics. 2011. Vol. 47, iss. 3. P. 350–361. https://doi.org/10.1134/S0001433811030030

19. Gidrometeorologicheskie usloviya morei Ukrainy. Tom 2: Chernoe more / Yu. P. Il'in [i dr.]. Sevastopol' : EKOSI-Gidrofizika, 421 s. URL: https://sogoin.ru/wpcontent/files/gumt2.PDF (data obrashcheniya: 15.11.2018).

20. Formation of the coastal current in the Black Sea caused by spatially inhomogeneous wind forcing upon the upper quasi-homogeneous layer / A. G. Zatsepin [et al.] // Oceanology. 2008. Vol. 48, iss. 2. P. 159–174. https://doi.org/10.1134/S0001437008020021

21. Efimov V. V., Barabanov V. S. Anomalies of the Black Sea surface temperature and modeling of intense cold anomaly formation in September 2014 // Izvestiya, Atmospheric and Oceanic Physics. 2017. Vol. 53, iss. 3. P. 343–351. https://doi.org/10.1134/S0001433817030057

22. Efimov V. V., Komarovskaya O. I. Formirovanie krupnomasshtabnoi kholodnoi anomalii poverkhnostnoi temperatury Chernogo morya po sputnikovym dannym // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2017. T. 14, № 7. S. 238–249. doi: 10.21046/2070-7401-2017-14-7-238-249

23. Observations of a quasi-tropical cyclone over the Black Sea / V. V. Efimov [et al.] // Russian Meteorology and Hydrology. 2008. Vol. 33, iss. 4. P. 233–239. https://doi.org/10.3103/S1068373908040067

24. Clayson C. A., Bogdanoff A. S. The effect of diurnal sea surface temperature warming on climatological air – sea fluxes // Journal of Climate. 2013. Vol. 26, no. 8. P. 2546–2556. https://doi.org/10.1175/JCLI-D-12-00062.1