Журналов:     Статей:        

Морской гидрофизический журнал. 2020; 36: 407-423

Резонансное возбуждение короткопериодных внутренних волн баротропными сейшами в покрытом льдом мелководном озере

Волков С. Ю., Богданов С. Р., Здоровеннов Р. Э., Пальшин Н. И., Здоровеннова Г. Э., Ефремова Т. В., Гавриленко Г. Г., Тержевик А. Ю.

https://doi.org/10.22449/0233-7584-2020-4-407-423

Аннотация

Цель. Экспериментальные данные свидетельствуют о том, что процессы тепломассопереноса в покрытых льдом мелководных озерах не сводятся лишь к молекулярному уровню и, несмотря на их относительно низкую интенсивность, в основном определяются перемежающейся турбулентностью, природа и механизм генерации которой изучены недостаточно. В работе рассматривается один из таких механизмов, связанный с резонансным возбуждением коротких внутренних волн баротропными сейшами.

Методы и результаты. В качестве экспериментальной базы использовались данные зимних измерений температуры в мелководном озере. Анализ динамики температурных профилей в первые недели после ледостава выявил аномально высокие значения эффективного коэффициента температуропроводности. В спектрах температурных пульсаций явно прослеживался пик, соответствующий основной моде баротропных сейш. Существенная неоднородность амплитуды температурных пульсаций по глубине, противофазные колебания в соседних слоях указывали на присутствие внутренних волн. Предложен механизм переноса энергии от баротропных сейш к внутренним волнам, аналогичный «конверсии приливов» (tidal conversion) в океанологии. В результате получены оценки для потока энергии, скорости диссипации и эффективного коэффициента температуропроводности. 

Выводы. Внутренние волны могут играть существенную роль в процессах перемешивания и переноса тепла в покрытых льдом озерах. При этом баротропные сейши, возникающие при атмосферных барических возмущениях, играют роль промежуточного энергетического резервуара и способны порождать короткие внутренние волны в результате резонансного взаимодействия с донной топографией. Интенсивность внутренних волн существенно зависит от амплитуды баротропных сейш, частоты Брента – Вяйсяля и особенностей рельефа дна. 

Список литературы

1. Physics of seasonally ice-covered lakes: a review / G. Kirillin [et al.] // Aquatic Sciences. 2012. Vol. 74. P. 659–682. https://doi.org/10.1007/s00027-012-0279-y

2. The thermal structure of a shallow lake in early winter / M. P. Petrov [et al.] // Water Re-sources. 2006. Vol. 33. P. 135–143. https://doi.org/10.1134/S0097807806020035

3. Ellis C. R., Stefan H. G., Gu R. Water temperature dynamics and heat transfer beneath the ice cover of a lake // Limnology and Oceanography. 1991. Vol. 36, iss. 2. P. 324–334. doi:10.4319/lo.1991.36.2.0324

4. Malm J. Bottom buoyancy layer in an ice-covered lakes // Water Resources Research. 1998. V. 34, iss. 11. P. 2981–2993. http:doi.org/10.1029/98WR01904

5. Bengtsson L. Mixing in ice-covered lakes // Hydrobiologia. 1996, vol. 322, P. 91–97. https://doi.org/10.1007/BF00031811

6. Зырянов В. Н. Сейши подо льдом // Водные ресурсы. 2011. Т. 38, вып. 3. С. 259–271.

7. Field study on currents in a shallow, ice-covered lake / J. Malm [et al.] // Limnology and Oceanography. 1998. Vol. 43, iss. 7. P. 1669–1679. http://doi.org/10.4319/lo.1998.43.7.1669 8. Motion of water in an ice-covered shallow lake / M. P. Petrov [et al.] // Water Resources. 2007. Vol. 34. P. 113–122. https://doi.org/10.1134/S0097807807020017

8. Стурова И. В. Влияние ледяного покрова на колебания жидкости в замкнутом бассейне // Известия Российской академии наук. Физика атмосферы и океана. 2007. Т. 43, № 1. С. 128–135.

9. Garrett C., Munk W. Oceanic mixing by breaking internal waves // Deep Sea Research and Oceanographic Abstracts. 1972. Vol. 19, iss. 12. P. 823–832. https://doi.org/10.1016/0011-7471(72)90001-0

10. Bell T. H. Lee waves in stratified flows with simple harmonic time dependence // Journal of Fluid Mechanics. 1975. Vol. 67, iss. 4. P. 705–722. https://doi.org/10.1017/S0022112075000560

11. Llewellyn Smith S. G., Young W. R. Conversion of the Barotropic Tide // Journal of Physical Oceanography. 2002. Vol. 32, iss. 5. P. 1554–1566. https://doi.org/10.1175/1520-0485(2002)032<1554:COTBT>2.0.CO;2

12. Interannual variability of ice and snow cover of a small shallow lake / R. Zdorovennov [et al.] // Estonian Journal of Earth Sciences. 2013. Vol. 62, iss. 1. P. 26–32. doi:10.3176/earth.2013.03

13. Field investigation of winter thermo- and hydrodinamics in a small Karelian lake / L. Bengtsson [et al.] // Limnology and Oceanography. 1996. Vol. 41, iss. 7. P. 1502–1513. doi:10.4319/lo.1996.41.7.1502

14. Short Internal Waves in a Small Ice-Covered Lake / N. Palshin [et al.] // Water Resources. 2018. Vol. 45, iss. 5. P. 695 – 705. doi:10.1134/S0097807818050159

15. Garrett C., Kunze E. Internal Tide Generation in the Deep Ocean // Annual Review of Fluid Mechanics. 2007. Vol. 39. P. 57–87. https://doi.org/10.1146/annurev.fluid.39.050905.110227

16. Bühler O., Muller C. J. Instability and focusing of internal tides in the deep ocean // Journal of Fluid Mechanics. 2007. Vol. 588. P. 1–28. https://doi.org/10.1017/S0022112007007410

17. Balmforth N. J., Ierley G. R., Young W. R. Tidal Conversion by Subcritical Topography // Journal of Physical Oceanography. 2002. Vol. 32, iss. 10. P. 2900–2914. https://doi.org/10.1175/1520-0485(2002)032<2900:TCBST>2.0.CO;2

18. Bell T. H. Topographically generated internal waves in the open ocean // Journal of Geophysical Research. 1975. Vol. 80, iss. 3. P. 320–327. doi: 10.1029/JC080i003p00320

19. St. Laurent L. C., Garrett C. The Role of Internal Tides in Mixing the Deep Ocean // Journal of Physical Oceanography. 2002. Vol. 32, iss. 10. P. 2882–2899. https://doi.org/10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2

20. Jayne S. R., St. Laurent L. C., Gille S. T. Connections between ocean bottom topogra-phy and Earth’s climate // Oceanography. 2004. Vol. 17, no. 1. P. 65–74. http://dx.doi.org/10.5670/oceanog.2004.68

21. Håkanson L. On lake bottom dynamics – the energy-topography factor // Canadian Journal of Earth Sciences. 1981. Vol. 18, no. 5. P. 899–909. https://doi.org/10.1139/e81-086

22. Wilson B. W. Seiches // Advances in Hydroscience. Elsevier, 1972. Vol. 8. P. 1–94. https://doi.org/10.1016/B978-0-12-021808-0.50006-1 24. Boundary mixing and nutrient fluxes in Mono Lake, California / S. MacIntyre [et al.] // Limnology and Oceanography. 1999. Vol. 44, iss. 3. P. 512–529. doi:10.4319/lo.1999.44.3.0512

23. Turbulent mixing induced by nonlinear internal waves in Mono Lake, California / S. Mac-Intyre [et al.] // Limnology and Oceanography. 2009. Vol. 54, iss. 6. P. 2255–2272. doi:10.4319/lo.2009.54.6.2255

24. Internal wave-driven transport of fluid away from the boundary of a lake / D. J. Wain [et al.] // Limnology and Oceanography. 2013. Vol. 58, iss. 2. P. 429–442. doi:10.4319/lo.2013.58.2.0429

25. Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) / K. L. Sheen [et al.] // Journal of Geophysical Research: Oceans. 2013. Vol. 118, iss. 6. P. 2774–2792. doi:10.1002/jgrc.20217

26. MacIntyre S. Vertical mixing in a shallow, eutrophic lake: Possible consequences for the light climate of phytoplankton // Limnology and Oceanography. 1993. Vol. 38, iss. 4. P. 798–817. doi:10.4319/lo.1993.38.4.0798

27. Wüest A., Piepke G., Van Senden D. C. Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind-forced stratified waters // Limnology and Oceanography. 2000. Vol. 45, iss. 6. P. 1388–1400. DOI:10.4319/lo.2000.45.6.1388

28. Wüest A., Lorke A. Small-Scale Hydrodynamics in Lakes // Annual Review of Fluid Mechanics. 2003. Vol. 35. P. 373–412. https://doi.org/10.1146/annurev.fluid.35.101101.161220

29. Smyth W. D., Moum J. N. Length scales of turbulence in stably stratified mixing layers // Physics of Fluids. 2000. Vol. 12. 1327. https://doi.org/10.1063/1.870385 32. Dillon T. M. Vertical overturns: A comparison of Thorpe and Ozmidov length scales // Journal of Geophysical Research: Oceans. 1982. Vol. 87, iss. C12. P. 9601–9613. doi:10.1029/JC087iC12p09601

30. Osborn T. R. Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements // Journal of Physical Oceanography. 1980. Vol. 10, iss. 1. P. 83–89. https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2

31. Efficiency of turbulent mixing in the abyssal ocean circulation / A. Mashayek [et al.] // Geophysical Research Letters. 2017. Vol. 44, iss. 12. P. 6296–6306. doi:10.1002/2016GL072452

32. Ulloa H. N., Wüest A., Bouffard D. Mechanical energy budget and mixing efficiency for a radiatively heated ice-covered waterbody // Journal of Fluid Mechanics. 2018. Vol. 852. R1. doi:10.1017/jfm.2018.587

33. Maffioli A., Brethouwer G., Lindborg E. Mixing efficiency in stratified turbulence // Journal of Fluid Mechanics. 2016. Vol. 794. R3. doi:10.1017/jfm.2016.206

34. Khatiwala S. Generation of internal tides in an ocean of finite depth: analytical and numerical calculations // Deep Sea Research. Part I. 2003. Vol. 50, iss.1. P. 3–21. https://doi.org/10.1016/S0967-0637(02)00132-2

35. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield / A. Wörman [et al.] // Geophysical Research Letters. 2007. Vol. 34, iss. 7. L07402. doi:10.1029/2007GL029426

Morskoy Gidrofizicheskiy Zhurnal. 2020; 36: 407-423

Resonance Generation of Short Internal Waves by the Barotropic Seiches in an Ice-Covered Shallow Lake

Volkov S. Yu., Bogdanov S. R., Zdorovennov R. E., Palshin N. I., Zdorovennova G. E., Efremova T. V., Gavrilenko G. G., Terzhevik A. Yu.

https://doi.org/10.22449/0233-7584-2020-4-407-423

Abstract

Purpose. The observation measurements testify the fact that heat and mass transfer processes in the shallow ice-covered lakes are not limited to the molecular diffusion only. In particular, the effective thermal diffusivity exceeds the molecular one by up to a few orders of magnitude. Now it is widely accepted that the transfer processes, in spite of their low intensity, are controlled by intermittent turbulence. At the same time, its nature and generation mechanism are still studied insufficiently. The paper represents one of such mechanisms associated with resonance generation of short internal waves by the barotropic seiches. 

Methods and Results. The temperature measurements in a shallow lake in winter were used as an experimental base. Having been analyzed, the temperature profiles’ dynamics observed during a few weeks after freezing revealed the anomalous values of thermal diffusivity. At that the temperature pulsations’ spectra clearly demonstrate the peak close to the main mode of barotropic seiches. Counter-phase oscillations at the different depths and pronounced heterogeneity of the amplitudes of temperature pulsations over depth indicate presence of internal waves. Based on these data, the mechanism of energy transfer from the barotropic seiches to the internal waves similar to the “tidal conversion” (the latter governs resonance generation of internal tides in the ocean), is proposed. The expressions for heat flux, energy dissipation rate and effective thermal diffusivity are derived. 

Conclusions. Internal waves can play an essential role in the processes of interior mixing and heat transfer in the ice-covered lakes. Though direct wind-induced turbulence production is inhibited, baric perturbations in the atmosphere can give rise to barotropic seiches, which play the role of an intermediate energy reservoir and can generates short resonant internal waves resulted from interaction with the undulate lake floor. The internal wave field parameters strongly depend on the barotropic seiche amplitudes, buoyancy frequency and the bottom topography features. 

References

1. Physics of seasonally ice-covered lakes: a review / G. Kirillin [et al.] // Aquatic Sciences. 2012. Vol. 74. P. 659–682. https://doi.org/10.1007/s00027-012-0279-y

2. The thermal structure of a shallow lake in early winter / M. P. Petrov [et al.] // Water Re-sources. 2006. Vol. 33. P. 135–143. https://doi.org/10.1134/S0097807806020035

3. Ellis C. R., Stefan H. G., Gu R. Water temperature dynamics and heat transfer beneath the ice cover of a lake // Limnology and Oceanography. 1991. Vol. 36, iss. 2. P. 324–334. doi:10.4319/lo.1991.36.2.0324

4. Malm J. Bottom buoyancy layer in an ice-covered lakes // Water Resources Research. 1998. V. 34, iss. 11. P. 2981–2993. http:doi.org/10.1029/98WR01904

5. Bengtsson L. Mixing in ice-covered lakes // Hydrobiologia. 1996, vol. 322, P. 91–97. https://doi.org/10.1007/BF00031811

6. Zyryanov V. N. Seishi podo l'dom // Vodnye resursy. 2011. T. 38, vyp. 3. S. 259–271.

7. Field study on currents in a shallow, ice-covered lake / J. Malm [et al.] // Limnology and Oceanography. 1998. Vol. 43, iss. 7. P. 1669–1679. http://doi.org/10.4319/lo.1998.43.7.1669 8. Motion of water in an ice-covered shallow lake / M. P. Petrov [et al.] // Water Resources. 2007. Vol. 34. P. 113–122. https://doi.org/10.1134/S0097807807020017

8. Sturova I. V. Vliyanie ledyanogo pokrova na kolebaniya zhidkosti v zamknutom basseine // Izvestiya Rossiiskoi akademii nauk. Fizika atmosfery i okeana. 2007. T. 43, № 1. S. 128–135.

9. Garrett C., Munk W. Oceanic mixing by breaking internal waves // Deep Sea Research and Oceanographic Abstracts. 1972. Vol. 19, iss. 12. P. 823–832. https://doi.org/10.1016/0011-7471(72)90001-0

10. Bell T. H. Lee waves in stratified flows with simple harmonic time dependence // Journal of Fluid Mechanics. 1975. Vol. 67, iss. 4. P. 705–722. https://doi.org/10.1017/S0022112075000560

11. Llewellyn Smith S. G., Young W. R. Conversion of the Barotropic Tide // Journal of Physical Oceanography. 2002. Vol. 32, iss. 5. P. 1554–1566. https://doi.org/10.1175/1520-0485(2002)032<1554:COTBT>2.0.CO;2

12. Interannual variability of ice and snow cover of a small shallow lake / R. Zdorovennov [et al.] // Estonian Journal of Earth Sciences. 2013. Vol. 62, iss. 1. P. 26–32. doi:10.3176/earth.2013.03

13. Field investigation of winter thermo- and hydrodinamics in a small Karelian lake / L. Bengtsson [et al.] // Limnology and Oceanography. 1996. Vol. 41, iss. 7. P. 1502–1513. doi:10.4319/lo.1996.41.7.1502

14. Short Internal Waves in a Small Ice-Covered Lake / N. Palshin [et al.] // Water Resources. 2018. Vol. 45, iss. 5. P. 695 – 705. doi:10.1134/S0097807818050159

15. Garrett C., Kunze E. Internal Tide Generation in the Deep Ocean // Annual Review of Fluid Mechanics. 2007. Vol. 39. P. 57–87. https://doi.org/10.1146/annurev.fluid.39.050905.110227

16. Bühler O., Muller C. J. Instability and focusing of internal tides in the deep ocean // Journal of Fluid Mechanics. 2007. Vol. 588. P. 1–28. https://doi.org/10.1017/S0022112007007410

17. Balmforth N. J., Ierley G. R., Young W. R. Tidal Conversion by Subcritical Topography // Journal of Physical Oceanography. 2002. Vol. 32, iss. 10. P. 2900–2914. https://doi.org/10.1175/1520-0485(2002)032<2900:TCBST>2.0.CO;2

18. Bell T. H. Topographically generated internal waves in the open ocean // Journal of Geophysical Research. 1975. Vol. 80, iss. 3. P. 320–327. doi: 10.1029/JC080i003p00320

19. St. Laurent L. C., Garrett C. The Role of Internal Tides in Mixing the Deep Ocean // Journal of Physical Oceanography. 2002. Vol. 32, iss. 10. P. 2882–2899. https://doi.org/10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2

20. Jayne S. R., St. Laurent L. C., Gille S. T. Connections between ocean bottom topogra-phy and Earth’s climate // Oceanography. 2004. Vol. 17, no. 1. P. 65–74. http://dx.doi.org/10.5670/oceanog.2004.68

21. Håkanson L. On lake bottom dynamics – the energy-topography factor // Canadian Journal of Earth Sciences. 1981. Vol. 18, no. 5. P. 899–909. https://doi.org/10.1139/e81-086

22. Wilson B. W. Seiches // Advances in Hydroscience. Elsevier, 1972. Vol. 8. P. 1–94. https://doi.org/10.1016/B978-0-12-021808-0.50006-1 24. Boundary mixing and nutrient fluxes in Mono Lake, California / S. MacIntyre [et al.] // Limnology and Oceanography. 1999. Vol. 44, iss. 3. P. 512–529. doi:10.4319/lo.1999.44.3.0512

23. Turbulent mixing induced by nonlinear internal waves in Mono Lake, California / S. Mac-Intyre [et al.] // Limnology and Oceanography. 2009. Vol. 54, iss. 6. P. 2255–2272. doi:10.4319/lo.2009.54.6.2255

24. Internal wave-driven transport of fluid away from the boundary of a lake / D. J. Wain [et al.] // Limnology and Oceanography. 2013. Vol. 58, iss. 2. P. 429–442. doi:10.4319/lo.2013.58.2.0429

25. Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) / K. L. Sheen [et al.] // Journal of Geophysical Research: Oceans. 2013. Vol. 118, iss. 6. P. 2774–2792. doi:10.1002/jgrc.20217

26. MacIntyre S. Vertical mixing in a shallow, eutrophic lake: Possible consequences for the light climate of phytoplankton // Limnology and Oceanography. 1993. Vol. 38, iss. 4. P. 798–817. doi:10.4319/lo.1993.38.4.0798

27. Wüest A., Piepke G., Van Senden D. C. Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind-forced stratified waters // Limnology and Oceanography. 2000. Vol. 45, iss. 6. P. 1388–1400. DOI:10.4319/lo.2000.45.6.1388

28. Wüest A., Lorke A. Small-Scale Hydrodynamics in Lakes // Annual Review of Fluid Mechanics. 2003. Vol. 35. P. 373–412. https://doi.org/10.1146/annurev.fluid.35.101101.161220

29. Smyth W. D., Moum J. N. Length scales of turbulence in stably stratified mixing layers // Physics of Fluids. 2000. Vol. 12. 1327. https://doi.org/10.1063/1.870385 32. Dillon T. M. Vertical overturns: A comparison of Thorpe and Ozmidov length scales // Journal of Geophysical Research: Oceans. 1982. Vol. 87, iss. C12. P. 9601–9613. doi:10.1029/JC087iC12p09601

30. Osborn T. R. Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements // Journal of Physical Oceanography. 1980. Vol. 10, iss. 1. P. 83–89. https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2

31. Efficiency of turbulent mixing in the abyssal ocean circulation / A. Mashayek [et al.] // Geophysical Research Letters. 2017. Vol. 44, iss. 12. P. 6296–6306. doi:10.1002/2016GL072452

32. Ulloa H. N., Wüest A., Bouffard D. Mechanical energy budget and mixing efficiency for a radiatively heated ice-covered waterbody // Journal of Fluid Mechanics. 2018. Vol. 852. R1. doi:10.1017/jfm.2018.587

33. Maffioli A., Brethouwer G., Lindborg E. Mixing efficiency in stratified turbulence // Journal of Fluid Mechanics. 2016. Vol. 794. R3. doi:10.1017/jfm.2016.206

34. Khatiwala S. Generation of internal tides in an ocean of finite depth: analytical and numerical calculations // Deep Sea Research. Part I. 2003. Vol. 50, iss.1. P. 3–21. https://doi.org/10.1016/S0967-0637(02)00132-2

35. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield / A. Wörman [et al.] // Geophysical Research Letters. 2007. Vol. 34, iss. 7. L07402. doi:10.1029/2007GL029426