Морской гидрофизический журнал. 2024; 40: 271-283
Временная изменчивость отношения концентраций бериллия-7 в дождевых осадках и в атмосфере в Севастопольском регионе
Аннотация
Цель. Выявить особенности временной изменчивости отношения концентрации бериллия-7 в дождевых осадках к его концентрации в атмосфере на сезонном и межгодовом временных интервалах в зависимости от количества и частоты выпадения осадков – цель настоящей работы.
Методы и результаты. Оценки отношения концентраций были получены на основе натурных данных о значениях концентраций 7Ве в атмосфере и осадках для периода 2012–2020 гг. С помощью дисперсионного анализа исследована взаимосвязь отношения концентраций с вариациями концентраций 7Ве в атмосфере и осадках. Корреляционным методом анализа изучена взаимосвязь отношения концентраций с количеством и частотой атмосферных осадков.
Выводы. Усредненные за сезон и за год отношения концентраций менялись в диапазонах 423–1286 и 508–919 соответственно. Среднее геометрическое значение отношения концентраций составило 719+227-173. На уровне достоверности 95 % внутригодовая изменчивость отношения концентраций отсутствует. В изменчивости среднегодовых значений отношения концентраций отмечается уменьшение в 2013 г. по сравнению с 2012 г. с 664 до 508, затем следует рост до 919 в 2016 г. и далее наблюдается снижение до 516 в 2020 г. Результаты дисперсионного анализа указывают на то, что многолетняя изменчивость усредненных за сезон и за год отношений концентраций обусловлена вариацией концентрации 7Ве в осадках на 90 и 74 % соответственно. В свою очередь, многолетняя изменчивость сезонных значений концентрации 7Ве в осадках обусловлена вариациями его концентрации в атмосфере (r = 0,64) и количества выпадающих осадков (r = –0,50). Связь годовых концентраций 7Ве в осадках с его концентрацией в атмосфере или с параметрами осадков не выявлена. Результаты корреляционного анализа показывают, что изменчивость параметров осадков (количество и частота) не оказывает статистически значимого на уровне достоверности 95 % влияния на изменчивость отношения концентраций на сезонном и годовом временных интервалах.
Список литературы
1. Lal D., Peters B. Cosmic ray produced radioactivity on the Earth // Kosmische strahlung II / Cosmic rays II / Ed. K. Sitte. Berlin ; Heidelberg : Springer, 1967. P. 551–612. doi: 10.1007/978-3-642-46079-1_7
2. A global dataset of atmospheric 7Be and 210Pb measurements: annual air concentration and depositional flux / F. Zhang [et al.] // Earth System Science Data. 2021. Vol. 13, iss. 6. P. 2963–2994. doi: 10.5194/essd-13-2963-2021
3. Ioannidou A. Activity size distribution of 7Be in association with trace metals in the urban area of the city of Thessaloniki, Greece // Atmospheric Environment. 2011. Vol. 45, iss. 6. P. 1286–1290. doi: 10.1016/j.atmosenv.2010.12.006
4. Kadko D., Landing W. M., Shelley R. U. A novel tracer technique to quantify the atmospheric flux of trace elements to remote ocean regions // Journal of Geophysical Research: Oceans. 2015. Vol. 120, iss. 2. P. 848–858. doi: 10.1002/2014JC010314
5. How well can we quantify dust deposition to the ocean? / R. F. Anderson [et al.] // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2016. Vol. 374, iss. 2081. 20150285. doi: 10.1098/rsta.2015.0285
6. Kadko D., Landing W. M., Buck C. S. Quantifying atmospheric trace element deposition over the ocean on a global scale with satellite rainfall products // Geophysical Research Letters. 2020. Vol. 47, iss. 7. e2019GL086357. doi: 10.1029/2019GL086357
7. The residence times of trace elements determined in the surface Arctic Ocean during the 2015 US Arctic GEOTRACES expedition / D. Kadko [et al.] // Marine Chemistry. 2019. Vol. 208. P. 56–69. doi: 10.1016/j.marchem.2018.10.011
8. Sources, fluxes and residence times of trace elements measured during the U.S. GEOTRACES East Pacific Zonal Transect / D. Kadko [et al.] // Marine Chemistry. 2020. Vol. 222. 103781. doi: 10.1016/j.marchem.2020.103781
9. Bulk aerosol trace element concentrations and deposition fluxes during the U.S. GEOTRACES GP15 Pacific Meridional Transect / C. M. Marsay [et al.] // Global Biogeochemical Cycles. 2022. Vol. 36, iss. 2. e2021GB007122. doi: 10.1029/2021GB007122
10. Papastefanou C., Papastefanou C. Radioactive nuclides as tracers of environmental processes // Journal of Radioanalytical and Nuclear Chemistry. 2006. Vol. 267, iss. 2. P. 315–320. doi: 10.1007/s10967-006-0050-8
11. Depositional fluxes and concentrations of 7Be and 210Pb in bulk precipitation and aerosols at the interface of Atlantic and Mediterranean coasts in Spain / R. L. Lozano [et al.] // Journal of Geophysical Research: Atmospheres. 2011. Vol. 116, iss. D18. D18213. doi: 10.1029/2011JD015675
12. Kremenchutskii D. A. Precipitation scavenging of beryllium-7 (7Be): Observation results and parameterization // Chemosphere. 2022. Vol. 307, part 2. 135908. doi: 10.1016/J.CHEMOSPHERE.2022.135908
13. Chae J.-S., Kim G. Large seasonal variations in fine aerosol precipitation rates revealed using cosmogenic 7Be as a tracer // Science of The Total Environment. 2019. Vol. 673. P. 1–6. doi: 10.1016/j.scitotenv.2019.03.482
14. Temporal variations of 7Be and 210Pb activity concentrations in the atmosphere and aerosol deposition velocity in Shenzhen, South China / G. Liu [et al.] // Aerosol and Air Quality Research. 2020. Vol. 20, iss. 7. P. 1607–1617. doi: 10.4209/aaqr.2019.11.0560
15. Кременчуцкий Д. А. Временная изменчивость скорости вымывания аэрозолей в Севастопольском регионе: натурные наблюдения // Морской гидрофизический журнал. 2022. Т. 38, № 4. С. 345–357. EDN: CUUYAH. URL: https://mhiras.elpub.ru/jour/article/view/706
16. McNeary D., Baskaran M. Depositional characteristics of 7Be and 210Pb in southeastern Michigan // Journal of Geophysical Research: Atmospheres. 2003. Vol. 108, iss. D7. 4210. doi: 10.1029/2002JD003021
17. 7Be,210Pb and 40K depositions over 11 years in Malaga / C. Dueñas [et al.] // Journal of Environmental Radioactivity. 2017. Vol. 178–179. P. 325–334. doi: 10.1016/j.jenvrad.2017.09.010
18. Influence of rainfall on atmospheric deposition fluxes of 7Be and 210Pb in Mangaluru (Mangalore) at the southwest coast of India / M. P. Mohan [et al.] // Atmospheric Environment. 2019. Vol. 202. P. 281–295. doi: 10.1016/j.atmosenv.2019.01.034
19. Kremenchutskii D. A., Konovalov S. K. Beryllium-7 (7Be) and its variability in the near-surface atmosphere of Crimea, the Black Sea region // Atmospheric Pollution Research. 2022. Vol. 13, iss. 5. 101406. doi: 10.1016/J.APR.2022.101406
20. Kremenchutskii D. A., Batrakov G. F. Seasonal variations in total deposition velocity and washout ratio of fine aerosols revealed from beryllium-7 (7Be) measurements in Sevastopol, the Black Sea region // Atmospheric Pollution Research. 2023. Vol. 14, iss. 3. 101698. doi: 10.1016/J.APR.2023.101698
21. A decade of 7Be and 210Pb activity in surface aerosols measured over the Western Iberian Peninsula / A. C. Carvalho [et al.] // Atmospheric Environment. 2013. Vol. 67. P. 193–202. doi: 10.1016/j.atmosenv.2012.10.060
22. Региональные проекции изменений климата в Черноморско-Каспийском регионе в конце XXI столетия / В. В. Ефимов [и др.] // Морской гидрофизический журнал. 2015. № 5. С. 53–73. EDN: VHEWUP. doi: 10.22449/0233-7584-2015-5-53-73
23. Kremenchutskii D. A. Influence of precipitation on the daily beryllium-7 (7Be) activity concentration in the atmospheric surface layer // Journal of Environmental Radioactivity. 2021. Vol. 237. 106722. doi: 10.1016/J.JENVRAD.2021.106722
Morskoy Gidrofizicheskiy Zhurnal. 2024; 40: 271-283
Temporal Variability of the Beryllium-7 (7Ве) Scavenging Ratio in the Sevastopol Region
Abstract
Purpose. The study is purposed at identifying the features of temporal variability in the relation of 7Ве scavenging ratio at the seasonal and interannual time intervals depending on the amount and frequency of precipitation.
Methods and Results. The scavenging ratio was assessed based on the field data on the 7Ве concentration values in the atmosphere and precipitation in 2012–2020. Application of ANOVA made it possible to examine the relationship between the scavenging ratio and the variations in 7Be concentrations in the atmosphere and precipitation. The relationship between the scavenging ratio and the precipitation amount and frequency was studied by the correlation method of analysis.
Conclusions. The scavenging ratio values averaged over a season and a year varied within the ranges 423–1286 and 508–919, respectively. The geometric mean value of the scavenging ratio was 719+227-173. At the 95 % confidence level, the intrayear variability of the scavenging ratio is absent. The variability in average annual values of the scavenging ratio demonstrates a decrease in 2013 (as compared to 2012) from 664 to 508, an increase to 919 in 2016 and again a decrease to 516 in 2020. The ANOVA results indicate that variability of the scavenging ratio values averaged over a season and a year is due to the variation in 7Ве concentration in precipitation by 90 and 74 %, respectively. In its turn, the long-term seasonal variability of 7Ве concentration in precipitation is conditioned by the variations in 7Ве concentration in the atmosphere (r = 0.64) and in the precipitation amount (r = –0.50). The relationship between the annual values of 7Ве concentration in precipitation, on the one hand, and its concentration in the atmosphere or the precipitation parameters, on the other, has not been revealed. The results of the correlation analysis indicate that the variability of precipitation parameters (amount and frequency) produces no a statistically significant effect (at the 95 % confidence level) upon the fluctuations of the scavenging ratio values at the seasonal and annual time intervals.
References
1. Lal D., Peters B. Cosmic ray produced radioactivity on the Earth // Kosmische strahlung II / Cosmic rays II / Ed. K. Sitte. Berlin ; Heidelberg : Springer, 1967. P. 551–612. doi: 10.1007/978-3-642-46079-1_7
2. A global dataset of atmospheric 7Be and 210Pb measurements: annual air concentration and depositional flux / F. Zhang [et al.] // Earth System Science Data. 2021. Vol. 13, iss. 6. P. 2963–2994. doi: 10.5194/essd-13-2963-2021
3. Ioannidou A. Activity size distribution of 7Be in association with trace metals in the urban area of the city of Thessaloniki, Greece // Atmospheric Environment. 2011. Vol. 45, iss. 6. P. 1286–1290. doi: 10.1016/j.atmosenv.2010.12.006
4. Kadko D., Landing W. M., Shelley R. U. A novel tracer technique to quantify the atmospheric flux of trace elements to remote ocean regions // Journal of Geophysical Research: Oceans. 2015. Vol. 120, iss. 2. P. 848–858. doi: 10.1002/2014JC010314
5. How well can we quantify dust deposition to the ocean? / R. F. Anderson [et al.] // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2016. Vol. 374, iss. 2081. 20150285. doi: 10.1098/rsta.2015.0285
6. Kadko D., Landing W. M., Buck C. S. Quantifying atmospheric trace element deposition over the ocean on a global scale with satellite rainfall products // Geophysical Research Letters. 2020. Vol. 47, iss. 7. e2019GL086357. doi: 10.1029/2019GL086357
7. The residence times of trace elements determined in the surface Arctic Ocean during the 2015 US Arctic GEOTRACES expedition / D. Kadko [et al.] // Marine Chemistry. 2019. Vol. 208. P. 56–69. doi: 10.1016/j.marchem.2018.10.011
8. Sources, fluxes and residence times of trace elements measured during the U.S. GEOTRACES East Pacific Zonal Transect / D. Kadko [et al.] // Marine Chemistry. 2020. Vol. 222. 103781. doi: 10.1016/j.marchem.2020.103781
9. Bulk aerosol trace element concentrations and deposition fluxes during the U.S. GEOTRACES GP15 Pacific Meridional Transect / C. M. Marsay [et al.] // Global Biogeochemical Cycles. 2022. Vol. 36, iss. 2. e2021GB007122. doi: 10.1029/2021GB007122
10. Papastefanou C., Papastefanou C. Radioactive nuclides as tracers of environmental processes // Journal of Radioanalytical and Nuclear Chemistry. 2006. Vol. 267, iss. 2. P. 315–320. doi: 10.1007/s10967-006-0050-8
11. Depositional fluxes and concentrations of 7Be and 210Pb in bulk precipitation and aerosols at the interface of Atlantic and Mediterranean coasts in Spain / R. L. Lozano [et al.] // Journal of Geophysical Research: Atmospheres. 2011. Vol. 116, iss. D18. D18213. doi: 10.1029/2011JD015675
12. Kremenchutskii D. A. Precipitation scavenging of beryllium-7 (7Be): Observation results and parameterization // Chemosphere. 2022. Vol. 307, part 2. 135908. doi: 10.1016/J.CHEMOSPHERE.2022.135908
13. Chae J.-S., Kim G. Large seasonal variations in fine aerosol precipitation rates revealed using cosmogenic 7Be as a tracer // Science of The Total Environment. 2019. Vol. 673. P. 1–6. doi: 10.1016/j.scitotenv.2019.03.482
14. Temporal variations of 7Be and 210Pb activity concentrations in the atmosphere and aerosol deposition velocity in Shenzhen, South China / G. Liu [et al.] // Aerosol and Air Quality Research. 2020. Vol. 20, iss. 7. P. 1607–1617. doi: 10.4209/aaqr.2019.11.0560
15. Kremenchutskii D. A. Vremennaya izmenchivost' skorosti vymyvaniya aerozolei v Sevastopol'skom regione: naturnye nablyudeniya // Morskoi gidrofizicheskii zhurnal. 2022. T. 38, № 4. S. 345–357. EDN: CUUYAH. URL: https://mhiras.elpub.ru/jour/article/view/706
16. McNeary D., Baskaran M. Depositional characteristics of 7Be and 210Pb in southeastern Michigan // Journal of Geophysical Research: Atmospheres. 2003. Vol. 108, iss. D7. 4210. doi: 10.1029/2002JD003021
17. 7Be,210Pb and 40K depositions over 11 years in Malaga / C. Dueñas [et al.] // Journal of Environmental Radioactivity. 2017. Vol. 178–179. P. 325–334. doi: 10.1016/j.jenvrad.2017.09.010
18. Influence of rainfall on atmospheric deposition fluxes of 7Be and 210Pb in Mangaluru (Mangalore) at the southwest coast of India / M. P. Mohan [et al.] // Atmospheric Environment. 2019. Vol. 202. P. 281–295. doi: 10.1016/j.atmosenv.2019.01.034
19. Kremenchutskii D. A., Konovalov S. K. Beryllium-7 (7Be) and its variability in the near-surface atmosphere of Crimea, the Black Sea region // Atmospheric Pollution Research. 2022. Vol. 13, iss. 5. 101406. doi: 10.1016/J.APR.2022.101406
20. Kremenchutskii D. A., Batrakov G. F. Seasonal variations in total deposition velocity and washout ratio of fine aerosols revealed from beryllium-7 (7Be) measurements in Sevastopol, the Black Sea region // Atmospheric Pollution Research. 2023. Vol. 14, iss. 3. 101698. doi: 10.1016/J.APR.2023.101698
21. A decade of 7Be and 210Pb activity in surface aerosols measured over the Western Iberian Peninsula / A. C. Carvalho [et al.] // Atmospheric Environment. 2013. Vol. 67. P. 193–202. doi: 10.1016/j.atmosenv.2012.10.060
22. Regional'nye proektsii izmenenii klimata v Chernomorsko-Kaspiiskom regione v kontse XXI stoletiya / V. V. Efimov [i dr.] // Morskoi gidrofizicheskii zhurnal. 2015. № 5. S. 53–73. EDN: VHEWUP. doi: 10.22449/0233-7584-2015-5-53-73
23. Kremenchutskii D. A. Influence of precipitation on the daily beryllium-7 (7Be) activity concentration in the atmospheric surface layer // Journal of Environmental Radioactivity. 2021. Vol. 237. 106722. doi: 10.1016/J.JENVRAD.2021.106722
События
-
Журнал «Современная наука и инновации» принят в DOAJ >>>
28 июл 2025 | 08:36 -
К платформе Elpub присоединились 4 журнала КФУ >>>
24 июл 2025 | 08:39 -
Журнал «Advanced Engineering Research (Rostov-on-Don)» вошел в Russian Science Citation Index >>>
23 июл 2025 | 08:38 -
Журнал «Літасфера» присоединился к Elpub! >>>
22 июл 2025 | 11:00 -
К платформе Elpub присоединился журнал «Труды НИИСИ» >>>
21 июл 2025 | 10:43