Морской гидрофизический журнал. 2024; 40: 255-270
Влияние апвеллинга на распределение хлорофилла a в прибрежной зоне Юго-Восточной Балтики в летний период 2000–2019 годов
Аннотация
Цель. Получение количественных оценок влияния апвеллинга на распределение хлорофилла а летом в прибрежной зоне Юго-Восточной Балтики в 2000–2019 гг. – цель настоящей тработы.
Методы и результаты. По данным о повторяемости и продолжительности апвеллингов за июнь – август 2000–2019 гг. и мультисенсорных спутниковых наблюдений концентрации хлорофилла а в прибрежной зоне Юго-Восточной Балтики получены среднемноголетние и среднемесячные значения исследуемых параметров и оценено влияние событий подъема вод на концентрацию хлорофилла а в поверхностном слое моря. Показано влияние апвеллингов на пространственное распределение хлорофилла а в прибрежной зоне моря. Установлено, что снижение его концентрации более чем на 1 мг/м3 наблюдается после подъема вод любой продолжительности и во все месяцы. Максимальные падения концентрации хлорофилла а отмечены после длительных апвеллингов продолжительностью > 6 дней.
Выводы. В течение недели после апвеллинга летом в прибрежной зоне Юго-Восточной Балтики наблюдаются пониженные концентрации хлорофилла а по сравнению со значениями, предшествующими возникновению апвеллинга.
Список литературы
1. Lehmann A., Myrberg K., Höflich K. A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990–2009 // Oceanologia. 2012. Vol. 54, iss. 3. P. 369–393. doi: 10.5697/oc.54-3.369
2. Капустина М. В., Зимин А. В. Пространственно-временные характеристики апвеллингов в Юго-Восточной Балтике в 2010–2019 гг. // Фундаментальная и прикладная гидрофизика. 2021. Т. 14, № 4. С. 52–63. EDN: ZNQKIX. doi: 10.7868/S2073667321040055
3. Bednorz E., Półrolniczak M., Tomczyk A. M. Regional circulation patterns inducing coastal upwelling in the Baltic Sea // Theoretical and Applied Climatology. 2021. Vol. 144, iss. 3–4. P. 905–916. doi: 10.1007/s00704-021-03539-7
4. Kowalewski M. The influence of the Hel upwelling (Baltic Sea) on nutrient concentrations and primary production – the results of an ecohydrodynamic model // Oceanologia. 2005. Vol. 47, iss. 4. P. 567–590.
5. Lips I., Lips U., Liblik T. Consequences of coastal upwelling events on physical and chemical patterns in the central Gulf of Finland (Baltic Sea) // Continental Shelf Research. 2009. Vol. 29, iss. 15. P. 1836–1847. doi: 10.1016/j.csr.2009.06.010
6. Influence of coastal upwelling on chlorophyll a concentration in the surface water along the Polish coast of the Baltic Sea / A. Krezel [et al.] // Oceanologia. 2005. Vol. 47, iss. 4. P. 433–452.
7. Zalewski M., Ameryk A., Szymelfenig M. Primary production and chlorophyll a concentration during upwelling events along the Hel Peninsula (the Baltic Sea) // Oceanological and Hydrobiological Studies. 2005. Vol. 34, Suppl. 2. P. 97–113.
8. Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea / E. Vahtera [et al.] // Journal of Marine Systems. 2005. Vol. 58, iss. 1–2. P. 67–82. doi: 10.1016/j.jmarsys.2005.07.001
9. Phosphorus input by upwelling in the eastern Gotland Basin (Baltic Sea) in summer and its effects on filamentous cyanobacteria / M. Nausch [et al.] // Estuarine, Coastal and Shelf Science. 2009. Vol. 83, iss. 4. P. 434–442. doi: 10.1016/j.ecss.2009.04.031
10. Lips I., Lips U. Phytoplankton dynamics affected by the coastal upwelling events in the Gulf of Finland in July–August 2006 // Journal of Plankton Research. 2010. Vol. 32, iss. 9. P. 1269–1282. doi: 10.1093/plankt/fbq049
11. The influence of a coastal upwelling event on chlorophyll a and nutrient dynamics in the surface layer of the Gulf of Finland, Baltic Sea / N. Kuvaldina [et al.] // Hydrobiologia. 2010. Vol. 639, iss. 1. P. 221–230. doi: 10.1007/s10750-009-0022-4
12. Long-term trends in phytoplankton composition in the western and central Baltic Sea / N. Wasmund [et al.] // Journal of Marine Systems. 2011. Vol. 87, iss. 2. P. 145–159. doi: 10.1016/j.jmarsys.2011.03.010
13. Кудрявцева Е. А., Александров С. В. Гидролого-гидрохимические основы первичной продуктивности и районирование российского сектора Гданьского бассейна Балтийского моря // Океанология. 2019. Т. 59, № 1. С. 56–71. EDN: LWPEQE. doi: 10.31857/S0030-157459156-71
14. The role of upwellings in the coastal ecosystem of the Southeastern Baltic Sea / A. V. Krek [et al.] // Regional Studies in Marine Science. 2021. Vol. 44, iss. 1. 101707. doi: 10.1016/j.rsma.2021.101707
15. Zhurbas V., Laanemets J., Vahtera E. Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea // Journal of Geophysical Research: Oceans. 2008. Vol. 113, iss. C5. C05004. doi: 10.1029/2007JC004280
16. Huntsman S. A., Barber R. T. Primary production off northwest Africa: the relationship to wind and nutrient conditions // Deep Sea Research. 1977. Vol. 24. iss. 1. P. 25–33. doi: 10.1016/0146-6291(77)90538-0
17. Case studies on phytoplankton blooms in coastal and open waters of the Baltic Sea using Coastal Zone Color Scanner data / H. Siegel [et al.] // International Journal of Remote Sensing. 1999. Vol. 20, iss. 7. P. 1249–1264. doi: 10.1080/014311699212713
18. Janssen F., Neumann T., Schmidt M. Inter-annual variability in cyanobacteria blooms in the Baltic Sea controlled by wintertime hydrographic conditions // Marine Ecology Progress Series. 2004. Vol. 275. P. 59–68. doi: 10.3354/meps275059
19. Гоголев Д. Г., Буканова Т. В., Кудрявцева Е. А. Концентрация хлорофилла «а» в юго-восточной части Балтийского моря летом 2018 года по спутниковым данным // Вестник Балтийского федерального университета им. И. Канта. Серия: Естественные и медицинские науки. 2020. № 4. С. 83–91. EDN: RUSNPF.
20. Remote sensing of coastal upwelling in the south-eastern Baltic Sea: Statistical properties and implications for the coastal environment / T. Dabuleviciene [et al.] // Remote Sensing. 2018. Vol. 10, iss. 11. 1752. doi: 10.3390/rs10111752
21. Remote sensing of chlorophyll in the Baltic Sea at basin scale from 1997 to 2012 using merged multi-sensor data / J. Pitarch [et al.] // Ocean Science. 2016. Vol. 12, iss. 2. P. 379–389. doi: 10.5194/os-12-379-2016
22. Kratzer S., Brockmann C., Moore G. Using MERIS full resolution data to monitor coastal waters – A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea // Remote Sensing of Environment. 2008. Vol. 112, iss. 5. P. 2284–2300. doi: 10.1016/j.rse.2007.10.006
23. Monitoring the effect of upwelling on the chlorophyll a distribution in the Gulf of Finland (Baltic Sea) using remote sensing and in situ data / R. Uiboupin [et al.] // Oceanologia. 2012. Vol. 54, iss. 3. P. 395–419. doi: 10.5697/oc.54-3.395
24. Paszkuta M., Zapadka T., Krężel A. Assessment of cloudiness for use in environmental marine research // International Journal of Remote Sensing. 2019. Vol. 40, iss. 24. P. 9439–9459. doi: 10.1080/01431161.2019.1633697
25. Dabuleviciene T., Vaiciute D., Kozlov I. E. Chlorophyll-a variability during upwelling events in the south-eastern Baltic Sea and in the Curonian Lagoon from satellite observations // Remote Sensing. 2020. Vol. 12, iss. 21. 3661. doi: 10.3390/rs12213661
26. Капустина М. В., Зимин А. В. Повторяемость апвеллингов в Юго-Восточной Балтике в 2000-2019 гг. // Морские исследования и образование. Сборник трудов X Международной научно-практической конференции. Т. I (III). Тверь, 2021. С. 152–156. EDN: CALXNT.
27. Nakonieczny J., Renk H., Wiktor J. Chlorophyll a concentration and distribution in the Southern Baltic in the years 1979–1983 // Oceanologia. 1991. No. 30. P. 77–91.
28. Relationship between seasonal variations of primary production, abiotic factors and phytoplankton composition in the coastal zone of the south-eastern part of the Baltic Sea / E. Kudryavtseva [et al.] // Regional Studies in Marine Science. 2019. Vol. 32. 100862. doi: 10.1016/j.rsma.2019.100862
29. Копелевич О. В., Салинг И. В. Межгодовые изменения биооптических характеристик поверхностного слоя морей, окружающих западную часть России, по данным спутниковых сканеров цвета // Фундаментальная и прикладная гидрофизика. 2020. Т. 13, № 2. С. 16–24. EDN: KVOSRN. doi: 10.7868/S2073667320020021
30. Comparisons of satellite and modeled surface temperature and chlorophyll concentrations in the Baltic Sea with in situ data / M. Stramska [et al.] // Remote Sensing. 2021. Vol. 13, iss. 15. 3049. doi: 10.3390/rs13153049
31. Александров С. В., Кудрявцева Е. А. Хлорофилл «а» и первичная продукция фитопланктона // Нефть и окружающая среда Калининградской области / Отв. ред. В. В. Сивков. Калининград: Терра Балтика, 2012. Т. 2 : Море. С. 358–371. EDN: QCKJSO.
32. Kratzer S., Moore G. Inherent optical properties of the Baltic Sea in comparison to other seas and oceans // Remote Sensing. 2018. Vol. 10, iss. 3. 418. doi: 10.3390/rs10030418
33. Kahru M., Horstmann U., Rud O. Satellite detection of increased cyanobacteria blooms in the Baltic Sea: Natural fluctuation or ecosystem change? // Ambio. 1994. Vol. 23, iss. 8. P. 469–472.
34. Hajdu S., Höglander H., Larsson U. Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms // Harmful Algae. 2007. Vol. 6, iss. 2. P. 189–205. doi: 10.1016/j.hal.2006.07.006
35. Ennet P., Kuosa H., Tamsalu R. The influence of upwelling and entrainment on the algal bloom in the Baltic Sea // Journal of Marine Systems. 2000. Vol. 25, iss. 3–4. P. 359–367. doi: 10.1016/S0924-7963(00)00027-0
36. Евтушенко Н. В., Шеберстов С. В. Использование данных спутникового сканера MODIS-Aqua для исследования циклов цветения фитопланктона в Балтийском море // Современные проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13, № 3. С. 114–124. EDN: WDNTLV. doi: 10.21046/2070-7401-2016-13-3-114-124
37. Буканова Т. В., Бубнова Е. С., Александров С. В. Дистанционный мониторинг морской площадки карбонового полигона «Росянка» (Балтийское море): первые результаты // Современные проблемы дистанционного зондирования Земли из космоса. 2022. Т. 19, № 6. С. 234–247. EDN: KVBQWQ. doi: 10.21046/2070-7401-2022-19-6-234-247
38. Александров С. В., Горбунова Ю. А. Продукция фитопланктона и содержание хлорофилла в эстуариях различного типа // Вестник Балтийского федерального университета им. И. Канта. Серия: Естественные и медицинские науки. 2012. Вып. 1. С. 90–98. EDN: OPMUKX.
39. Wasmund N., Nausch G., Voss M. Upwelling events may cause cyanobacteria blooms in the Baltic Sea // Journal of Marine Systems. 2012. Vol. 90, iss. 1. P. 67–76. doi: 10.1016/j.jmarsys.2011.09.001
40. Löptien U., Dietze H. Retracing cyanobacteria blooms in the Baltic Sea // Scientific Reports. 2022. Vol. 12. 10873. doi: 10.1038/s41598-022-14880-w
Morskoy Gidrofizicheskiy Zhurnal. 2024; 40: 255-270
Influence of Coastal Upwelling on Chlorophyll a Distribution in the Coastal Zone of the Southeastern Baltic Sea in Summer Periods, 2000–2019
Abstract
Purpose. The study is purposed at obtaining the quantitative estimates of coastal upwelling influence on the distribution of chlorophyll a in the coastal zone of the southeastern Baltic Sea during the summer seasons in 2000–2019.
Methods and Results. Based on the data both on frequency and duration of upwelling events for June – August 2000–2019 and the chlorophyll a concentrations derived from multi-sensor satellite observations in the coastal zone of the southeastern Baltic Sea, the long-term and monthly average values of the studied parameters are obtained, and the influence of upwelling events on the chlorophyll a concentration in the sea surface layer is assessed. The spatial variability of chlorophyll a in the coastal areas is found to be related to the influence of upwelling events. On the average, the chlorophyll a concentration decreases by more than 1 mg/m3 after an upwelling of any duration and in all summer months. The concentration drop is most significant after the upwelling events lasting more than 6 days.
Conclusions. The reduced chlorophyll a concentrations (as compared to the pre-upwelling values) are observed in course of a week after a coastal upwelling event in the southeastern Baltic Sea.
References
1. Lehmann A., Myrberg K., Höflich K. A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990–2009 // Oceanologia. 2012. Vol. 54, iss. 3. P. 369–393. doi: 10.5697/oc.54-3.369
2. Kapustina M. V., Zimin A. V. Prostranstvenno-vremennye kharakteristiki apvellingov v Yugo-Vostochnoi Baltike v 2010–2019 gg. // Fundamental'naya i prikladnaya gidrofizika. 2021. T. 14, № 4. S. 52–63. EDN: ZNQKIX. doi: 10.7868/S2073667321040055
3. Bednorz E., Półrolniczak M., Tomczyk A. M. Regional circulation patterns inducing coastal upwelling in the Baltic Sea // Theoretical and Applied Climatology. 2021. Vol. 144, iss. 3–4. P. 905–916. doi: 10.1007/s00704-021-03539-7
4. Kowalewski M. The influence of the Hel upwelling (Baltic Sea) on nutrient concentrations and primary production – the results of an ecohydrodynamic model // Oceanologia. 2005. Vol. 47, iss. 4. P. 567–590.
5. Lips I., Lips U., Liblik T. Consequences of coastal upwelling events on physical and chemical patterns in the central Gulf of Finland (Baltic Sea) // Continental Shelf Research. 2009. Vol. 29, iss. 15. P. 1836–1847. doi: 10.1016/j.csr.2009.06.010
6. Influence of coastal upwelling on chlorophyll a concentration in the surface water along the Polish coast of the Baltic Sea / A. Krezel [et al.] // Oceanologia. 2005. Vol. 47, iss. 4. P. 433–452.
7. Zalewski M., Ameryk A., Szymelfenig M. Primary production and chlorophyll a concentration during upwelling events along the Hel Peninsula (the Baltic Sea) // Oceanological and Hydrobiological Studies. 2005. Vol. 34, Suppl. 2. P. 97–113.
8. Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea / E. Vahtera [et al.] // Journal of Marine Systems. 2005. Vol. 58, iss. 1–2. P. 67–82. doi: 10.1016/j.jmarsys.2005.07.001
9. Phosphorus input by upwelling in the eastern Gotland Basin (Baltic Sea) in summer and its effects on filamentous cyanobacteria / M. Nausch [et al.] // Estuarine, Coastal and Shelf Science. 2009. Vol. 83, iss. 4. P. 434–442. doi: 10.1016/j.ecss.2009.04.031
10. Lips I., Lips U. Phytoplankton dynamics affected by the coastal upwelling events in the Gulf of Finland in July–August 2006 // Journal of Plankton Research. 2010. Vol. 32, iss. 9. P. 1269–1282. doi: 10.1093/plankt/fbq049
11. The influence of a coastal upwelling event on chlorophyll a and nutrient dynamics in the surface layer of the Gulf of Finland, Baltic Sea / N. Kuvaldina [et al.] // Hydrobiologia. 2010. Vol. 639, iss. 1. P. 221–230. doi: 10.1007/s10750-009-0022-4
12. Long-term trends in phytoplankton composition in the western and central Baltic Sea / N. Wasmund [et al.] // Journal of Marine Systems. 2011. Vol. 87, iss. 2. P. 145–159. doi: 10.1016/j.jmarsys.2011.03.010
13. Kudryavtseva E. A., Aleksandrov S. V. Gidrologo-gidrokhimicheskie osnovy pervichnoi produktivnosti i raionirovanie rossiiskogo sektora Gdan'skogo basseina Baltiiskogo morya // Okeanologiya. 2019. T. 59, № 1. S. 56–71. EDN: LWPEQE. doi: 10.31857/S0030-157459156-71
14. The role of upwellings in the coastal ecosystem of the Southeastern Baltic Sea / A. V. Krek [et al.] // Regional Studies in Marine Science. 2021. Vol. 44, iss. 1. 101707. doi: 10.1016/j.rsma.2021.101707
15. Zhurbas V., Laanemets J., Vahtera E. Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea // Journal of Geophysical Research: Oceans. 2008. Vol. 113, iss. C5. C05004. doi: 10.1029/2007JC004280
16. Huntsman S. A., Barber R. T. Primary production off northwest Africa: the relationship to wind and nutrient conditions // Deep Sea Research. 1977. Vol. 24. iss. 1. P. 25–33. doi: 10.1016/0146-6291(77)90538-0
17. Case studies on phytoplankton blooms in coastal and open waters of the Baltic Sea using Coastal Zone Color Scanner data / H. Siegel [et al.] // International Journal of Remote Sensing. 1999. Vol. 20, iss. 7. P. 1249–1264. doi: 10.1080/014311699212713
18. Janssen F., Neumann T., Schmidt M. Inter-annual variability in cyanobacteria blooms in the Baltic Sea controlled by wintertime hydrographic conditions // Marine Ecology Progress Series. 2004. Vol. 275. P. 59–68. doi: 10.3354/meps275059
19. Gogolev D. G., Bukanova T. V., Kudryavtseva E. A. Kontsentratsiya khlorofilla «a» v yugo-vostochnoi chasti Baltiiskogo morya letom 2018 goda po sputnikovym dannym // Vestnik Baltiiskogo federal'nogo universiteta im. I. Kanta. Seriya: Estestvennye i meditsinskie nauki. 2020. № 4. S. 83–91. EDN: RUSNPF.
20. Remote sensing of coastal upwelling in the south-eastern Baltic Sea: Statistical properties and implications for the coastal environment / T. Dabuleviciene [et al.] // Remote Sensing. 2018. Vol. 10, iss. 11. 1752. doi: 10.3390/rs10111752
21. Remote sensing of chlorophyll in the Baltic Sea at basin scale from 1997 to 2012 using merged multi-sensor data / J. Pitarch [et al.] // Ocean Science. 2016. Vol. 12, iss. 2. P. 379–389. doi: 10.5194/os-12-379-2016
22. Kratzer S., Brockmann C., Moore G. Using MERIS full resolution data to monitor coastal waters – A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea // Remote Sensing of Environment. 2008. Vol. 112, iss. 5. P. 2284–2300. doi: 10.1016/j.rse.2007.10.006
23. Monitoring the effect of upwelling on the chlorophyll a distribution in the Gulf of Finland (Baltic Sea) using remote sensing and in situ data / R. Uiboupin [et al.] // Oceanologia. 2012. Vol. 54, iss. 3. P. 395–419. doi: 10.5697/oc.54-3.395
24. Paszkuta M., Zapadka T., Krężel A. Assessment of cloudiness for use in environmental marine research // International Journal of Remote Sensing. 2019. Vol. 40, iss. 24. P. 9439–9459. doi: 10.1080/01431161.2019.1633697
25. Dabuleviciene T., Vaiciute D., Kozlov I. E. Chlorophyll-a variability during upwelling events in the south-eastern Baltic Sea and in the Curonian Lagoon from satellite observations // Remote Sensing. 2020. Vol. 12, iss. 21. 3661. doi: 10.3390/rs12213661
26. Kapustina M. V., Zimin A. V. Povtoryaemost' apvellingov v Yugo-Vostochnoi Baltike v 2000-2019 gg. // Morskie issledovaniya i obrazovanie. Sbornik trudov X Mezhdunarodnoi nauchno-prakticheskoi konferentsii. T. I (III). Tver', 2021. S. 152–156. EDN: CALXNT.
27. Nakonieczny J., Renk H., Wiktor J. Chlorophyll a concentration and distribution in the Southern Baltic in the years 1979–1983 // Oceanologia. 1991. No. 30. P. 77–91.
28. Relationship between seasonal variations of primary production, abiotic factors and phytoplankton composition in the coastal zone of the south-eastern part of the Baltic Sea / E. Kudryavtseva [et al.] // Regional Studies in Marine Science. 2019. Vol. 32. 100862. doi: 10.1016/j.rsma.2019.100862
29. Kopelevich O. V., Saling I. V. Mezhgodovye izmeneniya bioopticheskikh kharakteristik poverkhnostnogo sloya morei, okruzhayushchikh zapadnuyu chast' Rossii, po dannym sputnikovykh skanerov tsveta // Fundamental'naya i prikladnaya gidrofizika. 2020. T. 13, № 2. S. 16–24. EDN: KVOSRN. doi: 10.7868/S2073667320020021
30. Comparisons of satellite and modeled surface temperature and chlorophyll concentrations in the Baltic Sea with in situ data / M. Stramska [et al.] // Remote Sensing. 2021. Vol. 13, iss. 15. 3049. doi: 10.3390/rs13153049
31. Aleksandrov S. V., Kudryavtseva E. A. Khlorofill «a» i pervichnaya produktsiya fitoplanktona // Neft' i okruzhayushchaya sreda Kaliningradskoi oblasti / Otv. red. V. V. Sivkov. Kaliningrad: Terra Baltika, 2012. T. 2 : More. S. 358–371. EDN: QCKJSO.
32. Kratzer S., Moore G. Inherent optical properties of the Baltic Sea in comparison to other seas and oceans // Remote Sensing. 2018. Vol. 10, iss. 3. 418. doi: 10.3390/rs10030418
33. Kahru M., Horstmann U., Rud O. Satellite detection of increased cyanobacteria blooms in the Baltic Sea: Natural fluctuation or ecosystem change? // Ambio. 1994. Vol. 23, iss. 8. P. 469–472.
34. Hajdu S., Höglander H., Larsson U. Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms // Harmful Algae. 2007. Vol. 6, iss. 2. P. 189–205. doi: 10.1016/j.hal.2006.07.006
35. Ennet P., Kuosa H., Tamsalu R. The influence of upwelling and entrainment on the algal bloom in the Baltic Sea // Journal of Marine Systems. 2000. Vol. 25, iss. 3–4. P. 359–367. doi: 10.1016/S0924-7963(00)00027-0
36. Evtushenko N. V., Sheberstov S. V. Ispol'zovanie dannykh sputnikovogo skanera MODIS-Aqua dlya issledovaniya tsiklov tsveteniya fitoplanktona v Baltiiskom more // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2016. T. 13, № 3. S. 114–124. EDN: WDNTLV. doi: 10.21046/2070-7401-2016-13-3-114-124
37. Bukanova T. V., Bubnova E. S., Aleksandrov S. V. Distantsionnyi monitoring morskoi ploshchadki karbonovogo poligona «Rosyanka» (Baltiiskoe more): pervye rezul'taty // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2022. T. 19, № 6. S. 234–247. EDN: KVBQWQ. doi: 10.21046/2070-7401-2022-19-6-234-247
38. Aleksandrov S. V., Gorbunova Yu. A. Produktsiya fitoplanktona i soderzhanie khlorofilla v estuariyakh razlichnogo tipa // Vestnik Baltiiskogo federal'nogo universiteta im. I. Kanta. Seriya: Estestvennye i meditsinskie nauki. 2012. Vyp. 1. S. 90–98. EDN: OPMUKX.
39. Wasmund N., Nausch G., Voss M. Upwelling events may cause cyanobacteria blooms in the Baltic Sea // Journal of Marine Systems. 2012. Vol. 90, iss. 1. P. 67–76. doi: 10.1016/j.jmarsys.2011.09.001
40. Löptien U., Dietze H. Retracing cyanobacteria blooms in the Baltic Sea // Scientific Reports. 2022. Vol. 12. 10873. doi: 10.1038/s41598-022-14880-w
События
-
К платформе Elpub присоединился журнал «Амурский медицинский журнал» >>>
26 ноя 2025 | 13:19 -
К платформе Elpub присоединился журнал «Актуальные вопросы лесного хозяйства» >>>
20 ноя 2025 | 13:18 -
Журнал «Вестник Самарского государственного экономического университета» теперь на Elpub >>>
11 ноя 2025 | 14:28 -
К платформе Elpub присоединился журнал «Crede Experto: транспорт, общество, образование, язык» >>>
11 ноя 2025 | 14:26 -
К платформе Elpub присоединился журнал «Eurasian Journal of Economic and Business Studies» >>>
5 ноя 2025 | 08:43
