Журналов:     Статей:        

Журнал МедиАль. 2017; : 54-56

Распространенность эритромицини тетрациклин-резистентных штаммов S. mutans, изолированных из зубного налета детей Санкт-Петербурга

Бродина Т. В., Любимова А. В., Фетинг А. Е., Силин А. В., Юсупова Р. Ф., Климова Е. А.

Аннотация

Актуальность. S. mutans считается представителем нормальной микрофлоры полости рта, отдельные вирулентные штаммы могут являться этиологическим фактором кариеса зубов, а также некоторых системных заболеваний. Имеются сведения, что среди этих бактерий распространено носительство генов антибиотикорезистентности, возможна их горизонтальная передача более патогенным микроорганизмам. Цель исследования. Оценить распространенность эритромицин- и тетрациклин-резистентных штаммов S. mutans , изолированных из зубного налета детей. Определить ведущий механизм их устойчивости к макролидам. Материалы и методы. Исследовано 86 штаммов S. mutans , изолированных из зубного налета детей 6-17 лет. Скрининг на резистентность к эритромицину осуществлялся двумя методами - фенотипическим и генотипическим, к тетрациклину - только фенотепическим. Результаты. Доля изолятов S. mutans , фенотипически-резистентных к эритромицину, составила более 16%, к тетрациклину- 26,7%. Преобладающий молекулярно-генетический механизм резистентности к эритромицину - наличие mef A- гена (78,6% всех эритромицин - резистентных штаммов). 10,5% всех исследованных штаммов S. mutans являются потенциальным резервуаром генов антибиотикорезистентности ( erm B и mef A) в горизонтальной передаче.
Список литературы

1. Bruckner L., Gigliotti F. Viridans group streptococcal infections among children with cancer and the importance of emerging antibiotic resistance. Semin. Pediatr. Infect. Dis. 2006. № 17. P. 153-160.

2. Balletto E., Mikulska M. Bacterial infections in hematopoietic stem cell transplant recipients. Mediterr. J. Hematol. Infect. Dis. 2015. № 7. P. 101-109.

3. Douglas C. Identity of viridans streptococci isolated from cases of infective endocarditis. J. Med. Microbiol. 1993. № 39. P. 179-182.

4. Kennedy H.F., Gemmell C.G., Bagg J., Gibson B.E.S., Michie J.R. Antimicrobial susceptibility of blood culture isolates of viridans group streptococci: relationship to a change in empirical antibiotic therapy in febrile neutropenia. J. Antimicrob. Chemother. 2001. № 47. P. 693-696.

5. Luna V.A., Coates P., Eady E.A., Cove J.H., Nguyen T.T., Roberts M.C. A variety of gram-positive bacteria carry mobile mef genes. J. Antimicrob. Chemother. 1999. № 44. P. 19-25.

6. Gordon K.A., Beach M.L., Biedenbach D.J., Jones R.N., Rhomberg P.R., Mutnick A.H. Antimicrobial susceptibility patterns of hemolytic and viridans group streptococci: report from the SENTRY Antimicrobial Surveillance Program (1997- 2000). Diag. Microbiol. Infect. Dis. 2002. № 43. P. 157-162.

7. Seppala H., Haanpera M., Al-Juhaish M., Jarvinen H., Jalava J., Huovinen J. Antimicrobial susceptibility patterns and macrolide resistance genes of viridans group streptococci from normal flora. J. Antimicrob. Chemother. 2003. № 52. P. 636-644.

8. Soriano F., Rodriguez-Cerrato V. Pharmacodynamic and kinetic basis for the selection of pneumococcal resistance in the upper respiratory tract. Journal of Antimicrobial Chemotherapy. 2002. № 50. P. 51-58.

9. National Committee for Clinical Laboratory Standards. (2003). Performance Standards for Antimicrobial Susceptibility Testing - Thirteenth Informational Supplement M100-S13. NCCLS, Wayne, PA, USA.

10. Seppala H., Nissinen Yu.Q., Huovinen Р.А. Three different phenotypes of erythromycin-resistant Streptococcus pyogenes in Finland. J. Antimicrob. Chemother. 1993. № 32. P. 885-891.

11. Ioannidou S., Papaparaskevas J., Tassios P.T., Foustoukou М., Legakis N.J., Vatopoulus А. Prevalence and characterization of the mechanisms of macrolide, lincosamide and streptogramin resistance in viridans group streptococci. Int. J. Antimicrob. Agents. 2003. № 22. P. 626-629.

12. Seppala H., Skurnik М., Soini Н., Roberts М.С., Huovinen Р. A novel erythromycin resistance methylase gene (ermTR) in Streptococcus pyogenes. Antimicrob. Agents Chemother. 1998. № 42. P. 257-262.

MediAl. 2017; : 54-56

Spread of erythromycin-and-tetracycline-resistant strains of S. mutans isolated out of dental deposits of children from St. Petersburg

Brodina T. V., Lyubimova A. V., Feting A. E., Silin A. V., Yusupova R. F., Klimova E. A.

Abstract

Relevance. S. mutans is considered a representative of normal flora of oral cavity, separate virulent strains may become an etiological factor of dental caries, as well as of some other systemic diseases. The data on spread of gene carrying capacity of antibiotic resistance among these bacteria is available, their horizontal transmission to more pathogenic microorganisms is also possible. Purpose of the study. Evaluation of the spread of erythromycin and tetracycline resistant strains of S. mutans , which were isolated out of dental deposits of children. Determination of the basic mechanism of their resistance to macrolides. Materials and methods. 86 strains of S. mutans isolated out of dental deposits of 6-17-year old children were studied. The screening of resistance to erythromycin was carried out with the use of two methods, phenotypic and genotypic, including application of only phenotypic methods in case of determining resistance to tetracycline. Results. The part of isolates of S. mutans which are phenotypically resistant to erythromycin comprised more than 16%, to tetracycline - 26.7%. The predominant molecular and genetic mechanism of resistance to erythromycin presupposes the occurrence of mef A-gene (78.6% of all erythromycin-resistant strains). 10.5% of all the studied strains of S. mutans constitute potential reservoirs of antibiotic resistance genes ( erm B and mef A) in horizontal transmission.
References

1. Bruckner L., Gigliotti F. Viridans group streptococcal infections among children with cancer and the importance of emerging antibiotic resistance. Semin. Pediatr. Infect. Dis. 2006. № 17. P. 153-160.

2. Balletto E., Mikulska M. Bacterial infections in hematopoietic stem cell transplant recipients. Mediterr. J. Hematol. Infect. Dis. 2015. № 7. P. 101-109.

3. Douglas C. Identity of viridans streptococci isolated from cases of infective endocarditis. J. Med. Microbiol. 1993. № 39. P. 179-182.

4. Kennedy H.F., Gemmell C.G., Bagg J., Gibson B.E.S., Michie J.R. Antimicrobial susceptibility of blood culture isolates of viridans group streptococci: relationship to a change in empirical antibiotic therapy in febrile neutropenia. J. Antimicrob. Chemother. 2001. № 47. P. 693-696.

5. Luna V.A., Coates P., Eady E.A., Cove J.H., Nguyen T.T., Roberts M.C. A variety of gram-positive bacteria carry mobile mef genes. J. Antimicrob. Chemother. 1999. № 44. P. 19-25.

6. Gordon K.A., Beach M.L., Biedenbach D.J., Jones R.N., Rhomberg P.R., Mutnick A.H. Antimicrobial susceptibility patterns of hemolytic and viridans group streptococci: report from the SENTRY Antimicrobial Surveillance Program (1997- 2000). Diag. Microbiol. Infect. Dis. 2002. № 43. P. 157-162.

7. Seppala H., Haanpera M., Al-Juhaish M., Jarvinen H., Jalava J., Huovinen J. Antimicrobial susceptibility patterns and macrolide resistance genes of viridans group streptococci from normal flora. J. Antimicrob. Chemother. 2003. № 52. P. 636-644.

8. Soriano F., Rodriguez-Cerrato V. Pharmacodynamic and kinetic basis for the selection of pneumococcal resistance in the upper respiratory tract. Journal of Antimicrobial Chemotherapy. 2002. № 50. P. 51-58.

9. National Committee for Clinical Laboratory Standards. (2003). Performance Standards for Antimicrobial Susceptibility Testing - Thirteenth Informational Supplement M100-S13. NCCLS, Wayne, PA, USA.

10. Seppala H., Nissinen Yu.Q., Huovinen R.A. Three different phenotypes of erythromycin-resistant Streptococcus pyogenes in Finland. J. Antimicrob. Chemother. 1993. № 32. P. 885-891.

11. Ioannidou S., Papaparaskevas J., Tassios P.T., Foustoukou M., Legakis N.J., Vatopoulus A. Prevalence and characterization of the mechanisms of macrolide, lincosamide and streptogramin resistance in viridans group streptococci. Int. J. Antimicrob. Agents. 2003. № 22. P. 626-629.

12. Seppala H., Skurnik M., Soini N., Roberts M.S., Huovinen R. A novel erythromycin resistance methylase gene (ermTR) in Streptococcus pyogenes. Antimicrob. Agents Chemother. 1998. № 42. P. 257-262.