Математика и математическое моделирование. 2015; : 61-77
Численное сравнение решений кинетических модельных уравнений
Аннотация
Список литературы
1. Bird G. A. Molecular Gas Dynamics and the Direct Simulation of Gas Flow. Oxford: Clarendon Press, 1994. 458 p.
2. Yen S. M. Numerical solution of the nonlinear Boltzmann equation for nonequillibrium gas flow problems // Annual Review of Fluid Mechanics. 1984. V.16. Pp. 67-97.
3. Черемисин Ф.Г. Консервативный метод вычисления интеграла столкновений Больцмана // Доклады Академии Наук. 1997. Т. 357, № 1. С. 53-56.
4. Morris A. B.,Varghese P. L.,Goldstein D. B. Monte Carlo solution of the Boltzmann equation via a discrete velocity model //Journal of Computational Physics. 2011. Vol. 230. Pp 1264-1280. DOI: 10.1016/j.jcp.2010.10.0375.Черемисин Ф. Г. Решение кинетического уравнения Больцмана для высокоскоростных течений// Ж. вычисл. матем. и матем. физ. 2006. T. 46, № 2. C. 329-343.
5. Arslanbekov R. R., Kolobov V. I., Frolova A. A. Kinetic Solvers with Adaptive Mesh in Phase Space // Physical Review E. 2013. V. 88. 063301.
6. Radtke G. A., Hadjiconstantinou N. G. Variance-reduced particle simulation of Boltzmann transport equation in the relaxation-time approximation // Physical Review E. 2009. V.79. P. 056711. DOI: 10.1103/Phys. Rev. E.79. 056711
7. Radtke G. A., Hadjiconstantinou N. G., Wagner W. Low-noise Monte Carlo simulation of the variable hard sphere gas // Physics of Fluids. 2011. V. 23. P. 030606. DOI: 10.1063/1.35588879.Иванов М. С., Коротченко М. А., Михайлов Г. А., Рогазинский С. В. Глобально-весовой метод Монте-Карло для нелинейного уравнения Больцмана // Ж. вычисл. матем. и матем. физ. 2005. T. 45, №10. С. 1860-1870.
8. Bhatnagar P. L. Gross E. P., Krook M. A model for collision process in gases // Physical Review. 1954. V. 94. Pp. 511-525.
9. Holway L. H. New statistical models for kinetic theory: Methods of construction// Physics of Fluids. 1966. V. 9. Pp. 1658-1673.
10. Шахов Е. М. Об обобщении релаксационного кинетического уравнения Крука // Изв. АН. СССР. МЖГ. 1968. №5. С.142-145.
11. Struchtrup H. The BGK model with velocity dependent collision frequency // Continuum Mechanics and Thermodynamics. 1997. V. 9, №1. Pp. 23-31.
12. Zheng Y., Struchtrup H. Ellipsoidal statistical Bhatnagar-Gross-Krook model with velocity-dependent collision frequency // Physics of Fluids. 2005. V. 17. P. 127103. DOI: 10.1063/1.214071015.Титарев В. А. Шахов Е.М. Численный расчет поперечного обтекания холодной пластины гиперзвуковым потоком разреженного газа // Механика жидкости и газа. 2005. №5. С. 152-167.
13. Andries P., Perthame B. The ES-BGK model equation with correct Prandtl number//Rarefied Gas Dynamics: 22nd International Symposium: AIP Conf. Proc. 2001, CP 585. Pp. 30-36.
14. Belyi V.V. Derivation of model kinetic equation // EPL. 2015. V. 111. 40011. (DOI: 10.1209/0295-5075/111/4011 )
15. Коган М.Н. Динамика разреженного газа. М.: Наука, 1967. 440 с.
16. Andries P., Aoki K., Perthame B. A consistent BGK-type model for gas mixture // J. Stat. Phys. 2002. V.106, N. 516. Pp. 993-1113
17. Groppi M., Spiga G. A Bhatnagar-Gross-Krook -type approach for chemically reacting gas mixture // Physics of Fluids. 2004. V. 16, № 12. Pp 4273-4284.
18. Шахов Е.М. Метод исследования движений разреженного газа. М.: Наука, 1974. 203 с.
19. Kolobov V. I., Arslanbekov R. R., Aristov V. V., Frolova A. A., Zabelok S. A. Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinrment // Journal of Computational Physics. 2007. V. 223. Pp. 589-608.
20. Титарев В. А. Неявный численный метод расчета пространственных течений разреженного газа на неструктурированных сетках. // Ж. вычисл.матем. и матем. физ. 2010. Т. 50, № 10. С.1811-1826.
21. Титарев В. А. Программный комплекс Несветай-3Д моделирования пространственных течений одноатомного разреженного газа //Наука и образование. МГТУ им. Н.Э. Баумана. Элект. Журнал. 2014, N. 6. C. 124-154.
22. Tan Z., Varghese P.L. The method for the Boltzmann equation // Journal of Computational Physics. 1994. V.110. Pp. 327-340.
23. Коробов Н.М. Тригонометрические суммы и их приложение. М.: Наука, 1989. 240 с.
Mathematics and Mathematical Modeling. 2015; : 61-77
Numerical Comparison of Solutions of Kinetic Model Equations
Abstract
The collision integral approximation by different model equations has created a whole new trend in the theory of rarefied gas. One widely used model is the Shakhov model (S-model) obtained by expansion of inverse collisions integral in a series of Hermite polynomials up to the third order. Using the same expansion with another value of free parameters leads to a linearized ellipsoidal statistical model (ESL).
Both model equations (S and ESL) have the same properties, as they give the correct relaxation of non-equilibrium stress tensor components and heat flux vector, the correct Prandtl number at the transition to the hydrodynamic regime and do not guarantee the positivity of the distribution function.
The article presents numerical comparison of solutions of Shakhov equation, ESL- model and full Boltzmann equation in the four Riemann problems for molecules of hard spheres.
We have considered the expansion of two gas flows, contact discontinuity, the problem of the gas counter-flows and the problem of the shock wave structure. For the numerical solution of the kinetic equations the method of discrete ordinates is used.
The comparison shows that solution has a weak sensitivity to the form of collision operator in the problem of expansions of two gas flows and results obtained by the model and the kinetic Boltzmann equations coincide.
In the problem of the contact discontinuity the solution of model equations differs from full kinetic solutions at the point of the initial discontinuity. The non-equilibrium stress tensor has the maximum errors, the error of the heat flux is much smaller, and the ESL - model gives the exact value of the extremum of heat flux.
In the problems of gas counter-flows and shock wave structure the model equations give significant distortion profiles of heat flux and non-equilibrium stress tensor components in front of the shock waves. This behavior is due to fact that in the models under consideration there is no dependency of the collision frequency on the molecular velocity.
As calculations show, the ESL-model describes more accurately the non-equilibrium flow regime, but gives a greater deviation from the Boltzmann equation, than the Shahov model in front of shock waves.
References
1. Bird G. A. Molecular Gas Dynamics and the Direct Simulation of Gas Flow. Oxford: Clarendon Press, 1994. 458 p.
2. Yen S. M. Numerical solution of the nonlinear Boltzmann equation for nonequillibrium gas flow problems // Annual Review of Fluid Mechanics. 1984. V.16. Pp. 67-97.
3. Cheremisin F.G. Konservativnyi metod vychisleniya integrala stolknovenii Bol'tsmana // Doklady Akademii Nauk. 1997. T. 357, № 1. S. 53-56.
4. Morris A. B.,Varghese P. L.,Goldstein D. B. Monte Carlo solution of the Boltzmann equation via a discrete velocity model //Journal of Computational Physics. 2011. Vol. 230. Pp 1264-1280. DOI: 10.1016/j.jcp.2010.10.0375.Cheremisin F. G. Reshenie kineticheskogo uravneniya Bol'tsmana dlya vysokoskorostnykh techenii// Zh. vychisl. matem. i matem. fiz. 2006. T. 46, № 2. C. 329-343.
5. Arslanbekov R. R., Kolobov V. I., Frolova A. A. Kinetic Solvers with Adaptive Mesh in Phase Space // Physical Review E. 2013. V. 88. 063301.
6. Radtke G. A., Hadjiconstantinou N. G. Variance-reduced particle simulation of Boltzmann transport equation in the relaxation-time approximation // Physical Review E. 2009. V.79. P. 056711. DOI: 10.1103/Phys. Rev. E.79. 056711
7. Radtke G. A., Hadjiconstantinou N. G., Wagner W. Low-noise Monte Carlo simulation of the variable hard sphere gas // Physics of Fluids. 2011. V. 23. P. 030606. DOI: 10.1063/1.35588879.Ivanov M. S., Korotchenko M. A., Mikhailov G. A., Rogazinskii S. V. Global'no-vesovoi metod Monte-Karlo dlya nelineinogo uravneniya Bol'tsmana // Zh. vychisl. matem. i matem. fiz. 2005. T. 45, №10. S. 1860-1870.
8. Bhatnagar P. L. Gross E. P., Krook M. A model for collision process in gases // Physical Review. 1954. V. 94. Pp. 511-525.
9. Holway L. H. New statistical models for kinetic theory: Methods of construction// Physics of Fluids. 1966. V. 9. Pp. 1658-1673.
10. Shakhov E. M. Ob obobshchenii relaksatsionnogo kineticheskogo uravneniya Kruka // Izv. AN. SSSR. MZhG. 1968. №5. S.142-145.
11. Struchtrup H. The BGK model with velocity dependent collision frequency // Continuum Mechanics and Thermodynamics. 1997. V. 9, №1. Pp. 23-31.
12. Zheng Y., Struchtrup H. Ellipsoidal statistical Bhatnagar-Gross-Krook model with velocity-dependent collision frequency // Physics of Fluids. 2005. V. 17. P. 127103. DOI: 10.1063/1.214071015.Titarev V. A. Shakhov E.M. Chislennyi raschet poperechnogo obtekaniya kholodnoi plastiny giperzvukovym potokom razrezhennogo gaza // Mekhanika zhidkosti i gaza. 2005. №5. S. 152-167.
13. Andries P., Perthame B. The ES-BGK model equation with correct Prandtl number//Rarefied Gas Dynamics: 22nd International Symposium: AIP Conf. Proc. 2001, CP 585. Pp. 30-36.
14. Belyi V.V. Derivation of model kinetic equation // EPL. 2015. V. 111. 40011. (DOI: 10.1209/0295-5075/111/4011 )
15. Kogan M.N. Dinamika razrezhennogo gaza. M.: Nauka, 1967. 440 s.
16. Andries P., Aoki K., Perthame B. A consistent BGK-type model for gas mixture // J. Stat. Phys. 2002. V.106, N. 516. Pp. 993-1113
17. Groppi M., Spiga G. A Bhatnagar-Gross-Krook -type approach for chemically reacting gas mixture // Physics of Fluids. 2004. V. 16, № 12. Pp 4273-4284.
18. Shakhov E.M. Metod issledovaniya dvizhenii razrezhennogo gaza. M.: Nauka, 1974. 203 s.
19. Kolobov V. I., Arslanbekov R. R., Aristov V. V., Frolova A. A., Zabelok S. A. Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinrment // Journal of Computational Physics. 2007. V. 223. Pp. 589-608.
20. Titarev V. A. Neyavnyi chislennyi metod rascheta prostranstvennykh techenii razrezhennogo gaza na nestrukturirovannykh setkakh. // Zh. vychisl.matem. i matem. fiz. 2010. T. 50, № 10. S.1811-1826.
21. Titarev V. A. Programmnyi kompleks Nesvetai-3D modelirovaniya prostranstvennykh techenii odnoatomnogo razrezhennogo gaza //Nauka i obrazovanie. MGTU im. N.E. Baumana. Elekt. Zhurnal. 2014, N. 6. C. 124-154.
22. Tan Z., Varghese P.L. The method for the Boltzmann equation // Journal of Computational Physics. 1994. V.110. Pp. 327-340.
23. Korobov N.M. Trigonometricheskie summy i ikh prilozhenie. M.: Nauka, 1989. 240 s.
События
-
К платформе Elpub присоединился журнал «Новый Бюллетень Главного ботанического сада» >>>
25 авг 2025 | 13:05 -
Журнал «Здравоохранение стран СНГ» присоединился к Elpub >>>
21 авг 2025 | 12:44 -
Журнал «Дезинфектология» присоединился к Elpub >>>
12 авг 2025 | 09:23 -
Журнал «Архитектура, строительство, транспорт» принят в DOAJ >>>
12 авг 2025 | 09:22 -
К платформе Elpub присоединился журнал «Современная конкуренция» >>>
7 авг 2025 | 09:59