Журналов:     Статей:        

Математика и математическое моделирование. 2015; : 1-12

О линейной независимости некоторых функций над полем рациональных дробей

Иванков П. Л.

Аннотация

В 1955 г. были опубликованы общие теоремы А.Б. Шидловского, которые позволяют свести проблему алгебраической независимости значений аналитических функций одного класса к более простой задаче алгебраической независимости этих функций. Т. к. обобщенные гипергеометрические функции с рациональными параметрами являются функциями, к которым применимы упомянутые общие теоремы, то появилось много работ, в которых устанавливалась алгебраическая независимость таких функций (и их производных). Результаты А.Б. Шидловского обобщают и развивают известный в теории трансцендентных чисел метод Зигеля. Кроме метода Зигеля для решения задач об арифметической природе значений аналитических функций используются также методы, основанные на эффективном построении линейных приближающих форм. С помощью таких методов были получены наиболее точные оценки линейных форм и были установлены многочисленные результаты, касающиеся арифметических свойств значений гипергеометрических функций с иррациональными параметрами. Это показывает, что эффективные методы имеют определенное значение для развития теории трансцендентных чисел. В последнее время в связи с исследованием арифметических свойств значений продифференцированных по параметру гипергеометрических функций потребовались результаты о линейной независимости таких функций над полем рациональных дробей. Подобные исследования проводились и раньше в связи с приложениями общих теорем А.Б. Шидловского, однако, поскольку при этом решалась более трудная задача об алгебраической независимости, приходилось рассматривать функции весьма частного вида. В настоящей работе изучается линейная независимость гипергеометрических функций, продифференцированных по параметру, причем этот параметр входит как в числитель, так и в знаменатель общего члена соответствующего степенного ряда. Установлено условие (в некоторых случаях являющееся необходимым и достаточным) линейной независимости таких функций, которое весьма удобно для проверки в конкретных случаях. Результаты статьи получены с помощью вычисления некоторых определителей, которые естественным образом возникают в связи с рассматриваемыми задачами. В дальнейшем доказанные в настоящей работе теоремы можно будет использовать для получения различных утверждений об арифметической природе значений соответствующих функций.

DOI: 10.7463/mathm.0415.0817328

Список литературы

1. Galochkin A.I. On effective bounds for certain linear forms// New Advances in Transcendence theory. Cambridge, New Rochell, Melbourne, Sydney. 1988. P. 207-215.

2. Иванков П.Л. О линейной независимости некоторых функций // Чебышевский сборник. Т. 11, вып. 1. 2010. С. 145-151.

3. Шидловский А.Б. Трансцендентные числа. М.: Наука, 1987. 447 с.

4. Белогривов И.И. О трансцендентности и алгебраической независимости значений некоторых Е-функций // Вестник МГУ. Сер. 1. Математика, ме- ханика. 1967, № 2. С. 55-62.

5. Белогривов И.И. О трансцендентности и алгебраической независимости значений некоторых гипергеометрических E-функций // Математический сборник. 1970. Т. 82 (124), № 3(7). С. 387-408.

6. Белогривов И.И. О трансцендентности и алгебраической независимости значений Е-функций одного класса // Сибирский математический журнал. 1973. Т. 14, № 1. С. 16-35.

7. Шидловский А.Б. О трансцендентности и алгебраической независимости значений целых функций некоторых классов // ДАН СССР. 1954. Т, 96, № 4. С. 697-700.

8. Шидловский А.Б. О трансцендентности и алгебраической независимости значений целых функций некоторых классов. Ученые записки МГУ. 1959. Выпуск 186. Математика 9. С. 11-70.

9. Шидловский А.Б. О трансцендентности и алгебраической независимости значений некоторых функций // Труды Московского математического об- щества. 1959. Т. 8. С. 283-320.

10. V¨a¨an¨anen K. On a cojecture of Mahler concerning the algebraic independence of the values of some E-functions // Ann. Acad. Sci. Fennicae. Ser. A. Math. 1972. V. 512. P. 3-46.

11. V¨a¨an¨anen K. On the transcendence and algebraic independence of the values of certain E-functions // Ann. Acad. Sci. Fennicae. Ser. A. Math. 1973. V. 537. P. 3-15.

12. Mahler K. Applications of a theorem by A.B.Shidlovski // Proc. Roy. Soc. Ser. A. 1968. V. 305. P. 149-173.

13. Mahler K. Lectures on Transcendental Numbers. Berlin: Springer Verlag. 1976.

14. Иванков П.Л. О линейной независимости значений некоторых функций // Фундаментальная и прикладная математика. 1995. Т. 1, вып. 1. С. 191-206.

15. Фельдман Н.И. Седьмая проблема Гильберта. М.: Изд-во Моск. ун-та. 1982.311 с.

Mathematics and Mathematical Modeling. 2015; : 1-12

On the Linear Independence of Some Functions over the Field of Rational Fractions

Ivankov P. L.

Abstract

In 1955 A.B. Shidlovski's general theorems were published. They allow us to reduce the problem of algebraic independence of the analytic function values, belonging to the specific class, to a simpler problem of algebraic independence of these functions. Since the abovementioned general theorems can be applied to the generalized hyper-geometric functions with rational parameters, there appeared many works in which the algebraic independence of such functions (and their derivatives) had been established. The A.B. Shidlovski's results generalize and develop a Siegel's method well known in the theory of transcendental numbers. Besides the Siegel's method to solve the problems concerning the arithmetic nature of the values of analytic functions one also applies methods based on the effective construction of linear approximating forms. Such methods enabled finding the most accurate estimates of linear forms and obtaining the numerous results concerning the arithmetic properties of the values of hyper-geometric functions with irrational parameters. This shows that effective methods are of some value for the development of the theory of transcendental numbers.
Recently, in the context of studied arithmetic nature of the values of differentiated hypergeometric functions with respect to parameter, there was a need in results concerning the linear independence of such functions over the field of rational fractions. Similar investigations were also conducted earlier because of applications of A.B. Shidlovski's general theorems, but in that case a more difficult problem of algebraic independence had to be solved, and therefore only the simplest functions were considered. The paper studies the issue of linear independence of hypergeometric functions, differentiated with respect to parameter, and this parameter is included both in the numerator and in the denominator of the common member of the appropriate power series. The paper defines a condition (in some cases, it is necessary and sufficient) of linear independence of such functions, which is very convenient for checking in concrete cases. The paper results are obtained by calculating some determinants, which, naturally, arise from the problems under consideration. In the future, the theorems proved in this paper can be used to have the diverse statements concerning the arithmetic nature of the values of the appropriate functions.

DOI: 10.7463/mathm.0415.0817328

References

1. Galochkin A.I. On effective bounds for certain linear forms// New Advances in Transcendence theory. Cambridge, New Rochell, Melbourne, Sydney. 1988. P. 207-215.

2. Ivankov P.L. O lineinoi nezavisimosti nekotorykh funktsii // Chebyshevskii sbornik. T. 11, vyp. 1. 2010. S. 145-151.

3. Shidlovskii A.B. Transtsendentnye chisla. M.: Nauka, 1987. 447 s.

4. Belogrivov I.I. O transtsendentnosti i algebraicheskoi nezavisimosti znachenii nekotorykh E-funktsii // Vestnik MGU. Ser. 1. Matematika, me- khanika. 1967, № 2. S. 55-62.

5. Belogrivov I.I. O transtsendentnosti i algebraicheskoi nezavisimosti znachenii nekotorykh gipergeometricheskikh E-funktsii // Matematicheskii sbornik. 1970. T. 82 (124), № 3(7). S. 387-408.

6. Belogrivov I.I. O transtsendentnosti i algebraicheskoi nezavisimosti znachenii E-funktsii odnogo klassa // Sibirskii matematicheskii zhurnal. 1973. T. 14, № 1. S. 16-35.

7. Shidlovskii A.B. O transtsendentnosti i algebraicheskoi nezavisimosti znachenii tselykh funktsii nekotorykh klassov // DAN SSSR. 1954. T, 96, № 4. S. 697-700.

8. Shidlovskii A.B. O transtsendentnosti i algebraicheskoi nezavisimosti znachenii tselykh funktsii nekotorykh klassov. Uchenye zapiski MGU. 1959. Vypusk 186. Matematika 9. S. 11-70.

9. Shidlovskii A.B. O transtsendentnosti i algebraicheskoi nezavisimosti znachenii nekotorykh funktsii // Trudy Moskovskogo matematicheskogo ob- shchestva. 1959. T. 8. S. 283-320.

10. V¨a¨an¨anen K. On a cojecture of Mahler concerning the algebraic independence of the values of some E-functions // Ann. Acad. Sci. Fennicae. Ser. A. Math. 1972. V. 512. P. 3-46.

11. V¨a¨an¨anen K. On the transcendence and algebraic independence of the values of certain E-functions // Ann. Acad. Sci. Fennicae. Ser. A. Math. 1973. V. 537. P. 3-15.

12. Mahler K. Applications of a theorem by A.B.Shidlovski // Proc. Roy. Soc. Ser. A. 1968. V. 305. P. 149-173.

13. Mahler K. Lectures on Transcendental Numbers. Berlin: Springer Verlag. 1976.

14. Ivankov P.L. O lineinoi nezavisimosti znachenii nekotorykh funktsii // Fundamental'naya i prikladnaya matematika. 1995. T. 1, vyp. 1. S. 191-206.

15. Fel'dman N.I. Sed'maya problema Gil'berta. M.: Izd-vo Mosk. un-ta. 1982.311 s.