Журналов:     Статей:        

Математика и математическое моделирование. 2015; : 50-68

Влияние микроструктуры турбулентности на диффузию тяжелых инерционных частиц

Деревич И. В., Фокина А. Ю.

Аннотация

На основе спектрального разложения корреляции Эйлера несущей среды получена система замкнутых функциональных уравнений для спектров Лагранжа тяжелой инерционной частицы и флуктуаций скорости несущей среды на траектории частицы. При расщеплении четвертых моментов используется приближение квазинормальности и аппроксимация флуктуаций скорости частиц случайным процессом Гаусса. Предложен приближенный самосогласованный метод решения полученной системы функциональных уравнений. Спектр корреляций Эйлера флуктуаций скорости среды моделируется распределениями Кармана. Исследовано влияние инерции частиц, скорости осредненного скольжения и микроструктуры флуктуаций скорости среды на параметры хаотического движения примеси. Показано, что отличие во временных интегральных масштабах корреляции Эйлера и Лагранжа связано с пространственной микроструктурой флуктуаций скорости среды. Установлено, что в отсутствии массовых сил коэффициент стационарной диффузии инерционных частиц всегда выше, чем коэффициент диффузии безынерционной примеси. Проиллюстрирована зависимость коэффициента турбулентной диффузии примеси от структурного параметра турбулентности.

DOI: 10.7463/mathm.0215.0776054

Список литературы

1. Зайчик Л.И., Алипченков В.М. Статистические модели движения частиц в турбулентной жидкости. М.: Физматлит, 2007. 312 с

2. Терехов В.И., Пахомов М.А. Тепломассоперенос и гидродинамика в газокапельных потоках. Новосибирск: НГТУ, 2008. 284 с

3. Фортов В.Е., Храпак А.Г., Храпак С.А., Молотков В.И., Петров О.Ф. Пылевая плазма // Успехи физических наук. 2004. Т. 174, № 5. С. 495-544. DOI : 10.3367/UFNr.0174.200405b.0495

4. Yeh F., Lei U. On the motion of small particles in a homogeneous isotropic turbulent flow // Physics of Fluids A: Fluid Dynamics. 1991. Vol. 3, iss. 11. P. 2571-2586. DOI: 10.1063/1.858198

5. Reynolds A.M., Cohen J.E. Stochastic simulation of heavy-particle trajectories in turbulent flows // Physics of Fluids. 2002. Vol.14, iss. 11. P. 342-351. DOI:10.1063/1.1426392

6. Wetchagaruna S., Riley J.J. Dispersion and temperature statistics of inertial particles in isotropic turbulence // Physics of Fluids. 2010. Vol. 22, iss. 6. Art. no. 063301. DOI:10.1063/1.3392772

7. Deutsch E., Simonin O. Large eddy simulation applied to the modelling of particulate transport coefficients in turbulent two-phase flows // In: Proc. 8th Symp. on Turbulent Shear Flows (Munich. Germany, Sept. 9-11, 1991). Vol. 1. University Park, PA, Pennsylvania State University, 1991. P. 10-1-1 - 10-1-6

8. Minier J.-P., Peirano E. The PDF approach to turbulent polydispersed two-phase flows // Physics Reports. 2001. Vol. 352, iss. 1-3. P. 1-214. DOI: 10.1016/S0370-1573(01)00011-4

9. Wang L.-P., Stock D.E. Dispersion of heavy particles in turbulent motion // Journal of The Atmospheric Sciences. 1993. Vol. 50, no. 13. P. 1897-1913. DOI: 10.1175/1520-0469(1993)050<1897:DOHPBT>2.0.CO;2

10. Derevich I.V. Influence of internal turbulent structure on intensity of particle velocity and temperature fluctuations of particles // International Journal of Heat and Mass Transfer. 2001. Vol. 44, no. 23. P. 4505-4523. DOI: 10.1016/S0017-9310(01)00096-5

11. Yudine M.I. Physical Considerations on Heavy-particle Diffusion // Advances in Geophysics. Vol. 6 / ed. by H.E. Landsberg, J. Van Mieghem. Academic Press, Inc., New York, 1959. P. 185-191

12. Csanady G.T. Turbulent Di ff usion of Heavy Particles in the Atmosphere // Journal of The Atmospheric Sciences. 1963. Vol. 20, no. 3. P. 201-208. DOI: 10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2

13. Tchen C.M. Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. Ph.D. Thesis. Delft University, The Hague, 1947

14. Gouesbet G., Berlemont A., Picart A. Dispersion of discrete particles by continuous turbulent motions: extensive discussion of the Tchen’s theory, using a two parameter family of Lagrangian correlation functions // Physics of Fluids. 1984. Vol. 27. P. 827-835. DOI: 10.1063/1.864711

15. Taylor G.I. Diffusion by continuous movements // Proceedings of The London Mathematical Society. 1922. Vol. s2-20, no. 1. P. 196-212. DOI: 10.1112/plms/s2-20.1.196

16. Corrsin S., Lumley J. On the equation of motion for a particle in Turbulent Fluid // Flow Turbulence and Combustion. 1956. Vol . 6, no . 2 . P .114-116. DOI: 10.1007/BF03185030

17. Гардинер К.В. Стохастические методы в естественных науках: пер. с англ. М.: Мир. 1986. 527 с

18. Монин А.С., Яглом А.М. Статистическая гидромеханика. В 2 ч. Ч. 2. Механика турбулентности. М .: Наука , 1967. 720 с

Mathematics and Mathematical Modeling. 2015; : 50-68

Effect of Turbulence Internal Structure on Diffusion of Heavy Inertial Particles

Derevich I. V., Fokina A. Iu.

Abstract

Based on the spectral expansion of Euler correlation of the carrier medium the a closed system of functional equations for the Lagrange spectra of heavy inertial particles and the velocity fluctuations of the carrier medium on the particle trajectory have been obtained. To split the fourth moments the approximation of quasinormality and velocity fluctuations of particles is performed by a random Gaussian process. The approximate self-consistent method is proposed for solving the resulting system of functional equations. The influence of the particle inertia, the velocity of the averaged slip and microstructure of velocity fluctuations of the medium on the parameters of the chaotic motion of an impurity has been studied. It is shown that the difference in integral time scales of Eulerian and Lagrangian correlations is associated with the spatial microstructure of velocity fluctuations of the medium. It is established that in the absence of mass forces, the coefficient of the stationary diffusion of inertial particles is always greater than the diffusion coefficient of inertialess impurity. The dependence of the turbulent diffusion coefficient of particles impurity on the structural parameter of turbulence has been illustrated. The spectrum of Euler correlations of medium velocity fluctuations is modeled by Karman distributions. The influence of the particle inertia, the velocity of the averaged slip and microstructure of velocity fluctuations of the medium on the parameters of the chaotic motion of an impurity has been studied. It is shown that the difference in integral time scales of Eulerian and Lagrangian correlations is associated with the spatial microstructure of velocity fluctuations of the medium. It is established that in the absence of mass forces, the coefficient of the stationary diffusion of inertial particles is always larger than the diffusion coefficient of inertialess impurity. The dependence of the turbulent diffusion coefficient of particles impurity on the structural parameter of turbulence has been illustrated.

DOI: 10.7463/mathm.0215.0776054

References

1. Zaichik L.I., Alipchenkov V.M. Statisticheskie modeli dvizheniya chastits v turbulentnoi zhidkosti. M.: Fizmatlit, 2007. 312 s

2. Terekhov V.I., Pakhomov M.A. Teplomassoperenos i gidrodinamika v gazokapel'nykh potokakh. Novosibirsk: NGTU, 2008. 284 s

3. Fortov V.E., Khrapak A.G., Khrapak S.A., Molotkov V.I., Petrov O.F. Pylevaya plazma // Uspekhi fizicheskikh nauk. 2004. T. 174, № 5. S. 495-544. DOI : 10.3367/UFNr.0174.200405b.0495

4. Yeh F., Lei U. On the motion of small particles in a homogeneous isotropic turbulent flow // Physics of Fluids A: Fluid Dynamics. 1991. Vol. 3, iss. 11. P. 2571-2586. DOI: 10.1063/1.858198

5. Reynolds A.M., Cohen J.E. Stochastic simulation of heavy-particle trajectories in turbulent flows // Physics of Fluids. 2002. Vol.14, iss. 11. P. 342-351. DOI:10.1063/1.1426392

6. Wetchagaruna S., Riley J.J. Dispersion and temperature statistics of inertial particles in isotropic turbulence // Physics of Fluids. 2010. Vol. 22, iss. 6. Art. no. 063301. DOI:10.1063/1.3392772

7. Deutsch E., Simonin O. Large eddy simulation applied to the modelling of particulate transport coefficients in turbulent two-phase flows // In: Proc. 8th Symp. on Turbulent Shear Flows (Munich. Germany, Sept. 9-11, 1991). Vol. 1. University Park, PA, Pennsylvania State University, 1991. P. 10-1-1 - 10-1-6

8. Minier J.-P., Peirano E. The PDF approach to turbulent polydispersed two-phase flows // Physics Reports. 2001. Vol. 352, iss. 1-3. P. 1-214. DOI: 10.1016/S0370-1573(01)00011-4

9. Wang L.-P., Stock D.E. Dispersion of heavy particles in turbulent motion // Journal of The Atmospheric Sciences. 1993. Vol. 50, no. 13. P. 1897-1913. DOI: 10.1175/1520-0469(1993)050<1897:DOHPBT>2.0.CO;2

10. Derevich I.V. Influence of internal turbulent structure on intensity of particle velocity and temperature fluctuations of particles // International Journal of Heat and Mass Transfer. 2001. Vol. 44, no. 23. P. 4505-4523. DOI: 10.1016/S0017-9310(01)00096-5

11. Yudine M.I. Physical Considerations on Heavy-particle Diffusion // Advances in Geophysics. Vol. 6 / ed. by H.E. Landsberg, J. Van Mieghem. Academic Press, Inc., New York, 1959. P. 185-191

12. Csanady G.T. Turbulent Di ff usion of Heavy Particles in the Atmosphere // Journal of The Atmospheric Sciences. 1963. Vol. 20, no. 3. P. 201-208. DOI: 10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2

13. Tchen C.M. Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. Ph.D. Thesis. Delft University, The Hague, 1947

14. Gouesbet G., Berlemont A., Picart A. Dispersion of discrete particles by continuous turbulent motions: extensive discussion of the Tchen’s theory, using a two parameter family of Lagrangian correlation functions // Physics of Fluids. 1984. Vol. 27. P. 827-835. DOI: 10.1063/1.864711

15. Taylor G.I. Diffusion by continuous movements // Proceedings of The London Mathematical Society. 1922. Vol. s2-20, no. 1. P. 196-212. DOI: 10.1112/plms/s2-20.1.196

16. Corrsin S., Lumley J. On the equation of motion for a particle in Turbulent Fluid // Flow Turbulence and Combustion. 1956. Vol . 6, no . 2 . P .114-116. DOI: 10.1007/BF03185030

17. Gardiner K.V. Stokhasticheskie metody v estestvennykh naukakh: per. s angl. M.: Mir. 1986. 527 s

18. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. V 2 ch. Ch. 2. Mekhanika turbulentnosti. M .: Nauka , 1967. 720 s