Математика и математическое моделирование. 2015; : 1-22
Исследования спектральных свойств операторов с разбегающимися возмущениями (обзор)
Аннотация
Список литературы
1. Ahlrichs R. Convergence properties of the intermolecular Force series ( 1 / R - expansion) // Theoretica Chemica Acta. 1976. Vol. 41 , no. 1. P. 7-15. DOI: 10.1007/BF00558020
2. Aktosun T., Klaus M., van der Mee C. On the number of bound states for the one-dimensional Srödinger equation // Journal of Mathematical Physics. 1998. Vol. 39, no. 9. P. 4249-4259. DOI:10.1063/1.532510
3. Aventini P., Seiler R. On the electronic spectrum of the diatomic molecular ion // Communications in Mathematical Physics. 1975. Vol. 41, no. 2. P. 119-134. DOI: 10.1007/BF01608753
4. Borisov D.I. Asymtotic behaviour of the spectrum of a waveguide with distant perturbation // Mathematical Physics, Analysis and Geometry. 2007. Vol. 10, no. 2. P. 155-196. DOI: 10.1007/s11040-007-9028-1
5. Borisov D.I. Distant perturbation of the Laplacian in a multi-dimensional space // Annales Henri Poincaré. 2007. Vol. 8, no. 7. P. 1371-1399. DOI: 10.1007/s00023-007-0338-4
6. Borisov D.I., Exner P. Exponential splitting of bound states in a waveguide with a pair of distant windows // Journal of Physics A: Mathematics and General. 2004. Vol. 37, no. 10. P. 3411-3428. DOI: 10.1088/0305-4470/37/10/007
7. Davies E.B. The twisting trick for double well Hamiltonians // Communications in Mathematical Physics. 1982. Vol. 85, no. 3. P. 471-479. DOI: 10.1007/BF01208725
8. Davies E.B. Spectral theory and differential operators. New York: Cambridge University Press, 1995. 182 p
9. Dobrokhotov S.Yu., Kolokoltsov V.N, Maslov V.P. Quantization of the Bellman Equation, Exponential Asymptotics and Tunneling // Advances in Soviet Mathematics. 1992. Vol. 13. P. 1-46
10. Golovina A.M. Discrete eigenvalues of periodic operators with distant perturbations // Journal of Mathematical Sciences. 2013. Vol. 189, no. 3. P. 342-364
11. Golovina A.M. On the resolvent of elliptic operators with distant perturbations in the space // Russian Journal of Mathematical Physics. 2012. Vol. 19, no. 2. P. 182-192
12. Graffi V., Grecchi V., Harrell II E.V., Silverstone H.J. The 1 / R expansion for H2+: analyticity, summability, and asymptotics // Annals of Physics. 1985. Vol. 165, no. 2. P. 441-483. DOI: 10.1016/0003-4916(85)90305-7
13. Harrell E.M. Double Wells // Communications in Mathematical Physics. 1980. Vol. 75, no. 3. P. 239-261. DOI: 10.1007/BF01212711
14. Harrell E.M., Klaus M. On the double-well problem for Dirac operators // Annales de l’Institut Henri Poincaré. 1983. Vol. 38, no. 2. P. 153-166
15. Höegh-Krohn R., Mebkhout M. The 1 / r Expansion for the Critical Multiple Well Problem // Communications in Mathematical Physics. 1983. Vol. 91, no. 1. P. 65-73. DOI: 10.1007/BF01206050
16. Hunziker W. Cluster properties of multiparticle systems // Journal of Mathematical Physics. 1965. Vol. 6, no. 1. P. 6-10
17. Klaus M. Some remarks on double-wells in one and three dimensions // Annales de l’Institut Henri Poincaré. 1981. Vol. 34, no. 4. P. 405-417
18. Klaus M. On the bound state of Schrödinger operators in one dimension // Annals of Physics. 1977. Vol. 108, no. 2. P. 288-300. DOI: 10.1016/0003-4916(77)90015-X
19. Klaus M., Simon B. Binding of Schrödinger particles through conspiracy of potential wells // Annales de l’Institut Henri Poincaré, section A. 1979. Vol. 30, no. 2. P. 83-87
20. Klaus M., Simon B. Coupling constants threshold in nonrelativistic quantum mechanics. I. Short-range two-body case // Annals of Physics. 1980. Vol. 130, no. 2. P. 251-281. DOI: 10.1016/0003-4916(80)90338-3
21. Kondej S., Veselič I. Lower bound on the lowest spectral gap of singular potential Hamiltonians // Annales Henri Poincaré. 2007. Vol. 8, no. 1. P. 109-134. DOI: 10.1007/s00023-006-0302-8
22. Kostrykin V., Schrader R. Cluster properties of one particle Schrödinger operators // Reviews in Mathematical Physics. 1994. Vol. 6, no. 5. P. 833-853. DOI: 10.1142/S0129055X94000250
23. Kostrykin V., Schrader R. Scattering theory approach to random Schrödinger operators in one dimension // Reviews in Mathematical Physics. 1999. Vol. 11, no. 2. P. 187-242. DOI: 10.1142/S0129055X99000088
24. Morgan J.D. (III), Simon B. Behavior of molecular potential energy curves for large nuclear separations // International Journal of Quantum Chemistry. 1980. Vol. 17, no. 6. P. 1143-1166. DOI: 10.1002/qua.560170609
25. Pinchover Y. On the localization of binding for Srödinger operators and its extension to elliptic operators // Journal of Mathematical Analysis and its Applications. 1995. Vol. 41, no. 6. P. 57-83
26. Reity O.K. Asymptotic expansions of the potential curves of the relativistic quantum-mechanical two-Coulomb-center problem // Proceeding of Institute of Mathematics of NAS of Ukraine. 2002. Vol. 43, no. 2. P. 672-675
27. Tamura H. Existence of bound states for double well potentials and the Efimov effect // Functional-Analytic Methods for Partial Differential Equations. Springer Berlin Heidelberg, 1990. P. 173-186. (Ser. Lecture Notes in Mathematics; vol. 1450.). DOI:10.1007/BFb0084905
28. Wang X.P. On the existence of the N-body Efimov effect // Journal of Functional Analysis. 2004. Vol. 209, no. 1. P. 137-161. DOI: 10.1016/S0022-1236(03)00170-8
29. Wang X.P., Wang Y. Existence of two-cluster threshold resonances and the N -body Efimov effect // Journal of Mathematical Physics. 2005. Vol . 46, no . 11. P . 156-182. DOI: 10.1063/1.2118467
30. Бирман М.Ш., Соломяк М.З. Спектральная теория самосопряжённых операторов в гильбертовом пространстве. Л.: Изд-во ЛГУ, 1980. 264 с
31. Борисов Д.И. Дискретный спектр пары несимметричных волноводов, соединенных окном // Математический сборник. 2006. T. 197, № 4. С. 3-32
32. Борисов Д.И., Головина А.М. О резольвентах периодических операторов с разбегающимися возмущениями // Уфимский математический журнал. 2012. Т. 4, № 2. С. 65-74
33. Гадыльшин Р.Р. О локальных возмущениях оператора Шредингера на оси // Теоретическая и математическая физика. 2002. T. 132, № 1. С. 97-104
34. Головина А.М. Резольвенты операторов с разбегающимися возмущениями // Математические заметки. 2012. Т. 91, № 3. C. 464-466
35. Головина А.М. О дискретном спектре возмущённого периодического дифференциального оператора // Доклады АН. 2013. Т. 448 , № 3. C. 258-260
36. Головина А.М. О спектре периодических эллиптических операторов с разбегающимися возмущениями в пространстве // Алгебра и анализ. 2013. Т. 25 , № 5. C. 32-60
37. Доброхотов С.Ю., Колокольцов В.Н. Об амплитуде расщепления нижних энергетических уровней оператора Шрёдингера с двумя симметричными ямами // Теоретическая и математическая физика. 1993. Т. 94 , № 3. С. 426-434
38. Доброхотов С.Ю., Колокольцов В.Н, Маслов В.П. Расщепление нижних энергетических уровней уравнения Шрёдингера и асимптотика фундаментального решения уравнения hut=h2Δu/2-V(x)u // Теоретическая и математическая физика. 1991. Т. 87, № 3. С. 323-375
39. Като Т. Теория возмущений линейных операторов: пер. с англ. М.: Мир, 1972. 740 с
40. Рид М., Саймон Б. Методы современной математической физики. Т. 2. Гармонический анализ. Самосопряжённость: пер. с англ. М.: Мир , 1978. 394 c
Mathematics and Mathematical Modeling. 2015; : 1-22
Investigations in the Spectral Properties of Operators with Distant Perturbations (survey)
Abstract
We propose a chronological overview of researches on operators with distant perturbations. Let us explain what "distant perturbations" mean. An elementary example of the operator with distant perturbations is a differential operator of the second order with two finite potentials. Supports of these operators are at a great distance from each other, i.e. they are \distant".
The study of such operators has been performed since the middle of the last century, mostly by foreign researchers see eg. R. Ahlrichs, T. Aktosun, M. Klaus, P. Aventini, P. Exner, E.B. Davies, V. Graffi, E.V. Harrell II, H.J. Silverstone, M. Mebkhout, R. Hoegh-Krohn, W. Hun ziker, V. Kostrykin, R. Schrader, J.D. Morgan (III), Y. Pinchover, O.K. Reity, H. Tamura, X. Wang, Y. Wang, S. Kondej, B. Simon, I. Veselic, D.I. Borisov, A.M. Golovina). The main objects of their investigation were the asymptotic behaviors of eigenvalues and corresponding eigenfunctions of perturbed operators. In several papers the research was focused on resolvents and eigenvalues of perturbed operator arising from the edge of the essential spectrum. The main results of the past century are the first members of the asymptotics of perturbed eigenvalues and the corresponding eigenfunctions and the first members of the asymptotics of resolvents of the perturbed operators. The main results of the last fifteen years are full asymptotic expansions for the eigenvalues and their corresponding functions and an explicit formula for the resolvent of the perturbed operator.
In this paper, we also note that up to 2004 only different kind of potentials were considered as perturbing operators, and Laplace and Dirac operators were considered as unperturbed operators. Only since 2004, nonpotential perturbing operators appeared in the literature. Since 2012, an arbitrary elliptic differential operator is considered as an unperturbed operator.
We propose a classification of investigations on distant perturbations, based on the spectral properties of the operators:
1) investigations into the eigenvalues and the corresponding eigenfunctions of the Laplace
operator with distant potentials;
(a) in the case of a simple limit eigenvalue;
(b) in the case of a multiple limit eigenvalue;
2) investigations into the resolvent of the Laplace operator with several distant potentials;
3) investigations into asymptotic behavior of the eigenvalues arising from the edge of the essential spectrum of the unperturbed operator.
In conclusion, we formulate open problems in this theory:
1. What kind of behavior of the eigenvalues and the corresponding eigenfunctions arising from the edge of the essential spectrum? Under what conditions do they arise? What is their asymptotic expansion?
2. What are the first members of perturbed eigenvalues in the case of an arbitrary finite number of distant perturbations?
References
1. Ahlrichs R. Convergence properties of the intermolecular Force series ( 1 / R - expansion) // Theoretica Chemica Acta. 1976. Vol. 41 , no. 1. P. 7-15. DOI: 10.1007/BF00558020
2. Aktosun T., Klaus M., van der Mee C. On the number of bound states for the one-dimensional Srödinger equation // Journal of Mathematical Physics. 1998. Vol. 39, no. 9. P. 4249-4259. DOI:10.1063/1.532510
3. Aventini P., Seiler R. On the electronic spectrum of the diatomic molecular ion // Communications in Mathematical Physics. 1975. Vol. 41, no. 2. P. 119-134. DOI: 10.1007/BF01608753
4. Borisov D.I. Asymtotic behaviour of the spectrum of a waveguide with distant perturbation // Mathematical Physics, Analysis and Geometry. 2007. Vol. 10, no. 2. P. 155-196. DOI: 10.1007/s11040-007-9028-1
5. Borisov D.I. Distant perturbation of the Laplacian in a multi-dimensional space // Annales Henri Poincaré. 2007. Vol. 8, no. 7. P. 1371-1399. DOI: 10.1007/s00023-007-0338-4
6. Borisov D.I., Exner P. Exponential splitting of bound states in a waveguide with a pair of distant windows // Journal of Physics A: Mathematics and General. 2004. Vol. 37, no. 10. P. 3411-3428. DOI: 10.1088/0305-4470/37/10/007
7. Davies E.B. The twisting trick for double well Hamiltonians // Communications in Mathematical Physics. 1982. Vol. 85, no. 3. P. 471-479. DOI: 10.1007/BF01208725
8. Davies E.B. Spectral theory and differential operators. New York: Cambridge University Press, 1995. 182 p
9. Dobrokhotov S.Yu., Kolokoltsov V.N, Maslov V.P. Quantization of the Bellman Equation, Exponential Asymptotics and Tunneling // Advances in Soviet Mathematics. 1992. Vol. 13. P. 1-46
10. Golovina A.M. Discrete eigenvalues of periodic operators with distant perturbations // Journal of Mathematical Sciences. 2013. Vol. 189, no. 3. P. 342-364
11. Golovina A.M. On the resolvent of elliptic operators with distant perturbations in the space // Russian Journal of Mathematical Physics. 2012. Vol. 19, no. 2. P. 182-192
12. Graffi V., Grecchi V., Harrell II E.V., Silverstone H.J. The 1 / R expansion for H2+: analyticity, summability, and asymptotics // Annals of Physics. 1985. Vol. 165, no. 2. P. 441-483. DOI: 10.1016/0003-4916(85)90305-7
13. Harrell E.M. Double Wells // Communications in Mathematical Physics. 1980. Vol. 75, no. 3. P. 239-261. DOI: 10.1007/BF01212711
14. Harrell E.M., Klaus M. On the double-well problem for Dirac operators // Annales de l’Institut Henri Poincaré. 1983. Vol. 38, no. 2. P. 153-166
15. Höegh-Krohn R., Mebkhout M. The 1 / r Expansion for the Critical Multiple Well Problem // Communications in Mathematical Physics. 1983. Vol. 91, no. 1. P. 65-73. DOI: 10.1007/BF01206050
16. Hunziker W. Cluster properties of multiparticle systems // Journal of Mathematical Physics. 1965. Vol. 6, no. 1. P. 6-10
17. Klaus M. Some remarks on double-wells in one and three dimensions // Annales de l’Institut Henri Poincaré. 1981. Vol. 34, no. 4. P. 405-417
18. Klaus M. On the bound state of Schrödinger operators in one dimension // Annals of Physics. 1977. Vol. 108, no. 2. P. 288-300. DOI: 10.1016/0003-4916(77)90015-X
19. Klaus M., Simon B. Binding of Schrödinger particles through conspiracy of potential wells // Annales de l’Institut Henri Poincaré, section A. 1979. Vol. 30, no. 2. P. 83-87
20. Klaus M., Simon B. Coupling constants threshold in nonrelativistic quantum mechanics. I. Short-range two-body case // Annals of Physics. 1980. Vol. 130, no. 2. P. 251-281. DOI: 10.1016/0003-4916(80)90338-3
21. Kondej S., Veselič I. Lower bound on the lowest spectral gap of singular potential Hamiltonians // Annales Henri Poincaré. 2007. Vol. 8, no. 1. P. 109-134. DOI: 10.1007/s00023-006-0302-8
22. Kostrykin V., Schrader R. Cluster properties of one particle Schrödinger operators // Reviews in Mathematical Physics. 1994. Vol. 6, no. 5. P. 833-853. DOI: 10.1142/S0129055X94000250
23. Kostrykin V., Schrader R. Scattering theory approach to random Schrödinger operators in one dimension // Reviews in Mathematical Physics. 1999. Vol. 11, no. 2. P. 187-242. DOI: 10.1142/S0129055X99000088
24. Morgan J.D. (III), Simon B. Behavior of molecular potential energy curves for large nuclear separations // International Journal of Quantum Chemistry. 1980. Vol. 17, no. 6. P. 1143-1166. DOI: 10.1002/qua.560170609
25. Pinchover Y. On the localization of binding for Srödinger operators and its extension to elliptic operators // Journal of Mathematical Analysis and its Applications. 1995. Vol. 41, no. 6. P. 57-83
26. Reity O.K. Asymptotic expansions of the potential curves of the relativistic quantum-mechanical two-Coulomb-center problem // Proceeding of Institute of Mathematics of NAS of Ukraine. 2002. Vol. 43, no. 2. P. 672-675
27. Tamura H. Existence of bound states for double well potentials and the Efimov effect // Functional-Analytic Methods for Partial Differential Equations. Springer Berlin Heidelberg, 1990. P. 173-186. (Ser. Lecture Notes in Mathematics; vol. 1450.). DOI:10.1007/BFb0084905
28. Wang X.P. On the existence of the N-body Efimov effect // Journal of Functional Analysis. 2004. Vol. 209, no. 1. P. 137-161. DOI: 10.1016/S0022-1236(03)00170-8
29. Wang X.P., Wang Y. Existence of two-cluster threshold resonances and the N -body Efimov effect // Journal of Mathematical Physics. 2005. Vol . 46, no . 11. P . 156-182. DOI: 10.1063/1.2118467
30. Birman M.Sh., Solomyak M.Z. Spektral'naya teoriya samosopryazhennykh operatorov v gil'bertovom prostranstve. L.: Izd-vo LGU, 1980. 264 s
31. Borisov D.I. Diskretnyi spektr pary nesimmetrichnykh volnovodov, soedinennykh oknom // Matematicheskii sbornik. 2006. T. 197, № 4. S. 3-32
32. Borisov D.I., Golovina A.M. O rezol'ventakh periodicheskikh operatorov s razbegayushchimisya vozmushcheniyami // Ufimskii matematicheskii zhurnal. 2012. T. 4, № 2. S. 65-74
33. Gadyl'shin R.R. O lokal'nykh vozmushcheniyakh operatora Shredingera na osi // Teoreticheskaya i matematicheskaya fizika. 2002. T. 132, № 1. S. 97-104
34. Golovina A.M. Rezol'venty operatorov s razbegayushchimisya vozmushcheniyami // Matematicheskie zametki. 2012. T. 91, № 3. C. 464-466
35. Golovina A.M. O diskretnom spektre vozmushchennogo periodicheskogo differentsial'nogo operatora // Doklady AN. 2013. T. 448 , № 3. C. 258-260
36. Golovina A.M. O spektre periodicheskikh ellipticheskikh operatorov s razbegayushchimisya vozmushcheniyami v prostranstve // Algebra i analiz. 2013. T. 25 , № 5. C. 32-60
37. Dobrokhotov S.Yu., Kolokol'tsov V.N. Ob amplitude rasshchepleniya nizhnikh energeticheskikh urovnei operatora Shredingera s dvumya simmetrichnymi yamami // Teoreticheskaya i matematicheskaya fizika. 1993. T. 94 , № 3. S. 426-434
38. Dobrokhotov S.Yu., Kolokol'tsov V.N, Maslov V.P. Rasshcheplenie nizhnikh energeticheskikh urovnei uravneniya Shredingera i asimptotika fundamental'nogo resheniya uravneniya hut=h2Δu/2-V(x)u // Teoreticheskaya i matematicheskaya fizika. 1991. T. 87, № 3. S. 323-375
39. Kato T. Teoriya vozmushchenii lineinykh operatorov: per. s angl. M.: Mir, 1972. 740 s
40. Rid M., Saimon B. Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost': per. s angl. M.: Mir , 1978. 394 c
События
-
Журнал «Известия нижневолжского агроуниверситетского комплекса» >>>
8 сен 2023 | 12:31 -
15 журналов КФУ на платформе Elpub >>>
1 сен 2023 | 11:14 -
Журнал «Подводные исследования и робототехника» на Elpub >>>
31 авг 2023 | 14:55 -
Журнал «Архив педиатрии и детской хирургии» на Elpub >>>
31 авг 2023 | 14:52 -
Журнал «Вестник Новгородского государственного университета» на Elpub >>>
31 авг 2023 | 14:50