Журналов:     Статей:        

Математика и математическое моделирование. 2015; : 18-35

Нестационарные эффекты в реакторе Фишера-Тропша с неподвижным слоем частиц катализатора

Деревич И. В., Галдина Д. Д.

Аннотация

На основе анализа малых возмущений температуры в реакторе Фишера-Тропша с неподвижным слоем гранул катализатора исследуются сценарии потери тепловой устойчивости. Установлены два сценария потери тепловой устойчивости реактора. Во-первых, возможна потеря тепловой стабильности внутри каталитических гранул, приводящая к росту их температуры. Во-вторых, неконтролируемое увеличение температуры в объеме реактора. Границы, термической стабильность получены на основе решения задач на собственные значения для сферических гранул катализатора и цилиндрического реактора. Моделируются процессы диффузионного торможения в порах гранул, тепловыделение в объеме гранул и охлаждение стенок реактора. Оценки границ термической стабильности сопоставляются с результатами численного моделирования нестационарного поведения температур и концентрации синтез-газа.

DOI: 10.7463/mathm.0115.0777093

Список литературы

1. Сторч Г., Голамбик Н., Андерсон Р. Синтез углеводородов из окиси углерода и водорода: пер. с англ. М.: Изд-во иностранной литературы , 1954. 516 c

2. Steynberg P., Dry M.E., Davis B.H., Breman B.B. Ch. 2. Fischer-Tropsch Reactors Studies // In: Fischer-Tropsch Technology / ed. by A. Steynberg, M. Dry. Elsevier, 2004. P. 64-195. (Ser. Surface Science and Catalysis; vol. 152.). DOI: 10.1016/S0167-2991(04)80459-2

3. Козюков Е.А., Крылова А.Ю., Крылова М.В. Химическая переработка природного газа. М.: Изд-во МАИ , 2006. 184 с

4. Warden R.B., Aris R., Amundson N.R. An Analysis of Chemical Reactor Stability and Control-VIII: The Direct Method of Lyapunov. Introduction and Applications to Simple Reactions in Stirred Vessels // Chemical Engineering Science. 1964. Vol. 19, no. 3. P. 149-172. DOI: 10.1016/0009-2509(64)85027-2

5. Strozzi F., Alo´s M.A., Zaldi´var J.M. A Method for Assessing Thermal Stability of Batch Reactors by Sensitivity Calculation Based on Lyapunov Exponents: Experimental Verification // Chemical Engineering Science. 1994. Vol. 49, no. 24. P. 5549-5561. DOI: 10.1016/0009-2509(94)00302-5

6. Dubljevic S., Kazantzis N. A new Lyapunov Design Approach for Nonlinear Systems Based on Zubov’s method // Automatica. 2002. Vol. 38, no. 11. P. 1999-2007. DOI: 10.1016/S0005-1098(02)00110-3

7. Özkan L., Kothare M.V. Stability Analysis of A Multi-Model Predictive Control Algorithm with Application to Control of Chemical Reactors // Journal of Process Control. 2006. Vol. 16, no. 2. P. 81-90. DOI: 10.1016/j.jprocont.2005.06.013

8. Himmelsbach W., Houlton D., Ortlieb D., Lovallo M. New Advances in Agitation Technology for Exothermic Reactions in Very Large Reactors // Chemical Engineering Science. 2006. Vol. 61, no. 9. P. 3044-3052. DOI: 10.1016/j.ces.2005.10.059

9. Maestri F., Rota R. Temperature Diagrams for Preventing Decomposition or Side Reactions in Liquid-Liquid Semibatch Reactors // Chemical Engineering Science. 2006. Vol. 61, no. 10. P. 3068-3078. DOI: 10.1016/j.ces.2005.11.055

10. Pao V. Asymptotic Stability of Reaction-Diffusion Systems in Chemical Reactor and Combustion Theory // Journal of Mathematical Analysis and Applications. 1981. Vol. 82, no. 2. P. 503-526. DOI: 10.1016/0022-247X(81)90213-4

11. Drake J.A., Radke C. J., Newman J. Transient Linear Stability of a Simons-Process Gas-Liquid Electrochemical Flow Reactor Using Numerical Simulations // Chemical Engineering Science. 2001. Vol. 56, no. 20. P. 5815-5834. DOI: 10.1016/S0009-2509(01)00268-8

12. Ojeda M., Nabar R., Nilekar A., Ishikawa A., Mavrikakis M., Iglesia E. CO Activation Pathways and the Mechanism of Fischer-Tropsch Synthesis // Journal of Catalysis. 2010. Vol. 272, no. 2. P. 287-297. DOI: 10.1016/j.jcat.2010.04.012

13. Borg O., Eri S., Blekkan E.A., Storster S., Wigum H., Rytter E., Holmen A. Fischer-Tropsch synthesis over γ-alumina-supported cobalt catalysts: Effect of support variables // Journal of Catalysis. 2007. Vol. 248, no. 1. P. 89-100. DOI: 10.1016/j.jcat.2007.03.008

14. Derevich I.V., Ermolaev V.S., Zolnikova N.V., Mordkovich V.Z. Modeling the Thermal and Physical Properties of Liquid and Gas Mixtures of Fischer-Tropsch Synthesis Products // Theoretical Foundations of Chemical Engineering. 2011. Vol. 45, no. 2. P. 221-226. DOI: 10.1134/S0040579511020060

Mathematics and Mathematical Modeling. 2015; : 18-35

Transient Effects in Fischer-Tropsch Reactor with a Fixed Bed of Catalyst Particles

Derevich I. V., Galdina D. D.

Abstract

Based on analysis of small temperature disturbances in the Fischer-Tropsch reactor with a fixed bed of catalyst particles various scenarios of thermal instability were investigated. There are two possible scenarios of thermal instability of the reactor. First, thermal explosion may occur due to growth of temperature disturbances inside a catalytic granule. Second scenario connected with loss of thermal stability as a result of an initial increase in temperature in the reactor volume. The boundaries of thermal stability of the reactor were estimated by solving the eigenvalue problems for spherical catalyst particles and cylindrical reactor. Processes of diffusional resistance inside the catalytic granule and heat transfer from wall of the reactor tube are taken into account. Estimation of thermal stability area is compared with the results of numerical simulation of behavior of temperature and concentration of synthesis gas.

DOI: 10.7463/mathm.0115.0777093

References

1. Storch G., Golambik N., Anderson R. Sintez uglevodorodov iz okisi ugleroda i vodoroda: per. s angl. M.: Izd-vo inostrannoi literatury , 1954. 516 c

2. Steynberg P., Dry M.E., Davis B.H., Breman B.B. Ch. 2. Fischer-Tropsch Reactors Studies // In: Fischer-Tropsch Technology / ed. by A. Steynberg, M. Dry. Elsevier, 2004. P. 64-195. (Ser. Surface Science and Catalysis; vol. 152.). DOI: 10.1016/S0167-2991(04)80459-2

3. Kozyukov E.A., Krylova A.Yu., Krylova M.V. Khimicheskaya pererabotka prirodnogo gaza. M.: Izd-vo MAI , 2006. 184 s

4. Warden R.B., Aris R., Amundson N.R. An Analysis of Chemical Reactor Stability and Control-VIII: The Direct Method of Lyapunov. Introduction and Applications to Simple Reactions in Stirred Vessels // Chemical Engineering Science. 1964. Vol. 19, no. 3. P. 149-172. DOI: 10.1016/0009-2509(64)85027-2

5. Strozzi F., Alo´s M.A., Zaldi´var J.M. A Method for Assessing Thermal Stability of Batch Reactors by Sensitivity Calculation Based on Lyapunov Exponents: Experimental Verification // Chemical Engineering Science. 1994. Vol. 49, no. 24. P. 5549-5561. DOI: 10.1016/0009-2509(94)00302-5

6. Dubljevic S., Kazantzis N. A new Lyapunov Design Approach for Nonlinear Systems Based on Zubov’s method // Automatica. 2002. Vol. 38, no. 11. P. 1999-2007. DOI: 10.1016/S0005-1098(02)00110-3

7. Özkan L., Kothare M.V. Stability Analysis of A Multi-Model Predictive Control Algorithm with Application to Control of Chemical Reactors // Journal of Process Control. 2006. Vol. 16, no. 2. P. 81-90. DOI: 10.1016/j.jprocont.2005.06.013

8. Himmelsbach W., Houlton D., Ortlieb D., Lovallo M. New Advances in Agitation Technology for Exothermic Reactions in Very Large Reactors // Chemical Engineering Science. 2006. Vol. 61, no. 9. P. 3044-3052. DOI: 10.1016/j.ces.2005.10.059

9. Maestri F., Rota R. Temperature Diagrams for Preventing Decomposition or Side Reactions in Liquid-Liquid Semibatch Reactors // Chemical Engineering Science. 2006. Vol. 61, no. 10. P. 3068-3078. DOI: 10.1016/j.ces.2005.11.055

10. Pao V. Asymptotic Stability of Reaction-Diffusion Systems in Chemical Reactor and Combustion Theory // Journal of Mathematical Analysis and Applications. 1981. Vol. 82, no. 2. P. 503-526. DOI: 10.1016/0022-247X(81)90213-4

11. Drake J.A., Radke C. J., Newman J. Transient Linear Stability of a Simons-Process Gas-Liquid Electrochemical Flow Reactor Using Numerical Simulations // Chemical Engineering Science. 2001. Vol. 56, no. 20. P. 5815-5834. DOI: 10.1016/S0009-2509(01)00268-8

12. Ojeda M., Nabar R., Nilekar A., Ishikawa A., Mavrikakis M., Iglesia E. CO Activation Pathways and the Mechanism of Fischer-Tropsch Synthesis // Journal of Catalysis. 2010. Vol. 272, no. 2. P. 287-297. DOI: 10.1016/j.jcat.2010.04.012

13. Borg O., Eri S., Blekkan E.A., Storster S., Wigum H., Rytter E., Holmen A. Fischer-Tropsch synthesis over γ-alumina-supported cobalt catalysts: Effect of support variables // Journal of Catalysis. 2007. Vol. 248, no. 1. P. 89-100. DOI: 10.1016/j.jcat.2007.03.008

14. Derevich I.V., Ermolaev V.S., Zolnikova N.V., Mordkovich V.Z. Modeling the Thermal and Physical Properties of Liquid and Gas Mixtures of Fischer-Tropsch Synthesis Products // Theoretical Foundations of Chemical Engineering. 2011. Vol. 45, no. 2. P. 221-226. DOI: 10.1134/S0040579511020060