Журналов:     Статей:        

Вестник КазНУ. Серия химическая. 2020; 97: 10-15

Получение люминесцентного материала на основе NaBaY(BO3)2, легированного ионами тербия и европия

Оразов Ж. К., Болатов А. К., Кононова Н. Г., Шевченко В. С., Кох К. А., Уралбеков Б. М., Кузнецов А. Б., Кох А. Е.

https://doi.org/10.15328/cb1122

Аннотация

Новый люминесцентный материал на основе сложного бората NaBaY(BO3)2, легированный ионами Tb3+ и Eu3+, получен методом высокотемпературного твердофазного синтеза. Методом рентгенофазового анализа показано, что NaBaY(BO3)2:0,07Tb3+:0,1Eu3+ кристаллизуется в тригональной сингонии с пространственной группой R-3m и изотипно минералу бючлииту K2Ca(CO3)2. Кристаллическая структура люминофора является слоистой, сформированной из [BO3] треугольников, [YO6] октаэдров, [BaO9] и [NaO9] полиэдров. Рассчитанные значения параметров элементарной ячейки составляют для NaBaY(BO3)2:0,07Tb3+:0,1Eu3+: a=5,3510(6) Å, c=17,9338(3) Å, V=444,71(2) Å3. Исследованы люминесцентные свойства NaBaY(BO3)2:0,07Tb3+:0,1Eu3+.

Список литературы

1. Chen C, Wu Y, Jiang A, Wu B, You G, et al (1989) J Opt Soc Am B 6:616-621. https://doi.org/10.1364/JOSAB.6.000616

2. Cheng LK, Bosenberg W, Tang CL (1988) J Cryst Growth 89:553-559. https://doi.org/10.1016/0022-0248(88)90218-7

3. Jiang H, Li J, Wang J, Hu XB, Liu H, Teng B, Wang P (2001) J Cryst Growth 233:248-252. https://doi.org/10.1016/S0022-0248(01)01562-7

4. Wang DY, Chen TM, Cheng BM (2012) Inorg Chem 51:2961-2965. https://doi.org/10.1021/ic202241h

5. Wu Y, Ding D, Pan S, Yang F, Ren G (2011) Opt Mater 33:655-659. https://doi.org/10.1016/j.optmat.2010.11.024

6. Kuznetsov AB, Kokh KA, Kononova NG, Shevchenko VS, Rashchenko SV, et al (2020) J Lumin 217:116755. https://doi.org/10.1016/j.jlumin.2019.116755

7. Chen X, Zhang F, Shi Y, Sun Y, Yang Z, Pan S (2018) Dalton Trans 47:750-757. https://doi.org/10.1039/C7DT04223J

8. Li RK, Wu CC, Xia MJ (2016) Opt Mater 62:452-457. https://doi.org/10.1016/j.optmat.2016.10.025

9. Chen P, Xia M, Li RK (2015) New J Chem 39:9389-9395. https://doi.org/10.1039/C5NJ01913C

10. Xia M, Zhai K, Lu J, Sun Y, Li RK (2017) Inorg Chem 56:8100-8105. https://doi.org/10.1021/acs.inorgchem.7b00756

11. Mutailipu M, Xie Z, Su X, Zhang M, Wang Y, Yang Z, Pan S (2017) J Am Chem Soc 139:18397-18405. https://doi.org/10.1021/jacs.7b11263

12. Xie Z, Mutailipu M, He G, Han G, Wang Y, Yang Z, Pan S (2018) Chem Mater 30:2414-2423. https://doi.org/10.1021/acs.chemmater.8b00491

13. Kuznetsov AB, Ezhov DM, Kokh KA, Kononova NG, Shevchenko VS, et al (2018) Mater Res Bull 107:333-338. https://doi.org/10.1016/j.materresbull.2018.07.037

14. Kuznetsov AB, Ezhov DM, Kokh KA, Kononova NG, Shevchenko VS, et al (2019) J Cryst Growth 519: 54-59. https://doi.org/10.1016/j.jcrysgro.2019.05.007

15. Uralbekov B, Shevchenko V, Kuznetsov A, Kokh A, Kononova N, et al (2019) J Lumin 216:116712. https://doi.org/10.1016/j.jlumin.2019.116712

16. Seryotkin YV, Bakakin VV, Kokh AE, Kononova NG, Svetlyakova TN, et al (2010) J Solid State Chem 183:1200-1204. https://doi.org/10.1016/j.jssc.2010.03.005

17. Svetlyakova TN, Kokh AE, Kononova NG, Fedorov PP, Rashchenko SV, Maillard A (2013) Crystallogr Rep 58:54-60. https://doi.org/10.1134/S1063774513010136

18. Kononova N, Shevchenko V, Kokh A, Nabeeva T, Chapron D, et al (2016) Mater Res 19:834-838. https://doi.org/10.1590/1980-5373-MR-2016-0081

19. Kokh AE, Kononova NG, Shevchenko VS, Seryotkin YV, Bolatov AK, et al (2017) J Alloys Comp 711:440-445. https://doi.org/10.1016/j.jallcom.2017.03.322

20. Eurasian Patent №025559. The photoluminescent material of rare-earth orthoborate and method for its production [Fotolyuminestsentnyy material redkozemel’nogo ortoborata i sposob yego polucheniya]/ Kokh АЕ, Kononova NG, Shevchenko VS, Seryotkin YV, Bolatov AK, Uralbekov BM, Burkitbayev M: published 30.01.2017, № 1’2017. (In Russian)

21. Gao J, Song L, Hu X, Zhang D (2011) Solid State Sci 13:115-119. https://doi.org/10.1016/j.solidstatesciences.2010.10.021

22. Kononova NG, Shevchenko VS, Kokh AE, Bolatov AK, Uralbekov BM, et al (2017) Cryst Res Technol 52:1700024. https://doi.org/10.1002/crat.201700024

23. Akella A, Keszler DA (1995) Mater Res Bull 30:105-111. https://doi.org/10.1016/0025-5408(94)00113-8

24. Tang H, Li Y, Yang R, Gao W (2019) J Lumin 208:253-258. https://doi.org/10.1016/j.jlumin.2018.12.058

25. Geng W, Zhou X, Ding J, Wang Y (2018) J Am Ceram Soc 101:4560-4571. https://doi.org/10.1111/jace.15693

26. Peng Y, Lian Z, Zhang L, Shen G, Wang X, Yan Q (2014) Mater Express 4:533-538. https://doi.org/10.1166/mex.2014.1195

27. Freidzon AY, Kurbatov IA., Vovna VI (2018) Phys Chem Chem Phys 20:14564-14577. https://doi.org/10.1039/C7CP08366A

Chemical Bulletin of Kazakh National University. 2020; 97: 10-15

Obtaining of luminescent material based on NaBaY(BO3)2 doped with terbium and europium ions

Orazov Zh. K., Bolatov A. K., Kononova N. G., Shevchenko V. S., Kokh K. A., Uralbekov B. M., Kuznetsov A. B., Kokh A. E.

https://doi.org/10.15328/cb1122

Abstract

A new luminescent material based on complex borate NaBaY(BO3)2 doped with Tb3+ and Eu3+ ions was obtained by high-temperature solid-state synthesis. Using X-ray diffraction analysis it was shown that NaBaY(BO3)2:0.07Tb3+:0.1Eu3+ crystallizes in trigonal system with the space group R-3m and isotypic with the mineral buetschliit K2Ca(CO3)2. The crystal structure of the phosphor is layered, formed from [BO3] triangles, [YO6] octahedra, [BaO9] and [NaO9] polyhedra. The calculated unit cell parameters for NaBaY(BO3)2:0.07Tb3+:0.1Eu3+ are: a=5.3510(6) Å, c=17.9338(3) Å, V=444.71(2) Å3. The luminescent properties of NaBaY(BO3)2:0.07Tb3+:0.1Eu3+ were studied.

References

1. Chen C, Wu Y, Jiang A, Wu B, You G, et al (1989) J Opt Soc Am B 6:616-621. https://doi.org/10.1364/JOSAB.6.000616

2. Cheng LK, Bosenberg W, Tang CL (1988) J Cryst Growth 89:553-559. https://doi.org/10.1016/0022-0248(88)90218-7

3. Jiang H, Li J, Wang J, Hu XB, Liu H, Teng B, Wang P (2001) J Cryst Growth 233:248-252. https://doi.org/10.1016/S0022-0248(01)01562-7

4. Wang DY, Chen TM, Cheng BM (2012) Inorg Chem 51:2961-2965. https://doi.org/10.1021/ic202241h

5. Wu Y, Ding D, Pan S, Yang F, Ren G (2011) Opt Mater 33:655-659. https://doi.org/10.1016/j.optmat.2010.11.024

6. Kuznetsov AB, Kokh KA, Kononova NG, Shevchenko VS, Rashchenko SV, et al (2020) J Lumin 217:116755. https://doi.org/10.1016/j.jlumin.2019.116755

7. Chen X, Zhang F, Shi Y, Sun Y, Yang Z, Pan S (2018) Dalton Trans 47:750-757. https://doi.org/10.1039/C7DT04223J

8. Li RK, Wu CC, Xia MJ (2016) Opt Mater 62:452-457. https://doi.org/10.1016/j.optmat.2016.10.025

9. Chen P, Xia M, Li RK (2015) New J Chem 39:9389-9395. https://doi.org/10.1039/C5NJ01913C

10. Xia M, Zhai K, Lu J, Sun Y, Li RK (2017) Inorg Chem 56:8100-8105. https://doi.org/10.1021/acs.inorgchem.7b00756

11. Mutailipu M, Xie Z, Su X, Zhang M, Wang Y, Yang Z, Pan S (2017) J Am Chem Soc 139:18397-18405. https://doi.org/10.1021/jacs.7b11263

12. Xie Z, Mutailipu M, He G, Han G, Wang Y, Yang Z, Pan S (2018) Chem Mater 30:2414-2423. https://doi.org/10.1021/acs.chemmater.8b00491

13. Kuznetsov AB, Ezhov DM, Kokh KA, Kononova NG, Shevchenko VS, et al (2018) Mater Res Bull 107:333-338. https://doi.org/10.1016/j.materresbull.2018.07.037

14. Kuznetsov AB, Ezhov DM, Kokh KA, Kononova NG, Shevchenko VS, et al (2019) J Cryst Growth 519: 54-59. https://doi.org/10.1016/j.jcrysgro.2019.05.007

15. Uralbekov B, Shevchenko V, Kuznetsov A, Kokh A, Kononova N, et al (2019) J Lumin 216:116712. https://doi.org/10.1016/j.jlumin.2019.116712

16. Seryotkin YV, Bakakin VV, Kokh AE, Kononova NG, Svetlyakova TN, et al (2010) J Solid State Chem 183:1200-1204. https://doi.org/10.1016/j.jssc.2010.03.005

17. Svetlyakova TN, Kokh AE, Kononova NG, Fedorov PP, Rashchenko SV, Maillard A (2013) Crystallogr Rep 58:54-60. https://doi.org/10.1134/S1063774513010136

18. Kononova N, Shevchenko V, Kokh A, Nabeeva T, Chapron D, et al (2016) Mater Res 19:834-838. https://doi.org/10.1590/1980-5373-MR-2016-0081

19. Kokh AE, Kononova NG, Shevchenko VS, Seryotkin YV, Bolatov AK, et al (2017) J Alloys Comp 711:440-445. https://doi.org/10.1016/j.jallcom.2017.03.322

20. Eurasian Patent №025559. The photoluminescent material of rare-earth orthoborate and method for its production [Fotolyuminestsentnyy material redkozemel’nogo ortoborata i sposob yego polucheniya]/ Kokh AE, Kononova NG, Shevchenko VS, Seryotkin YV, Bolatov AK, Uralbekov BM, Burkitbayev M: published 30.01.2017, № 1’2017. (In Russian)

21. Gao J, Song L, Hu X, Zhang D (2011) Solid State Sci 13:115-119. https://doi.org/10.1016/j.solidstatesciences.2010.10.021

22. Kononova NG, Shevchenko VS, Kokh AE, Bolatov AK, Uralbekov BM, et al (2017) Cryst Res Technol 52:1700024. https://doi.org/10.1002/crat.201700024

23. Akella A, Keszler DA (1995) Mater Res Bull 30:105-111. https://doi.org/10.1016/0025-5408(94)00113-8

24. Tang H, Li Y, Yang R, Gao W (2019) J Lumin 208:253-258. https://doi.org/10.1016/j.jlumin.2018.12.058

25. Geng W, Zhou X, Ding J, Wang Y (2018) J Am Ceram Soc 101:4560-4571. https://doi.org/10.1111/jace.15693

26. Peng Y, Lian Z, Zhang L, Shen G, Wang X, Yan Q (2014) Mater Express 4:533-538. https://doi.org/10.1166/mex.2014.1195

27. Freidzon AY, Kurbatov IA., Vovna VI (2018) Phys Chem Chem Phys 20:14564-14577. https://doi.org/10.1039/C7CP08366A