Advanced technologies and computer science. 2021; : 10-16
Graph theory in analysis of paleoclimatic time series
Knyazeva I. S., Makarenko N. G., Pak A. A.
Abstract
At the current work, we present the results of diagnostic of similarities of various paleo reconstructions of temperatures with the help of network approaches. The first step of data processing is transformations of correlational patterns of time series into the geometry of the corresponding network, which is an input for further processing steps by methods of algebraic topology. To detect the possible nonlinear connections between climatic series and solar activity, we propose the approach based on network generation with the help of embedding time series into the feature space of the corresponding dimension. In conclusion, we give markovian chains for climatic reconstructions and Wolf numbers.
References
1. Christiansen B. “Reconstructing the NH mean temperature: Can underestimation of trends and variability be avoided?” J. Clim., (2011). 24(3). 674–692, doi: 10.1175/2010JCLI3646.1.
2. Monin A. S., D. M. Sonechkin, Observational Climate Fluctuations. Moscow: Nauka, 2005.
3. Ott E., Sauer T., Yorke J. A., Coping with chaos. Analysis of chaotic data and the exploitation of chaotic systems. (1994).
4. Makarenko N. G., Karimova L. M., Helama S., Eronen M. “Evaluating direct and indirect evidence of climatic change by Hölder regularity and order pattern in time series,” Geomagn. Aeron., (2013). 53. 8. 922–926, Dec., doi: 10.1134/S0016793213080148.
5. Tsonis A. A., Swanson K. L., Roebber P. J. What do networks have to do with climate? Bull. Am. Meteorol. Soc. 2006. 87(5). 585–595, doi: 10.1175/BAMS-87-5-585.
6. Paluš M., Hartman D., Hlinka J., Vejmelka M. Discerning connectivity from dynamics in climate networks. Nonlinear Process. Geophys. 2011. 18(5). 751–763, doi: 10.5194/npg-18-751-2011.
7. Nagovitsin Y. A. Nonlinear mathematical model of the solar cycle process and possibilities for reconstruction of past activity. Pisma v AZh. 1997. 23(11).
8. Ogurtsov M.G., Junger H., Lindholm M., Helama S., Dergachev V. A. Quasisecular cyclicity in the climate of the earth’s nothern hemisphere and its possible correlation with solar activity variations. Solar-Terrestrial Phys. 2007. 10(123). 10–15.
9. Briffa K. R. Annual variability in the Holocene: Interpreting the message of ancient trees. Quat. Sci. Rev. 2000. 19. 87–105.
10. Esper J., Cook E. Schweingruber F. H. Low-frequency signals in long tree-ring chronologies and the reconstruction of past temperature variability. Science (80-. ). 2002. 295. 2250–2253.
11. Jones P. D., Briffa K. R., Barnett T. P. Tett F. B. High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures. The Holocene. 1998. 8(4). 455–471, doi: 10.1191/095968398667194956.
12. Mann M. E., Bradley M. K., Raymond S. Hughes. Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophys. Res. Lett. 1999. 26. 759–762.
13. Crowley T. J. Lowery T. S. How warm was the Medieval warm period?. Ambio. 2000. 29. 51–54.
14. Moberg A., Sonechkin D. M., Holmgren K., Datsenko M. H., Karlén W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data Nature. 2005. 433(7026). 613–617, doi: 10.1038/nature03265.
15. Gao Z. K., Small M., Kurths J. Complex network analysis of time series. EPL. 2016. 116(5). 50001, doi: 10.1209/0295-5075/116/50001.
16. Small M., Zhang, J. Xu X. Transforming time series into complex networks. in Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering. 2009. 5(2). 2078–2089, doi: 10.1007/978-3-642-02469-6_84.
17. Zhang J., Small M. Complex network from pseudoperiodic time series: Topology versus dynamics. Phys. Rev. Lett. 2006. 96 (23). 238701, doi: 10.1103/PhysRevLett.96.238701.
18. Battista D., Eades G., Tamassia R., Tollis I.G., Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall. 1999.
19. Letellier C., Aguirre L. A., Maquet J., and R. Gilmore, Evidence for low dimensional chaos in sunspot cycles. Astron. Astrophys. 2006. 449(1). 379–387. doi: 10.1051/0004-6361:20053947.
20. Xu X. K., Zhang J., Li P., Small M. Changing motif distributions in complex networks by manipulating rich-club connections. Phys. A Stat. Mech. its Appl. 2011. 390(23–24). 4621–4626, doi: 10.1016/j.physa.2011.06.069.
21. Alekseev V. V., Makarenko N. G., Knyazeva I. S. Graph Dynamics of Solar Active Regions: Morse–Smale Complexes and Multiscale Graphs of Magnetograms. Astron. Lett. 2020. 46(7). 488–500, doi: 10.1134/S1063773720070014.
22. Shirazi A. H., Jafari G. R., Davoudi J., Peinke J., Rahimi M. R. Tabar, Sahimi M. Mapping stochastic processes onto complex networks J. Stat. Mech. Theory Exp. 2009. 9(7). P07046, doi: 10.1088/1742-5468/2009/07/P07046.
События
-
К платформе Elpub присоединился журнал «Eurasian Journal of Economic and Business Studies» >>>
5 ноя 2025 | 08:43 -
Журнал «Весці Нацыянальнай акадэміі навук Беларусі: Серыя фізіка-тэхнічных наву» принят в DOAJ >>>
5 ноя 2025 | 08:42 -
Журнал «Ученые записки Российской академии предпринимательства» принят в DOAJ >>>
5 ноя 2025 | 08:41 -
Журнал «Биотехнология и селекция растений» принят в Scopus >>>
31 окт 2025 | 08:39 -
Научный периодический электронный рецензируемый студенческий журнал «Scientia Juvenum» теперь на Elpub >>>
30 окт 2025 | 12:58
