Журналов:     Статей:        

Валеология: Здоровье, Болезнь, Выздоровление. 2021; : 51-57

СОСТОЯНИЕ СИСТЕМЫ ГЕМОСТАЗА И ОСОБЕННОСТИ АНТИТРОМБОТИЧЕСКОЙ ТЕРАПИИ ПРИ КОРОНАВИРУСНОЙ ИНФЕКЦИИ

РАХИМБЕКОВА Г. А., БУЯЛЬСКАЯ А. Л.

Аннотация

   В обзоре рассматриваются изменения показателей системы гемостаза у больных COVID-19 и анализируется их практическое значение. Анализируются современные подходы к профилактике и лечению тромботических осложнений при COVID-19.

Список литературы

1. Bikdeli B., Madhavan M. V., Jimenez D., et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up. JACC. 2020. doi: 10.1016/j.jacc.2020.04.031.

2. Kloka F. A., Kruipb M. J. H. A., van der Meerc N. J. M., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020. doi: 10.1016/j.thromres.2020.04.013.

3. Cui S., Chen S., Li X, Liu S., Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020. doi: 10.1111/JTH.14830.

4. Poissy J., Goutay J., Caplan M., et al. Pulmonary Embolism in COVID19 Patients: Awareness of an Increased Prevalence. Circulation. 2020. doi: 10.1161/CIRCULATIONAHA.120.047430.

5. Dolhnikoff M., Duarte-Neto A. N., Monteiro R. A. A., et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID19. J Thromb Haemost. 2020. doi: 10.1111/JTH.14844.

6. Carsana L., Sonzogni A., Nasr A. Pulmonary post-mortem findings in a large series of COVID-19 cases from Northern Italy. doi: 10.1101/2020.04.19.20054262 https://www.medrxiv.org/content/10.1101/2020.04.19.20054262v1.

7. Thachil J., Tang N., Gando S., et al. ISTH interim guidance on recognition and management of coagulopathy in COVID‐19. J Thromb Haemost. 2020. doi: 10.1111/jth.14810.

8. Lippi G., Plebani M., Henry B. M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A metaanalysis. Clin Chim Acta. 2020. doi: 10.1016/j.cca.2020.03.022.

9. Zhang Y., Xiao M., Zhang S. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020. doi: 10.1056/NEJMc2007575.

10. Ciceri F., Beretta L., Scandroglio A. M., et al. Microvascular COVID19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020. [Epub ahead of print].

11. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18: 844-7. doi: 10.1111/jth.14768.

12. Tang N., Bai H., Chen X., et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020. doi: 10.1111/JTH.14817.

13. Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395: 1054-62. doi: 10.1016/S0140-6736(20)30566-3.

14. Petrilli C. M., Jones S. A., Yang J., et al. Factors associated with hospitalization and critical illness among 4,103 patients with Covid-19 disease in New York City. doi: 10.1101/2020.04.08.2005 7794. https://www.medrxiv.org/content/10.1101/2020.04.08.20057794v1.

15. Massachusetts General Hospital. Hematology Issues during COVID-19. Version 7.0, 4/14/2020. https://rebelem.com/wp-content/uploads/2020/04/Mass-Gen-Anticoag-Recs.pdf

16. Iba T., Levy J. H., Warkentin T. E., et al. the Scientific and Standardization Committee on DIC, and the Scientific and Standardization Committee on Perioperative and Critical Care of the International Society on Thrombosis and Haemostasis. Diagnosis and management of sepsis‐induced coagulopathy and disseminated intravascular coagulation. J Thromb Haemost. 2019; 17: 1989-94. doi:10.1111/jth.14578.

17. Samama M. M., Cohen A. T., Darmon J. Y., et al. A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients. N Engl J Med. 1999; 341: 793-800.

18. Cohen A. T., Davidson B. L., Gallus A. S., et al. Efficacy and safety of fondaparinux for the prevention of venous thromboembolism in older acute medical patients: randomized placebo-controlled trial. BMJ. 2006; 332: 325-9. doi:10.1136/bmj.38733.466748.7C.

19. Leizorovicz A., Cohen A. T., Turpie A. G., et al. Randomized, placebocontrolled trial of dalteparin for the prevention of venous thromboembolism in acutely ill medical patients. Circulation. 2004; 110: 874-9. doi:10.1161/01.CIR.0000138928.83266.24.

20. Geerts W. H., Bergqvist D., Pineo G. F., et al. Prevention of Venous Thromboembolism. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008; 133: 381S-453S. doi: 10.1378/chest.08-0656.

21. Kahn S. R., Lim W., Dunn A. S., et al. Prevention of VTE in Nonsurgical Patients. Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012; 141 (suppl): e195Se226S. doi: 10.1378/chest.11-2296.

22. Barbar S., Noventa F., Rossetto V., et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score. J Thromb Haemost. 2010; 8: 2450-7. DOI: 10.1111/j.1538-7836.2010.04044.x

23. Spyropoulos A. C., Anderson F. A., Fitz Gerald G., et al., for the IMPROVE Investigators. Predictive and Associative Models to Identify Hospitalized Medical Patients at Risk for VTE. Chest. 2011; 140: 706-14. doi:10.1378/chest.10-1944.

24. Cohen A. T., Harrington R. A., Goldhaber S. Z., et al., for the APEX Investigators. Extended Thromboprophylaxis with Betrixaban in Acutely Ill Medical Patients. N Engl J Med. 2016; 375: 534-44. doi:10.1056/NEJMoa1601747.

25. Gibson C. M., Spyropoulos A. C., Cohen A. T., et al. The IMPROVEDD VTE Risk Score: Incorporation of D-Dimer into the IMPROVE Score to Improve Venous Thromboembolism Risk Stratification. TH Open. 2017; 1: e56-e65. doi: 10.1055/s-0037-1603929.

26. Thachil J. The versatile heparin in COVID-19. J Thromb Haemost. 2020. doi: 10.1111/JTH.14821.

27. Hull R. D., Schellong S. M., Tapson V. F., et al., for the EXCLAIM (Extended Prophylaxis for Venous Thrombo Embolism in Acutely Ill Medical Patients With Prolonged Immobilization) study. Extended Duration Venous Thromboembolism Prophylaxis in Acutely Ill Medical Patients With Recently Reduced Mobility. A Randomized Trial. Ann Intern Med. 2010; 153: 8-18. doi: 10.7326/0003-4819-153-1-201007060-00004.

28. Spyropoulos A. C., Ageno W., Albers G. W., et al., for the MARINER Investigators. Rivaroxaban for Thromboprophylaxis after Hospitalization for Medical Illness. Engl J Med. 2018; 379: 1118-27. doi: 10.1056/NEJMoa1805090.

29. Moore H. B., Barrett C. D., Moore E. E., et al. Is There a Role for Tissue Plasminogen Activator (tPA) as a Novel Treatment for Refractory COVID-19 Associated Acute Respiratory Distress Syndrome (ARDS)? J Trauma and Acute Care Surgery. 2020. doi: 10.1097/TA.0000000000002694.

30. Wang J., Hajizadeh N., Moore E. E., et al. Tissue Plasminogen Activator (tPA) Treatment for COVID-19 Associated Acute Respiratory Distress Syndrome (ARDS): A Case Series. J Thromb Haemost. 2020. doi: 10.1111/JTH.14828.

31. Li J., Li Y., Yang B., et al. Low-molecular-weight heparin treatment for acute lung injury / acute respiratory distress syndrome: a metaanalysis of randomized controlled trials. Int J Clin Exp Med. 2018; 11: 414-22.

32. Liverpool Drug Interaction Group. Interactions with Experimental COVID-19 Therapies. https://www.covid19-druginteractions.org.

33. ESC Guidance for the Diagnosis and Management of CV Disease during the COVID-19 Pandemic Last updated on 21 April 2020. https://www.escardio.org/Education/COVID-19-and-Cardiology/ ESC-COVID-19-Guidance.

Valeology: Health - Illnes - recovery. 2021; : 51-57

STATE OF THE HEMOSTASIS SYSTEM AND PECULIARITIES OF ANTITHROMBOTIC THERAPY IN CORONAVIRUS INFECTION

RAKHIMBEKOVA G. A., BUYALSKAYA A. L.

Abstract

   The review examines changes in the hemostatic system indicators in patients with COVID-19 and analyzes their practical significance. Modern approaches to the prevention and treatment of thrombotic complications in COVID-19 are considered.

References

1. Bikdeli B., Madhavan M. V., Jimenez D., et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up. JACC. 2020. doi: 10.1016/j.jacc.2020.04.031.

2. Kloka F. A., Kruipb M. J. H. A., van der Meerc N. J. M., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020. doi: 10.1016/j.thromres.2020.04.013.

3. Cui S., Chen S., Li X, Liu S., Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020. doi: 10.1111/JTH.14830.

4. Poissy J., Goutay J., Caplan M., et al. Pulmonary Embolism in COVID19 Patients: Awareness of an Increased Prevalence. Circulation. 2020. doi: 10.1161/CIRCULATIONAHA.120.047430.

5. Dolhnikoff M., Duarte-Neto A. N., Monteiro R. A. A., et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID19. J Thromb Haemost. 2020. doi: 10.1111/JTH.14844.

6. Carsana L., Sonzogni A., Nasr A. Pulmonary post-mortem findings in a large series of COVID-19 cases from Northern Italy. doi: 10.1101/2020.04.19.20054262 https://www.medrxiv.org/content/10.1101/2020.04.19.20054262v1.

7. Thachil J., Tang N., Gando S., et al. ISTH interim guidance on recognition and management of coagulopathy in COVID‐19. J Thromb Haemost. 2020. doi: 10.1111/jth.14810.

8. Lippi G., Plebani M., Henry B. M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A metaanalysis. Clin Chim Acta. 2020. doi: 10.1016/j.cca.2020.03.022.

9. Zhang Y., Xiao M., Zhang S. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020. doi: 10.1056/NEJMc2007575.

10. Ciceri F., Beretta L., Scandroglio A. M., et al. Microvascular COVID19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020. [Epub ahead of print].

11. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18: 844-7. doi: 10.1111/jth.14768.

12. Tang N., Bai H., Chen X., et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020. doi: 10.1111/JTH.14817.

13. Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395: 1054-62. doi: 10.1016/S0140-6736(20)30566-3.

14. Petrilli C. M., Jones S. A., Yang J., et al. Factors associated with hospitalization and critical illness among 4,103 patients with Covid-19 disease in New York City. doi: 10.1101/2020.04.08.2005 7794. https://www.medrxiv.org/content/10.1101/2020.04.08.20057794v1.

15. Massachusetts General Hospital. Hematology Issues during COVID-19. Version 7.0, 4/14/2020. https://rebelem.com/wp-content/uploads/2020/04/Mass-Gen-Anticoag-Recs.pdf

16. Iba T., Levy J. H., Warkentin T. E., et al. the Scientific and Standardization Committee on DIC, and the Scientific and Standardization Committee on Perioperative and Critical Care of the International Society on Thrombosis and Haemostasis. Diagnosis and management of sepsis‐induced coagulopathy and disseminated intravascular coagulation. J Thromb Haemost. 2019; 17: 1989-94. doi:10.1111/jth.14578.

17. Samama M. M., Cohen A. T., Darmon J. Y., et al. A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients. N Engl J Med. 1999; 341: 793-800.

18. Cohen A. T., Davidson B. L., Gallus A. S., et al. Efficacy and safety of fondaparinux for the prevention of venous thromboembolism in older acute medical patients: randomized placebo-controlled trial. BMJ. 2006; 332: 325-9. doi:10.1136/bmj.38733.466748.7C.

19. Leizorovicz A., Cohen A. T., Turpie A. G., et al. Randomized, placebocontrolled trial of dalteparin for the prevention of venous thromboembolism in acutely ill medical patients. Circulation. 2004; 110: 874-9. doi:10.1161/01.CIR.0000138928.83266.24.

20. Geerts W. H., Bergqvist D., Pineo G. F., et al. Prevention of Venous Thromboembolism. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008; 133: 381S-453S. doi: 10.1378/chest.08-0656.

21. Kahn S. R., Lim W., Dunn A. S., et al. Prevention of VTE in Nonsurgical Patients. Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012; 141 (suppl): e195Se226S. doi: 10.1378/chest.11-2296.

22. Barbar S., Noventa F., Rossetto V., et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score. J Thromb Haemost. 2010; 8: 2450-7. DOI: 10.1111/j.1538-7836.2010.04044.x

23. Spyropoulos A. C., Anderson F. A., Fitz Gerald G., et al., for the IMPROVE Investigators. Predictive and Associative Models to Identify Hospitalized Medical Patients at Risk for VTE. Chest. 2011; 140: 706-14. doi:10.1378/chest.10-1944.

24. Cohen A. T., Harrington R. A., Goldhaber S. Z., et al., for the APEX Investigators. Extended Thromboprophylaxis with Betrixaban in Acutely Ill Medical Patients. N Engl J Med. 2016; 375: 534-44. doi:10.1056/NEJMoa1601747.

25. Gibson C. M., Spyropoulos A. C., Cohen A. T., et al. The IMPROVEDD VTE Risk Score: Incorporation of D-Dimer into the IMPROVE Score to Improve Venous Thromboembolism Risk Stratification. TH Open. 2017; 1: e56-e65. doi: 10.1055/s-0037-1603929.

26. Thachil J. The versatile heparin in COVID-19. J Thromb Haemost. 2020. doi: 10.1111/JTH.14821.

27. Hull R. D., Schellong S. M., Tapson V. F., et al., for the EXCLAIM (Extended Prophylaxis for Venous Thrombo Embolism in Acutely Ill Medical Patients With Prolonged Immobilization) study. Extended Duration Venous Thromboembolism Prophylaxis in Acutely Ill Medical Patients With Recently Reduced Mobility. A Randomized Trial. Ann Intern Med. 2010; 153: 8-18. doi: 10.7326/0003-4819-153-1-201007060-00004.

28. Spyropoulos A. C., Ageno W., Albers G. W., et al., for the MARINER Investigators. Rivaroxaban for Thromboprophylaxis after Hospitalization for Medical Illness. Engl J Med. 2018; 379: 1118-27. doi: 10.1056/NEJMoa1805090.

29. Moore H. B., Barrett C. D., Moore E. E., et al. Is There a Role for Tissue Plasminogen Activator (tPA) as a Novel Treatment for Refractory COVID-19 Associated Acute Respiratory Distress Syndrome (ARDS)? J Trauma and Acute Care Surgery. 2020. doi: 10.1097/TA.0000000000002694.

30. Wang J., Hajizadeh N., Moore E. E., et al. Tissue Plasminogen Activator (tPA) Treatment for COVID-19 Associated Acute Respiratory Distress Syndrome (ARDS): A Case Series. J Thromb Haemost. 2020. doi: 10.1111/JTH.14828.

31. Li J., Li Y., Yang B., et al. Low-molecular-weight heparin treatment for acute lung injury / acute respiratory distress syndrome: a metaanalysis of randomized controlled trials. Int J Clin Exp Med. 2018; 11: 414-22.

32. Liverpool Drug Interaction Group. Interactions with Experimental COVID-19 Therapies. https://www.covid19-druginteractions.org.

33. ESC Guidance for the Diagnosis and Management of CV Disease during the COVID-19 Pandemic Last updated on 21 April 2020. https://www.escardio.org/Education/COVID-19-and-Cardiology/ ESC-COVID-19-Guidance.