Журналов:     Статей:        

Валеология: Здоровье, Болезнь, Выздоровление. 2021; : 39-51

МОНИТОРИНГ ЭПИДЕМИОЛОГИЧЕСКИХ ОСОБЕННОСТЕЙ МИКРООРГАНИЗМОВ ПЕРИИМПЛАНТНОЙ ИНФЕКЦИИ И ИХ АНТИБИОТИКОРЕЗИСТЕНТНОСТИ

ЖАКУПОВА А. З., АРЫКПАЕВА У. Т., БЕКАРИСОВ О. С.

Аннотация

   Рассмотрены проблемы эпидемиологических особенностей микроорганизмов периимплантной инфекции и их антибиотикорезистентности: патогены, вызывающие инфекции, связанные с протезами, диагностика инфекций, связанных с протезированием, роль антибиотиков при инфекциях, связанных с протезами, и инфекциями, ассоциированными с биопленками, их профилактика, антибиотикорезистентность микроорганизмов, пути ее решения.

Список литературы

1. Barberan J. Management of infections of osteoarticular prosthesis. Clin Microbiol Infect 2006;12 Suppl 3: 93-101 [Pub Med] [Google Scholar]

2. Laffer R. R., Graber P., Ochsner P. E., Zimmerli W. Outcome of prosthetic knee-associated infection: evaluation of 40 consecutive episodes at a single centre. Clin Microbiol Infect 2006; 12: 433-9 [Pub Med] [Google Scholar]

3. Montanaro L., Speziale P., Campoccia D., et al. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol 2011; 6: 1329-49 [Pub Med] [Google Scholar].

4. Trampuz A., Widmer A. F. Infections associated with orthopedic implants. Curr Opin Infect Dis 2006; 19: 349-56 [Pub Med] [Google Scholar]

5. Kristian S. A., Golda T., Ferracin F., et al. The ability of biofilm formation does not influence virulence of Staphylococcus aureus and host response in a mouse tissue cage infection model. Microb Pathog 2004; 36: 237-45 [Pub Med] [Google Scholar]

6. Olson M. E., Garvin K. L., Fey P. D., Rupp M. E. Adherence of Staphylococcus epidermidis to biomaterials is augmented by PIA. Clin Orthop Relat Res 2006; 451: 21-4 [Pub Med] [Google Scholar]

7. Stoodley P., Kathju S., Hu F. Z., et al. Molecular and imaging techniques for bacterial biofilms in joint arthroplasty infections. Clin Orthop Relat Res 2005; 437: 31-40 [Pub Med] [Google Scholar]

8. Costerton J. W. Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin Orthop Relat Res 2005; 437: 7-11 [Pub Med] [Google Scholar]

9. Dempsey K. E., Riggio M. P., Lennon A., et al. Identification of bacteria on the surface of clinically infected and non-infected prosthetic hip joints removed during revision arthroplasties by 16S rRNA gene sequencing and by microbiological culture. Arthritis Res Ther 2007; 9: R46. [PMC free article] [Pub Med] [Google Scholar]

10. Hall-Stoodley L., Stoodley P., Kathju S., et al. Towards diagnostic guidelines for biofilmassociated infections. FEMS Immunol Med Microbiol 2012;65:127-45 [Pub Med] [Google Scholar]

11. Vergidis P., Patel R. Novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. Infect Dis Clin North Am 2012; 26: 173-86 [PMC free article] [Pub Med] [Google Scholar]

12. Holinka J., Bauer L., Hirschl A. M., et al. Sonication cultures of explanted components as an add-on test to routinely conducted microbiological diagnostics improve pathogen detection. J Orthop Res 2011; 29: 617-22 [Pub Med] [Google Scholar]

13. Vergidis P., Greenwood-Quaintance K. E., Sanchez-Sotelo J., et al. Implant sonication for the diagnosis of prosthetic elbow infection. J Shoulder Elbow Surg 2011; 20: 1275-81 [PMC free article] [Pub Med] [Google Scholar]

14. Esteban J., Alonso-Rodriguez N., del-Prado G., et al. PCR-hybridization after sonication improves diagnosis of implant-related infection. Acta Orthop 2012; 83: 299-304 [PMC free article] [Pub Med] [Google Scholar]

15. Achermann Y., Vogt M., Leunig M., et al. Improved diagnosis of periprosthetic joint infection by multiplex PCR of sonication fluid from removed implants. J Clin Microbiol 2010; 48: 1208-14 [PMC free article] [Pub Med] [Google Scholar]

16. Artini M., Romano C., Manzoli L., et al. Staphylococcal IgM enzyme-linked immunosorbent assay for diagnosis of periprosthetic joint infections. J Clin Microbiol 2011; 49: 423-5 [PMC free article] [Pub Med] [Google Scholar]

17. NIH, National Heart Lung and Blood Institute. Research on microbial biofilms (PA-03-047) Available from: http://grants.nih.gov/grants/guide/pa-files/PA-03-047.html/ Accessed on: 20-12-2002.

18. Nguyen L. L., Nelson C. L., Saccente M., et al. Detecting bacterial colonization of implanted orthopaedic devices by ultrasonication. Clin Orthop Relat Res 2002; 403: 29-37 [Pub Med] [Google Scholar]

19. Costerton J. W., Montanaro L., Arciola C. R. Biofilm in implant infections: its production and regulation. Int J Artif Organs 2005; 28: 1062-8 [Pub Med] [Google Scholar]

20. Gristina A. G., Costerton J. W. Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J Bone Joint Surg Am 1985; 67: 264-73 [Pub Med] [Google Scholar]

21. Zimmerli W. Infection and musculoskeletal conditions: Prosthetic-joint-associated infections. Best Pract Res Clin Rheumatol 2006; 20: 1045-63 [Pub Med] [Google Scholar]

22. Hengzhuang W., Wu H., Ciofu O., et al. Pharmacokinetics / pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2011; 55: 4469-74 [PMC free article] [Pub Med] [Google Scholar]

23. Hengzhuang W., Wu H., Ciofu O., et al. In vivo pharmacokinetics / pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother 2012; 56: 2683-90 [PMC free article] [Pub Med] [Google Scholar]

24. Hoiby N., Krogh J. H., Moser C., et al. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 2001; 3: 23-35 [Pub Med] [Google Scholar]

25. Hoiby N., Ciofu O., Johansen H. K., et al. The clinical impact of bacterial biofilms. Int J Oral Sci 2011; 3: 55-65 [PMC free article] [Pub Med] [Google Scholar]

26. Hoiby N., Bjarnsholt T., Givskov M., et al. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010; 35: 322-32 [Pub Med] [Google Scholar]

27. Bagge N., Hentzer M., Andersen J. B., et al. Dynamics and spatial distribution of betalactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2004; 48: 1168-74 [PMC free article] [Pub Med] [Google Scholar]

28. Rouveix B. Clinical implications of multiple drug resistance efflux pumps of pathogenic bacteria. J Antimicrob Chemother 2007; 59: 1208-9 [Pub Med] [Google Scholar]

29. Stewart P. S. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 2002; 292: 107-13 [Pub Med] [Google Scholar]

30. Trampuz A., Zimmerli W. Antimicrobial agents in orthopaedic surgery: prophylaxis and treatment. Drugs 2006; 66: 1089-105 [Pub Med] [Google Scholar]

31. Zimmerli W., Widmer A. F., Blatter M., et al. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA 1998; 279: 1537-41 [Pub Med] [Google Scholar]

32. Zimmerli W., Moser C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol 2012;65: 158-68 [Pub Med] [Google Scholar]

33. Senneville E., Joulie D., Legout L., et al. Outcome and predictors of treatment failure in total hip / knee prosthetic joint infections due to Staphylococcus aureus. Clin Infect Dis 2011; 53: 334-40 [PMC free article] [Pub Med] [Google Scholar]

34. Wang J. L., Tang H. J., Hsieh P. H., et al. Fusidic acid for the treatment of bone and joint infections caused by meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2012; 40: 103-7 [Pub Med] [Google Scholar]

35. Gomez J., Canovas E., Banos V., et al. Linezolid plus rifampin as a salvage therapy in prosthetic joint infections treated without removing the implant. Antimicrob Agents Chemother 2011; 55: 4308-10 [PMC free article] [Pub Med] [Google Scholar]

36. Corona Perez-Cardona P. S., Barro O. V., Rodriguez P. D., et al. Clinical experience with daptomycin for the treatment of patients with knee and hip periprosthetic joint infections. J Antimicrob Chemother 2012; 67: 1749-54 [Pub Med] [Google Scholar]

37. Rosslenbroich S. B., Raschke M. J., Kreis C., et al. Daptomycin: local application in implant-associated infection and complicated osteomyelitis. Sci Wrld J 2012; 2012: 578251 [PMC free article] [Pub Med] [Google Scholar]

38. Soriano A., Gomez J., Gomez L., et al. Efficacy and tolerability of prolonged linezolid therapy in the treatment of orthopedic implant infections. Eur J Clin Microbiol Infect Dis 2007; 26: 353-6 [Pub Med] [Google Scholar]

39. Byren I., Bejon P., Atkins B. L., et al. One hundred and twelve infected arthroplasties treated with DAIR (debridement, antibiotics and implant retention): antibiotic duration and outcome. J Antimicrob Chemother 2009; 63: 1264-71 [PMC free article] [Pub Med] [Google Scholar]

40. Agodi A., Barchitta M., Cipresso R., Giaquinta L., Romeo M. A., Denaro C. Pseudomonas aeruginosa carriage, colonization, and infection in ICU patients. Intensive Care Med. 2007; 33 (7): 1155–1161.[Pub Med] [Google Scholar], 92 Mermel L. A. Prevention of intravascular catheter-related infections. Ann Intern Med. 2000; 132 (5): 391–402. [Pub Med] [Google Scholar]).

41. Saiman L., Siegel J., Cystic Fibrosis Foundation Infection control recommendations for patients with cystic fibrosis: microbiology, important pathogens, and infection control practices to prevent patient to patient transmission. Infect Control Hosp Epidemiol. 2003; 24: S6–S52. [Pub Med] [Google Scholar]).

42. Garner J. S., Jarvis W. R., Emori T. G., Horan T. C., Hughes J. M. CDC definitions for nosocomial infections, 1988. Am J Infect Control. 1988;16 (3): 128–140. [Pub Med] [Google Scholar]

43. Pronovost P., Needham D., Berenholtz S., et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006; 355 (26): 2725–2732. [Pub Med] [Google Scholar]

44. Kajumbula H., Fujita A. W., Mbabazi O., et al. Antimicrobial drug resistance in blood culture isolates at a tertiary hospital, Uganda. Emerg Infect Dis. 2018; 24 (1): 174–175. [PMC free article] [Pub Med] [Google Scholar]

45. Tacconelli E., Cataldo M. A., Dancer S. J., et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin Microbiol Infect. 2014; 20 (Suppl 1): 1–55. [Pub Med] [Google Scholar] https://pubmed.ncbi.nlm.nih.gov/24329732/)

46. Wong V., Levi K., Baddal B., Turton J., Boswell T. C. Spread of Pseudomonas fluorescens due to contaminated drinking water in a bone marrow transplant unit. J Clin Microbiol. 2011; 49 (6): 2093–2096. [PMC free article] [Pub Med] [Google Scholar]

47. Ambrogi V., Cavalié L., Mantion B., et al. Transmission of metallo-β-lactamase-producing Pseudomonas aeruginosa in a nephrology-transplant intensive care unit with potential link to the environment. J Hosp Infect. 2016; 92 (1): 27–29. [Pub Med] [Google Scholar]

48. Fanci R., Bartolozzi B., Sergi S, et al. Molecular epidemiological investigation of an outbreak of Pseudomonas aeruginosa infection in an SCT unit. Bone Marrow Transplant. 2009; 43 (4): 335–338. [Pub Med] [Google Scholar])

49. Stjärne Aspelund A., Sjöström K., Olsson Liljequist B., Mörgelin M., Melander E., Påhlman L. I. Acetic acid as a decontamination method for sink drains in a nosocomial outbreak of metallo-β-lactamase-producing Pseudomonas aeruginosa. J Hosp Infect. 2016; 94 (1): 13–20. [Pub Med] [Google Scholar]

50. Gbaguidi-Haore H., Varin A., Cholley P., et al. A bundle of measures to control an outbreak of Pseudomonas aeruginosa associated with P-trap contamination. Infect Control Hosp Epidemiol. 2018; 39 (2): 164–169. [Pub Med] [Google Scholar]

51. Kanamori H., Weber D. J., Rutala W. A. Healthcare outbreaks associated with a water reservoir and infection prevention strategies. Clin Infect Dis. 2016; 62 (11): 1423–1435. [Pub Med] [Google Scholar]

52. Iversen B. G. Contaminated mouth swabs caused a multi-hospital outbreak of Pseudomonas aeruginosa infection. J Oral Microbiol. 2010; 2: 5123. [PMC free article] [Pub Med] [Google Scholar]

53. Kumar D., Cattral M. S., Robicsek A., Gaudreau C., Humar A. Outbreak of Pseudomonas aeruginosa by multiple organ transplantation from a common donor. Transplantation. 2003; 75 (7): 1053–1055. [Pub Med] [Google Scholar]

54. Sato A., Kaido T., Iida T., et al. Bundled strategies against infection after liver transplantation: lessons from multidrug-resistant Pseudomonas aeruginosa. Liver Transpl. 2016; 22 (4): 436–445. [Pub Med] [Google Scholar]

55. Decraene V., Ghebrehewet S., Dardamissis E., et al. An outbreak of multidrug-resistant Pseudomonas aeruginosa in a burns service in the North of England: challenges of infection prevention and control in a complex setting. J Hosp Infect. 2018 pii: S0195–6701 (18) 30376-1. [Pub Med] [Google Scholar]

56. Song M., Tang M., Ding Y., et al. Application of protein typing in molecular epidemiological investigation of nosocomial infection outbreak of aminoglycoside-resistant Pseudomonas aeruginosa. Environ Sci Pollut Res Int. 2018; 25 (23): 22437–22445. [Pub Med] [Google Scholar])

57. Breathnach A. S., Cubbon M. D., Karunaharan R. N., Pope C. F., Planche T. D. Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems. J Hosp Infect. 2012; 82 (1): 19–24. [Pub Med] [Google Scholar]

58. Tran-Dinh A., Neulier C., Amara M., et al. Impact of the relocation of an ICU and role of tap water on an outbreak of Pseudomonas aeruginosa expressing OprD-mediated resistance to imipenem. J Hosp Infect. 2018 [Pub Med] [Google Scholar]

59. Vianelli N., Giannini M. B., Quarti C., et al. Resolution of a Pseudomonas aeruginosa outbreak in a hematology unit with the use of disposable sterile water filters. Haematologica. 2006; 91 (7): 983–985. [Pub Med] [Google Scholar])

60. Kizny Gordon A. E., Mathers A. J., Cheong E. Y. L., et al. The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections-a systematic review of the literature. Clin Infect Dis. 2017; 64 (10): 1435–1444. [Pub Med] [Google Scholar])

61. Seara N., Oteo J., Carrillo R., et al. Interhospital spread of NDM-7-producing Klebsiella pneumoniae belonging to ST437 in Spain. Int J Antimicrob Agents. 2015;46 (2): 169–173. [Pub Med] [Google Scholar]

62. Ortolano G. A., McAlister M. B., Angelbeck J. A., et al. Hospital water point-of-use filtration: a complementary strategy to reduce the risk of nosocomial infection. Am J Infect Control. 2005; 33 (5 Suppl 1):S1–S19. [Pub Med] [Google Scholar]

63. Cervia J. S., Ortolano G. A., Canonica F. P. Hospital tap water: a reservoir of risk for healthcare-associated infection. Infect Dis Clin Pract. 2008; 16 (6): 349–353. [Google Scholar]

64. Bjarnsholt T., Alhede M., Jensen P. Ø., et al. Antibiofilm properties of acetic acid. Adv Wound Care. 2015; 4 (7): 363–372. [PMC free article] [Pub Med] [Google Scholar]

65. Dorotkiewicz-Jach A., Augustyniak D., Olszak T., Drulis-Kawa Z. Modern therapeutic approaches against Pseudomonas aeruginosa infections. Curr Med Chem. 2015; 22 (14): 1642–1664. [Pub Med] [Google Scholar]

66. Agodi A., Barchitta M., Cipresso R., et al. Pseudomonas aeruginosa carriage, colonization, and infection in ICU patients. Intensive Care Med. 2007; 33: 1155–61. [Pub Med] [Google Scholar]

67. Neely A. N., Maley M. P.: Survival of enterococci and staphylococci on hospital fabric and plastic. Journal of Clinical Microbiology. 2000, 38: 724-726.

68. Wagenvoort J. H. T., Penders R. J. R.: Long-term in-vitro survival of an epidemic MRSA phage-group III-29 strain. Journal of Hospital Infection. 1997, 35: 322-325. Doi: 10.1016/S0195-6701(97)90229-2.

69. Rüden H., Gastmeier P., Daschner F. D., Schumacher M.: Nosocomial and community-acquired infections in Germany. Summary of the results of the first national prevalence study (NIDEP). Infection. 1997, 25: 199-202. Doi: 10.1007/BF01713142.

70. Dickgiesser N.: Untersuchungen über das Verhalten grampositiver und gramnegativer Bakterien in trockenem und feuchtem Milieu.Zentralblatt für Bakteriologie und Hygiene, I Abt Orig B.1978, 167: 48-62.

71. Hirai Y.: Survival of bacteria under dry conditions from a viewpoint of nosocomial infection. Journal of Hospital Infection. 1991, 19: 191-200. Doi: 10.1016/0195-6701(91)90223-U.

72. Gundermann K. O.: Untersuchungen zur Lebensdauer von Bakterienstämmen im Staub unter dem Einfluß unterschiedlicher Luftfeuchtigkeit. Zentralblatt für Bakteriologie und Hygiene, I Abt Orig B. 1972, 156: 422-429.

73. Noyce J. O., Michels H., Keevil C. W.: Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. Journal of Hospital Infection. 2006, 63: 289-297. Doi: 10.1016/j.jhin.2005.12.008.

74. Wendt C., Dietze B., Dietz E., Rüden H: Survival of Acinetobacter baumannii on dry surfaces. Journal of Clinical Microbiology. 1997, 35: 1394-1397.

75. Bale M. J., Bennett P. M., Benninger J. E., Hinton M.: The survival of bacteria exposed to dessication on surfaces associated with farm buildings. Journal of Applied Bacteriology. 1993, 75: 519-528.

76. Pérez J. L., Gómez E., Sauca G.: Survival of gonococci from urethral discharge on fomites. European Journal of Clinical Microbiology and Infectious Diseases. 1990, 1: 54-55.

77. Neely A. N.: A survey of gram-negative bacteria survival on hospital fabrics and plastics. Journal of Burn Care and Rehabilitation. 2000, 21: 523-527.

78. Webster C., Towner K. J., Humphreys H.: Survival of Acinetobacter on three clinically related inanimate surfaces. Infection Control and Hospital Epidemiology. 2000, 21: 246- Doi: 10.1086/503214.

79. ElmosT.: Survival of Neisseria gonorrhoeae on surfaces. Acta Dermato-Venereologica. 1977, 57: 177-180.

80. Smith C. R.: Survival of tubercle bacilli: the viability of dried tubercle bacilli in unfiltered roomlight, in the dark, and in the refrigerator. American Review of Tuberculosis. 1942, 5: 334-345.

81. Bures S., Fishbain J. T., Uyehara C. F., Parker J. M., Berg B. W.: Computer keyboards and faucet handles as reservoirs of nosocomial pathogens in the intensive care unit. American Journal of Infection Control. 2000, 28: 465-471. Doi: 10.1067/mic.2000.107267.

82. Catalano M., Quelle L. S., Jeric P. E., Di Martino A., Maimone S. M.: Survival of Acinetobacter baumannii on bed rails during an outbreak and during sporadic cases. Journal of Hospital Infection. 1999, 42: 27-35. Doi: 10.1053/jhin.1998.0535.

83. Boyce J. M., Potter-Bynoe G., Chenevert C., King T: Environmental contamination due to methicillin-resistant Staphylococcus aureus: possible infection control implications. Infection Control and Hospital Epidemiology. 1997, 18: 622-627.

84. Scott E., Bloomfield S. F.: The survival and transfer of microbial contamination via cloths, hands and utensils. Journal of Applied Bacteriology. 1990, 68: 271-278.

85. Barker J., Vipond I. B., Bloomfield S. F.: Effects of cleaning and disinfection in reducing the spread of norovirus contamination via environmental surfaces. Journal of Hospital Infection. 2004, 58: 42-44. Doi: 10.1016/j.jhin.2004.04.021.

86. von Rheinbaben F., Schunemann S., Gross T., Wolff M. H.: Transmission of viruses via contact in a household setting: experiments using bacteriophage strain phiXI174 as a model virus. Journal of Hospital Infection. 2000, 46: 61-66. Doi: 10.1053/jhin.2000.0794.

87. Mbithi J. N., Springthorpe V. S.,Boulet J. R.,Sattar S. A.: Survival of hepatitis A virus on human hands and its transfer on contact with animate an inanimate surface.Journal of Clinical Microbiology.1992, 30: 757-763.

88. Kampf G., Kramer A.: Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. Clinical Microbiology Reviews. 2004, 17: 863-893. Doi: 10.1128/CMR.17.4.863-893.2004.

89. Cozad A., Jones R. D.: Disinfection and the prevention of infectious disease. American Journal of Infection Control. 2003, 31: 243-254. Doi: 10.1067/mic.2003.49.

90. Dharan S., Mourouga P., Copin P., Bessmer G., Tschanz B., Pittet D.: Routine disinfection of patients' environmental surfaces. Myth or reality?. Journal of Hospital Infection. 1999, 42: 113-117. Doi: 10.1053/jhin.1999.0567.

91. Wilks M., Wilson A., Warwick S., Price E., Kennedy D., Ely A., Millar M. R.: Control of an outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus colonization and infection in an intensive care unit (ICU) without closing the ICU or placing patients in isolation. Infection Control and Hospital Epidemiology. 2006, 27: 654-658. Doi: 10.1086/507011.

92. Gaynes R. The impact of antimicrobial use on the emergence of antimicrobial-resistant bacteria in hospitals. Infect Dis Clin North Am. 1997;11 (4): 757–765. [Pub Med] [Google Scholar]

93. Kritikos A., Manuel O. Bloodstream infections after solid-organ transplantation. Virulence. 2016; 7 (3): 329–340. [PMC free article] [Pub Med] [Google Scholar]

94. Aijing Luo, Zhuqing Zhong, Qiquan Wan, and Qifa Ye The Distribution and Resistance of Pathogens Among Solid Organ Transplant Recipients with Pseudomonas aeruginosa Infections. 2016; 22: 1124–1130.

95. Shi S. H., Kong H. S., Xu J., et al. Multidrug resistant gram-negative bacilli as predominant bacteremic pathogens in liver transplant recipients. Transplant Infect Dis. 2009; 11: 405–12. [Pub Med] [Google Scholar]

96. H. Y., Shields R. K., Cacciarelli T. V., et al. A novel combination regimen for the treatment of refractory bacteremia due to multidrug-resistant Pseudomonas aeruginosa in a liver transplant recipient. Transpl Infect Dis. 2010; 12: 555–60. [Pub Med] [Google Scholar]

97. Meachery G., De Soyza A., Nicholson A., et al. Outcomes of lung transplantation for cystic fibrosis in a large UK cohort. Thorax. 2008; 63: 725–31. [Pub Med] [Google Scholar]

98. Boussaud V., Guillemain R., Grenet D., et al. Clinical outcome following lung transplantation in patients with cystic fibrosis colonised with Burkholderia cepacia complex: results from two French centres. Thorax. 2008; 63: 732–37. [Pub Med] [Google Scholar]

99. Alexander B. D., Petzold E. W., Reller L. B., et al. Survival after lung transplantation of cystic fibrosis patients infected with Burkholderia cepacia complex. Am J Transplant. 2008; 8: 1025–30. [Pub Med] [Google Scholar]

100. Lui C., et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clinical Infectious Diseases. 2011.

101. Morita Y., et al. Responses of Pseudomonas aeruginosa to antimicrobials. Frontiers in Microbiology. 2013.

Valeology: Health - Illnes - recovery. 2021; : 39-51

MONITORING OF EPIDEMIOLOGICAL FEATURES OF PERIMPLANT INFECTION MICROORGANISMS AND THEIR ANTIBIOTIC RESISTANCE

ZHAKUPOVA A. Z., ARYKPAYEVA U. T., BEKARYSOV O. S.

Abstract

   The problems of epidemiological features of peri-implant infection microorganisms and their antibiotic resistance are considered in: pathogens that cause infections associated with prostheses, diagnostics of infections associated with prosthetics, the role of antibiotics in infections associated with prostheses and infections associated with biofilms, their prevention, antibiotic resistance of microorganisms and ways to solve them.

References

1. Barberan J. Management of infections of osteoarticular prosthesis. Clin Microbiol Infect 2006;12 Suppl 3: 93-101 [Pub Med] [Google Scholar]

2. Laffer R. R., Graber P., Ochsner P. E., Zimmerli W. Outcome of prosthetic knee-associated infection: evaluation of 40 consecutive episodes at a single centre. Clin Microbiol Infect 2006; 12: 433-9 [Pub Med] [Google Scholar]

3. Montanaro L., Speziale P., Campoccia D., et al. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol 2011; 6: 1329-49 [Pub Med] [Google Scholar].

4. Trampuz A., Widmer A. F. Infections associated with orthopedic implants. Curr Opin Infect Dis 2006; 19: 349-56 [Pub Med] [Google Scholar]

5. Kristian S. A., Golda T., Ferracin F., et al. The ability of biofilm formation does not influence virulence of Staphylococcus aureus and host response in a mouse tissue cage infection model. Microb Pathog 2004; 36: 237-45 [Pub Med] [Google Scholar]

6. Olson M. E., Garvin K. L., Fey P. D., Rupp M. E. Adherence of Staphylococcus epidermidis to biomaterials is augmented by PIA. Clin Orthop Relat Res 2006; 451: 21-4 [Pub Med] [Google Scholar]

7. Stoodley P., Kathju S., Hu F. Z., et al. Molecular and imaging techniques for bacterial biofilms in joint arthroplasty infections. Clin Orthop Relat Res 2005; 437: 31-40 [Pub Med] [Google Scholar]

8. Costerton J. W. Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin Orthop Relat Res 2005; 437: 7-11 [Pub Med] [Google Scholar]

9. Dempsey K. E., Riggio M. P., Lennon A., et al. Identification of bacteria on the surface of clinically infected and non-infected prosthetic hip joints removed during revision arthroplasties by 16S rRNA gene sequencing and by microbiological culture. Arthritis Res Ther 2007; 9: R46. [PMC free article] [Pub Med] [Google Scholar]

10. Hall-Stoodley L., Stoodley P., Kathju S., et al. Towards diagnostic guidelines for biofilmassociated infections. FEMS Immunol Med Microbiol 2012;65:127-45 [Pub Med] [Google Scholar]

11. Vergidis P., Patel R. Novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. Infect Dis Clin North Am 2012; 26: 173-86 [PMC free article] [Pub Med] [Google Scholar]

12. Holinka J., Bauer L., Hirschl A. M., et al. Sonication cultures of explanted components as an add-on test to routinely conducted microbiological diagnostics improve pathogen detection. J Orthop Res 2011; 29: 617-22 [Pub Med] [Google Scholar]

13. Vergidis P., Greenwood-Quaintance K. E., Sanchez-Sotelo J., et al. Implant sonication for the diagnosis of prosthetic elbow infection. J Shoulder Elbow Surg 2011; 20: 1275-81 [PMC free article] [Pub Med] [Google Scholar]

14. Esteban J., Alonso-Rodriguez N., del-Prado G., et al. PCR-hybridization after sonication improves diagnosis of implant-related infection. Acta Orthop 2012; 83: 299-304 [PMC free article] [Pub Med] [Google Scholar]

15. Achermann Y., Vogt M., Leunig M., et al. Improved diagnosis of periprosthetic joint infection by multiplex PCR of sonication fluid from removed implants. J Clin Microbiol 2010; 48: 1208-14 [PMC free article] [Pub Med] [Google Scholar]

16. Artini M., Romano C., Manzoli L., et al. Staphylococcal IgM enzyme-linked immunosorbent assay for diagnosis of periprosthetic joint infections. J Clin Microbiol 2011; 49: 423-5 [PMC free article] [Pub Med] [Google Scholar]

17. NIH, National Heart Lung and Blood Institute. Research on microbial biofilms (PA-03-047) Available from: http://grants.nih.gov/grants/guide/pa-files/PA-03-047.html/ Accessed on: 20-12-2002.

18. Nguyen L. L., Nelson C. L., Saccente M., et al. Detecting bacterial colonization of implanted orthopaedic devices by ultrasonication. Clin Orthop Relat Res 2002; 403: 29-37 [Pub Med] [Google Scholar]

19. Costerton J. W., Montanaro L., Arciola C. R. Biofilm in implant infections: its production and regulation. Int J Artif Organs 2005; 28: 1062-8 [Pub Med] [Google Scholar]

20. Gristina A. G., Costerton J. W. Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J Bone Joint Surg Am 1985; 67: 264-73 [Pub Med] [Google Scholar]

21. Zimmerli W. Infection and musculoskeletal conditions: Prosthetic-joint-associated infections. Best Pract Res Clin Rheumatol 2006; 20: 1045-63 [Pub Med] [Google Scholar]

22. Hengzhuang W., Wu H., Ciofu O., et al. Pharmacokinetics / pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2011; 55: 4469-74 [PMC free article] [Pub Med] [Google Scholar]

23. Hengzhuang W., Wu H., Ciofu O., et al. In vivo pharmacokinetics / pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother 2012; 56: 2683-90 [PMC free article] [Pub Med] [Google Scholar]

24. Hoiby N., Krogh J. H., Moser C., et al. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 2001; 3: 23-35 [Pub Med] [Google Scholar]

25. Hoiby N., Ciofu O., Johansen H. K., et al. The clinical impact of bacterial biofilms. Int J Oral Sci 2011; 3: 55-65 [PMC free article] [Pub Med] [Google Scholar]

26. Hoiby N., Bjarnsholt T., Givskov M., et al. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010; 35: 322-32 [Pub Med] [Google Scholar]

27. Bagge N., Hentzer M., Andersen J. B., et al. Dynamics and spatial distribution of betalactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2004; 48: 1168-74 [PMC free article] [Pub Med] [Google Scholar]

28. Rouveix B. Clinical implications of multiple drug resistance efflux pumps of pathogenic bacteria. J Antimicrob Chemother 2007; 59: 1208-9 [Pub Med] [Google Scholar]

29. Stewart P. S. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 2002; 292: 107-13 [Pub Med] [Google Scholar]

30. Trampuz A., Zimmerli W. Antimicrobial agents in orthopaedic surgery: prophylaxis and treatment. Drugs 2006; 66: 1089-105 [Pub Med] [Google Scholar]

31. Zimmerli W., Widmer A. F., Blatter M., et al. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA 1998; 279: 1537-41 [Pub Med] [Google Scholar]

32. Zimmerli W., Moser C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol 2012;65: 158-68 [Pub Med] [Google Scholar]

33. Senneville E., Joulie D., Legout L., et al. Outcome and predictors of treatment failure in total hip / knee prosthetic joint infections due to Staphylococcus aureus. Clin Infect Dis 2011; 53: 334-40 [PMC free article] [Pub Med] [Google Scholar]

34. Wang J. L., Tang H. J., Hsieh P. H., et al. Fusidic acid for the treatment of bone and joint infections caused by meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2012; 40: 103-7 [Pub Med] [Google Scholar]

35. Gomez J., Canovas E., Banos V., et al. Linezolid plus rifampin as a salvage therapy in prosthetic joint infections treated without removing the implant. Antimicrob Agents Chemother 2011; 55: 4308-10 [PMC free article] [Pub Med] [Google Scholar]

36. Corona Perez-Cardona P. S., Barro O. V., Rodriguez P. D., et al. Clinical experience with daptomycin for the treatment of patients with knee and hip periprosthetic joint infections. J Antimicrob Chemother 2012; 67: 1749-54 [Pub Med] [Google Scholar]

37. Rosslenbroich S. B., Raschke M. J., Kreis C., et al. Daptomycin: local application in implant-associated infection and complicated osteomyelitis. Sci Wrld J 2012; 2012: 578251 [PMC free article] [Pub Med] [Google Scholar]

38. Soriano A., Gomez J., Gomez L., et al. Efficacy and tolerability of prolonged linezolid therapy in the treatment of orthopedic implant infections. Eur J Clin Microbiol Infect Dis 2007; 26: 353-6 [Pub Med] [Google Scholar]

39. Byren I., Bejon P., Atkins B. L., et al. One hundred and twelve infected arthroplasties treated with DAIR (debridement, antibiotics and implant retention): antibiotic duration and outcome. J Antimicrob Chemother 2009; 63: 1264-71 [PMC free article] [Pub Med] [Google Scholar]

40. Agodi A., Barchitta M., Cipresso R., Giaquinta L., Romeo M. A., Denaro C. Pseudomonas aeruginosa carriage, colonization, and infection in ICU patients. Intensive Care Med. 2007; 33 (7): 1155–1161.[Pub Med] [Google Scholar], 92 Mermel L. A. Prevention of intravascular catheter-related infections. Ann Intern Med. 2000; 132 (5): 391–402. [Pub Med] [Google Scholar]).

41. Saiman L., Siegel J., Cystic Fibrosis Foundation Infection control recommendations for patients with cystic fibrosis: microbiology, important pathogens, and infection control practices to prevent patient to patient transmission. Infect Control Hosp Epidemiol. 2003; 24: S6–S52. [Pub Med] [Google Scholar]).

42. Garner J. S., Jarvis W. R., Emori T. G., Horan T. C., Hughes J. M. CDC definitions for nosocomial infections, 1988. Am J Infect Control. 1988;16 (3): 128–140. [Pub Med] [Google Scholar]

43. Pronovost P., Needham D., Berenholtz S., et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006; 355 (26): 2725–2732. [Pub Med] [Google Scholar]

44. Kajumbula H., Fujita A. W., Mbabazi O., et al. Antimicrobial drug resistance in blood culture isolates at a tertiary hospital, Uganda. Emerg Infect Dis. 2018; 24 (1): 174–175. [PMC free article] [Pub Med] [Google Scholar]

45. Tacconelli E., Cataldo M. A., Dancer S. J., et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin Microbiol Infect. 2014; 20 (Suppl 1): 1–55. [Pub Med] [Google Scholar] https://pubmed.ncbi.nlm.nih.gov/24329732/)

46. Wong V., Levi K., Baddal B., Turton J., Boswell T. C. Spread of Pseudomonas fluorescens due to contaminated drinking water in a bone marrow transplant unit. J Clin Microbiol. 2011; 49 (6): 2093–2096. [PMC free article] [Pub Med] [Google Scholar]

47. Ambrogi V., Cavalié L., Mantion B., et al. Transmission of metallo-β-lactamase-producing Pseudomonas aeruginosa in a nephrology-transplant intensive care unit with potential link to the environment. J Hosp Infect. 2016; 92 (1): 27–29. [Pub Med] [Google Scholar]

48. Fanci R., Bartolozzi B., Sergi S, et al. Molecular epidemiological investigation of an outbreak of Pseudomonas aeruginosa infection in an SCT unit. Bone Marrow Transplant. 2009; 43 (4): 335–338. [Pub Med] [Google Scholar])

49. Stjärne Aspelund A., Sjöström K., Olsson Liljequist B., Mörgelin M., Melander E., Påhlman L. I. Acetic acid as a decontamination method for sink drains in a nosocomial outbreak of metallo-β-lactamase-producing Pseudomonas aeruginosa. J Hosp Infect. 2016; 94 (1): 13–20. [Pub Med] [Google Scholar]

50. Gbaguidi-Haore H., Varin A., Cholley P., et al. A bundle of measures to control an outbreak of Pseudomonas aeruginosa associated with P-trap contamination. Infect Control Hosp Epidemiol. 2018; 39 (2): 164–169. [Pub Med] [Google Scholar]

51. Kanamori H., Weber D. J., Rutala W. A. Healthcare outbreaks associated with a water reservoir and infection prevention strategies. Clin Infect Dis. 2016; 62 (11): 1423–1435. [Pub Med] [Google Scholar]

52. Iversen B. G. Contaminated mouth swabs caused a multi-hospital outbreak of Pseudomonas aeruginosa infection. J Oral Microbiol. 2010; 2: 5123. [PMC free article] [Pub Med] [Google Scholar]

53. Kumar D., Cattral M. S., Robicsek A., Gaudreau C., Humar A. Outbreak of Pseudomonas aeruginosa by multiple organ transplantation from a common donor. Transplantation. 2003; 75 (7): 1053–1055. [Pub Med] [Google Scholar]

54. Sato A., Kaido T., Iida T., et al. Bundled strategies against infection after liver transplantation: lessons from multidrug-resistant Pseudomonas aeruginosa. Liver Transpl. 2016; 22 (4): 436–445. [Pub Med] [Google Scholar]

55. Decraene V., Ghebrehewet S., Dardamissis E., et al. An outbreak of multidrug-resistant Pseudomonas aeruginosa in a burns service in the North of England: challenges of infection prevention and control in a complex setting. J Hosp Infect. 2018 pii: S0195–6701 (18) 30376-1. [Pub Med] [Google Scholar]

56. Song M., Tang M., Ding Y., et al. Application of protein typing in molecular epidemiological investigation of nosocomial infection outbreak of aminoglycoside-resistant Pseudomonas aeruginosa. Environ Sci Pollut Res Int. 2018; 25 (23): 22437–22445. [Pub Med] [Google Scholar])

57. Breathnach A. S., Cubbon M. D., Karunaharan R. N., Pope C. F., Planche T. D. Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems. J Hosp Infect. 2012; 82 (1): 19–24. [Pub Med] [Google Scholar]

58. Tran-Dinh A., Neulier C., Amara M., et al. Impact of the relocation of an ICU and role of tap water on an outbreak of Pseudomonas aeruginosa expressing OprD-mediated resistance to imipenem. J Hosp Infect. 2018 [Pub Med] [Google Scholar]

59. Vianelli N., Giannini M. B., Quarti C., et al. Resolution of a Pseudomonas aeruginosa outbreak in a hematology unit with the use of disposable sterile water filters. Haematologica. 2006; 91 (7): 983–985. [Pub Med] [Google Scholar])

60. Kizny Gordon A. E., Mathers A. J., Cheong E. Y. L., et al. The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections-a systematic review of the literature. Clin Infect Dis. 2017; 64 (10): 1435–1444. [Pub Med] [Google Scholar])

61. Seara N., Oteo J., Carrillo R., et al. Interhospital spread of NDM-7-producing Klebsiella pneumoniae belonging to ST437 in Spain. Int J Antimicrob Agents. 2015;46 (2): 169–173. [Pub Med] [Google Scholar]

62. Ortolano G. A., McAlister M. B., Angelbeck J. A., et al. Hospital water point-of-use filtration: a complementary strategy to reduce the risk of nosocomial infection. Am J Infect Control. 2005; 33 (5 Suppl 1):S1–S19. [Pub Med] [Google Scholar]

63. Cervia J. S., Ortolano G. A., Canonica F. P. Hospital tap water: a reservoir of risk for healthcare-associated infection. Infect Dis Clin Pract. 2008; 16 (6): 349–353. [Google Scholar]

64. Bjarnsholt T., Alhede M., Jensen P. Ø., et al. Antibiofilm properties of acetic acid. Adv Wound Care. 2015; 4 (7): 363–372. [PMC free article] [Pub Med] [Google Scholar]

65. Dorotkiewicz-Jach A., Augustyniak D., Olszak T., Drulis-Kawa Z. Modern therapeutic approaches against Pseudomonas aeruginosa infections. Curr Med Chem. 2015; 22 (14): 1642–1664. [Pub Med] [Google Scholar]

66. Agodi A., Barchitta M., Cipresso R., et al. Pseudomonas aeruginosa carriage, colonization, and infection in ICU patients. Intensive Care Med. 2007; 33: 1155–61. [Pub Med] [Google Scholar]

67. Neely A. N., Maley M. P.: Survival of enterococci and staphylococci on hospital fabric and plastic. Journal of Clinical Microbiology. 2000, 38: 724-726.

68. Wagenvoort J. H. T., Penders R. J. R.: Long-term in-vitro survival of an epidemic MRSA phage-group III-29 strain. Journal of Hospital Infection. 1997, 35: 322-325. Doi: 10.1016/S0195-6701(97)90229-2.

69. Rüden H., Gastmeier P., Daschner F. D., Schumacher M.: Nosocomial and community-acquired infections in Germany. Summary of the results of the first national prevalence study (NIDEP). Infection. 1997, 25: 199-202. Doi: 10.1007/BF01713142.

70. Dickgiesser N.: Untersuchungen über das Verhalten grampositiver und gramnegativer Bakterien in trockenem und feuchtem Milieu.Zentralblatt für Bakteriologie und Hygiene, I Abt Orig B.1978, 167: 48-62.

71. Hirai Y.: Survival of bacteria under dry conditions from a viewpoint of nosocomial infection. Journal of Hospital Infection. 1991, 19: 191-200. Doi: 10.1016/0195-6701(91)90223-U.

72. Gundermann K. O.: Untersuchungen zur Lebensdauer von Bakterienstämmen im Staub unter dem Einfluß unterschiedlicher Luftfeuchtigkeit. Zentralblatt für Bakteriologie und Hygiene, I Abt Orig B. 1972, 156: 422-429.

73. Noyce J. O., Michels H., Keevil C. W.: Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. Journal of Hospital Infection. 2006, 63: 289-297. Doi: 10.1016/j.jhin.2005.12.008.

74. Wendt C., Dietze B., Dietz E., Rüden H: Survival of Acinetobacter baumannii on dry surfaces. Journal of Clinical Microbiology. 1997, 35: 1394-1397.

75. Bale M. J., Bennett P. M., Benninger J. E., Hinton M.: The survival of bacteria exposed to dessication on surfaces associated with farm buildings. Journal of Applied Bacteriology. 1993, 75: 519-528.

76. Pérez J. L., Gómez E., Sauca G.: Survival of gonococci from urethral discharge on fomites. European Journal of Clinical Microbiology and Infectious Diseases. 1990, 1: 54-55.

77. Neely A. N.: A survey of gram-negative bacteria survival on hospital fabrics and plastics. Journal of Burn Care and Rehabilitation. 2000, 21: 523-527.

78. Webster C., Towner K. J., Humphreys H.: Survival of Acinetobacter on three clinically related inanimate surfaces. Infection Control and Hospital Epidemiology. 2000, 21: 246- Doi: 10.1086/503214.

79. ElmosT.: Survival of Neisseria gonorrhoeae on surfaces. Acta Dermato-Venereologica. 1977, 57: 177-180.

80. Smith C. R.: Survival of tubercle bacilli: the viability of dried tubercle bacilli in unfiltered roomlight, in the dark, and in the refrigerator. American Review of Tuberculosis. 1942, 5: 334-345.

81. Bures S., Fishbain J. T., Uyehara C. F., Parker J. M., Berg B. W.: Computer keyboards and faucet handles as reservoirs of nosocomial pathogens in the intensive care unit. American Journal of Infection Control. 2000, 28: 465-471. Doi: 10.1067/mic.2000.107267.

82. Catalano M., Quelle L. S., Jeric P. E., Di Martino A., Maimone S. M.: Survival of Acinetobacter baumannii on bed rails during an outbreak and during sporadic cases. Journal of Hospital Infection. 1999, 42: 27-35. Doi: 10.1053/jhin.1998.0535.

83. Boyce J. M., Potter-Bynoe G., Chenevert C., King T: Environmental contamination due to methicillin-resistant Staphylococcus aureus: possible infection control implications. Infection Control and Hospital Epidemiology. 1997, 18: 622-627.

84. Scott E., Bloomfield S. F.: The survival and transfer of microbial contamination via cloths, hands and utensils. Journal of Applied Bacteriology. 1990, 68: 271-278.

85. Barker J., Vipond I. B., Bloomfield S. F.: Effects of cleaning and disinfection in reducing the spread of norovirus contamination via environmental surfaces. Journal of Hospital Infection. 2004, 58: 42-44. Doi: 10.1016/j.jhin.2004.04.021.

86. von Rheinbaben F., Schunemann S., Gross T., Wolff M. H.: Transmission of viruses via contact in a household setting: experiments using bacteriophage strain phiXI174 as a model virus. Journal of Hospital Infection. 2000, 46: 61-66. Doi: 10.1053/jhin.2000.0794.

87. Mbithi J. N., Springthorpe V. S.,Boulet J. R.,Sattar S. A.: Survival of hepatitis A virus on human hands and its transfer on contact with animate an inanimate surface.Journal of Clinical Microbiology.1992, 30: 757-763.

88. Kampf G., Kramer A.: Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. Clinical Microbiology Reviews. 2004, 17: 863-893. Doi: 10.1128/CMR.17.4.863-893.2004.

89. Cozad A., Jones R. D.: Disinfection and the prevention of infectious disease. American Journal of Infection Control. 2003, 31: 243-254. Doi: 10.1067/mic.2003.49.

90. Dharan S., Mourouga P., Copin P., Bessmer G., Tschanz B., Pittet D.: Routine disinfection of patients' environmental surfaces. Myth or reality?. Journal of Hospital Infection. 1999, 42: 113-117. Doi: 10.1053/jhin.1999.0567.

91. Wilks M., Wilson A., Warwick S., Price E., Kennedy D., Ely A., Millar M. R.: Control of an outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus colonization and infection in an intensive care unit (ICU) without closing the ICU or placing patients in isolation. Infection Control and Hospital Epidemiology. 2006, 27: 654-658. Doi: 10.1086/507011.

92. Gaynes R. The impact of antimicrobial use on the emergence of antimicrobial-resistant bacteria in hospitals. Infect Dis Clin North Am. 1997;11 (4): 757–765. [Pub Med] [Google Scholar]

93. Kritikos A., Manuel O. Bloodstream infections after solid-organ transplantation. Virulence. 2016; 7 (3): 329–340. [PMC free article] [Pub Med] [Google Scholar]

94. Aijing Luo, Zhuqing Zhong, Qiquan Wan, and Qifa Ye The Distribution and Resistance of Pathogens Among Solid Organ Transplant Recipients with Pseudomonas aeruginosa Infections. 2016; 22: 1124–1130.

95. Shi S. H., Kong H. S., Xu J., et al. Multidrug resistant gram-negative bacilli as predominant bacteremic pathogens in liver transplant recipients. Transplant Infect Dis. 2009; 11: 405–12. [Pub Med] [Google Scholar]

96. H. Y., Shields R. K., Cacciarelli T. V., et al. A novel combination regimen for the treatment of refractory bacteremia due to multidrug-resistant Pseudomonas aeruginosa in a liver transplant recipient. Transpl Infect Dis. 2010; 12: 555–60. [Pub Med] [Google Scholar]

97. Meachery G., De Soyza A., Nicholson A., et al. Outcomes of lung transplantation for cystic fibrosis in a large UK cohort. Thorax. 2008; 63: 725–31. [Pub Med] [Google Scholar]

98. Boussaud V., Guillemain R., Grenet D., et al. Clinical outcome following lung transplantation in patients with cystic fibrosis colonised with Burkholderia cepacia complex: results from two French centres. Thorax. 2008; 63: 732–37. [Pub Med] [Google Scholar]

99. Alexander B. D., Petzold E. W., Reller L. B., et al. Survival after lung transplantation of cystic fibrosis patients infected with Burkholderia cepacia complex. Am J Transplant. 2008; 8: 1025–30. [Pub Med] [Google Scholar]

100. Lui C., et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clinical Infectious Diseases. 2011.

101. Morita Y., et al. Responses of Pseudomonas aeruginosa to antimicrobials. Frontiers in Microbiology. 2013.