Журналов:     Статей:        

Валеология: Здоровье, Болезнь, Выздоровление. 2020; : 122-126

ОСОБЕННОСТИ РАЗВИТИЯ МЕТАБОЛИЧЕСКОГО СИНДРОМА

АХМЕТОВА К. М., АБДУЛДАЕВА А. А., ВОЩЕНКОВА Т. А.

Аннотация

   Метаболический синдром относится к сочетанию нескольких известных факторов риска сердечно-сосудистых заболеваний, включая инсулинорезистентность, ожирение, атерогенную дислипидемию и гипертензию. Эти условия взаимосвязаны и имеют общие медиаторы, механизмы и пути. Метаболический синдром определяет подгруппу пациентов с общей патофизиологией, которые имеют высокий риск развития сердечно-сосудистых заболеваний и диабета 2 типа. Рассматривая основные особенности метаболического синдрома и их взаимосвязь, мы можем лучше понять лежащую в основе патофизиологию и патогенез заболевания.

Список литературы

1. Matsuzawa Y., Funahashi T., Nakamura T. The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb 2011; 18 (8): 629–639.

2. Dupuy A. M., et al. Waist circumference adds to the variance in plasma C-reactive protein levels in elderly patients with metabolic syndrome. Gerontology. 2007; 53 (6): 329-39.

3. Luna-Luna M., Medina-Urrutia A., Vargas-Alarcón G., Coss-Rovirosa F., Vargas-Barrón J., Pérez-Méndez O. Adipose tissue in metabolic syndrome: onset and progression of atherosclerosis. Arch Med Res. 2015; 46 (5): 392-407.

4. Pataky Z., Bobbioni-Harsch E., Golay A. Open questions about metabolically normal obesity. Int J Obes (Lond) 2010; 34 (Suppl 2): S. 18–23.

5. Yoneshiro T., Aita S., Matsushita M., et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013; 123: 3404–3408. doi: 10.1172/JCI67803.

6. Adamczak M., Wiecek A. The adipose tissue as an endocrine organ. Semin Nephrol. 2013; 33 (1): 2–13. doi: 10.1016/j.semnephrol.2012.12.008.

7. Lindsay R. S., Funahashi T., Hanson R. L., et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002; 360 (9326): 57–58.

8. Ouchi N., Ohishi M., Kihara S., et al. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension 2003; 42 (3): 231–234.

9. Pischon T., Girman C. J., Hotamisligil G. S., et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004; 291 (14): 1730–1737.

10. Benrick A., Chanclon B., Micallef P., et al. Adiponectin protects against development of metabolic disturbances in a PCOS mouse model. Proc Natl Acad Sci U S A. 2017: E 7187–96.

11. Yao L., Herlea-Pana O., Heuser-Baker J., Chen Y., Barlic-Dicen J. Roles of the chemokine system in development of obesity, insulin resistance, and cardiovascular disease. J Immunol Res. 2014; 2014: 181450.

12. Francisqueti F. V., Nascimento A. F., Corrêa C. R. Obesidade, inflamação e complicações metabólicas. Nutrire. 2015; 40 (1): 81-9.

13. Klöting N., Blüher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord. 2014; 15(4): 277-87.

14. Cotillard A., Poitou C., Torcivia A., Bouillot J. L., Dietrich A., Klöting N., et al. Adipocyte size threshold matters: link with risk of type 2 diabetes and improved insulin resistance after gastric bypass. J Clin Endocrinol Metab. 2014; 99 (8): E. 1466-70.

15. Andrade-Oliveira V. , Câmara N. O. S., Moraes-Vieira P. M. Adipokines as drug targets in diabetes and underlying disturbances. J Diabetes Res. 2015; 2015: 681612.

16. Borer K. T. Counterregulation of insulin by leptin as key component of autonomic regulation of body weight. World J Diabetes. 2014; 5 (5): 606-29.

17. Boden G., Shulman G. I. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 2002; 32 (Suppl. 3): 14–23.

18. Tooke J. E., Hannemann M. M. Adverse endothelial function and the insulin resistance syndrome. J Intern Med 2000; 247 (4): 425–431.

19. Tripathy D., Mohanty P., Dhindsa S., et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 2003; 52 (12): 2882–2887.

20. Lim K., Burke S. L., Head G. A. Obesity-related hypertension and the role of insulin and leptin in high-fat-fed rabbits. Hypertension. 2013; 61: 628–634.

21. Lytsy P., Ingelsson E., Lind L., Arnlov J., Sundstrom J. Interplay of overweight and insulin resistance on hypertension development. J Hypertens. 2014; 32: 834–839.

22. Landsberg L. Insulin-mediated sympathetic stimulation: role in the pathogenesis of obesity-related hypertension (or, how insulin affects blood pressure, and why) J Hypertens. 2001; 19: 523–528.

23. Hu F. B., Stampfer M. J. Insulin resistance and hypertension: the chicken-egg question revisited. Circulation. 2005; 112: 1678–1680.

24. Malhotra A., Kang B. P., Cheung S., Opawumi D., Meggs L. G. Angiotensin II promotes glucose-induced activation of cardiac protein kinase C isozymes and phosphorylation of troponin I. Diabetes. 2001; 50: 1918–1926.

25. Briones A. M., Nguyen D. C. A., Callera G. E., Yogi A., Burger D., He Y., Correa J. W., Gagnon A. M., Gomez-Sanchez C. E., Gomez-Sanchez E. P., Sorisky A., Ooi T. C., Ruzicka M., Burns K. D., Touyz R. M. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension. 2012; 59: 1069–1078.

26. Vanecková I., Maletínská L., Behuliak M., et al. Obesity-related hypertension: possible pathophysiological mechanisms. J Endocrinol 2014; 223 (3): R. 63–R. 78.

27. Mehta P. K., Griendling K. K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007; 292 (1): C. 82–C. 97.

28. Gobal F., Deshmukh A., Shah S., Mehta J. L. Triad of metabolic syndrome, chronic kidney disease, and coronary heart disease with a focus on microalbuminuria death by overeating. J Am Coll Cardiol. 2011 Jun 7; 57 (23): 2303-8.

29. Dai Y., Mercanti F., Dai D., et al. LOX-1, a bridge between GLP-1R and mitochondrial ROS generation in human vascular smooth muscle cells. Biochem Biophys Res Commun 2013; 437 (1): 62–66.

30. Mena N. A., Sea E. A., Lucia S. IDF Diabetes Atlas – 2014 update [Internet] 2014. – https://www.idf.org

Valeology: Health - Illnes - recovery. 2020; : 122-126

FEATURES OF THE DEVELOPMENT OF METABOLIC SYNDROME

AKHMETOVA K. M., ABDUDAYEVA A. A., VOCHSHENKOVA T. A.

Abstract

   The metabolic syndrome refers to the co-occurrence of several known cardiovascular risk factors, including insulin resistance, obesity, atherogenic dyslipidemia and hypertension. These conditions are interrelated and share underlying mediators, mechanisms and pathways. Metabolic syndrome identifies a subgroup of patients with shared pathophysiology who are at high risk of developing cardiovascular disease and type 2 diabetes. By considering the central features of the metabolic syndrome and how they are related, we may better understand the underlying pathophysiology and disease pathogenesis.

References

1. Matsuzawa Y., Funahashi T., Nakamura T. The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb 2011; 18 (8): 629–639.

2. Dupuy A. M., et al. Waist circumference adds to the variance in plasma C-reactive protein levels in elderly patients with metabolic syndrome. Gerontology. 2007; 53 (6): 329-39.

3. Luna-Luna M., Medina-Urrutia A., Vargas-Alarcón G., Coss-Rovirosa F., Vargas-Barrón J., Pérez-Méndez O. Adipose tissue in metabolic syndrome: onset and progression of atherosclerosis. Arch Med Res. 2015; 46 (5): 392-407.

4. Pataky Z., Bobbioni-Harsch E., Golay A. Open questions about metabolically normal obesity. Int J Obes (Lond) 2010; 34 (Suppl 2): S. 18–23.

5. Yoneshiro T., Aita S., Matsushita M., et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013; 123: 3404–3408. doi: 10.1172/JCI67803.

6. Adamczak M., Wiecek A. The adipose tissue as an endocrine organ. Semin Nephrol. 2013; 33 (1): 2–13. doi: 10.1016/j.semnephrol.2012.12.008.

7. Lindsay R. S., Funahashi T., Hanson R. L., et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002; 360 (9326): 57–58.

8. Ouchi N., Ohishi M., Kihara S., et al. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension 2003; 42 (3): 231–234.

9. Pischon T., Girman C. J., Hotamisligil G. S., et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004; 291 (14): 1730–1737.

10. Benrick A., Chanclon B., Micallef P., et al. Adiponectin protects against development of metabolic disturbances in a PCOS mouse model. Proc Natl Acad Sci U S A. 2017: E 7187–96.

11. Yao L., Herlea-Pana O., Heuser-Baker J., Chen Y., Barlic-Dicen J. Roles of the chemokine system in development of obesity, insulin resistance, and cardiovascular disease. J Immunol Res. 2014; 2014: 181450.

12. Francisqueti F. V., Nascimento A. F., Corrêa C. R. Obesidade, inflamação e complicações metabólicas. Nutrire. 2015; 40 (1): 81-9.

13. Klöting N., Blüher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord. 2014; 15(4): 277-87.

14. Cotillard A., Poitou C., Torcivia A., Bouillot J. L., Dietrich A., Klöting N., et al. Adipocyte size threshold matters: link with risk of type 2 diabetes and improved insulin resistance after gastric bypass. J Clin Endocrinol Metab. 2014; 99 (8): E. 1466-70.

15. Andrade-Oliveira V. , Câmara N. O. S., Moraes-Vieira P. M. Adipokines as drug targets in diabetes and underlying disturbances. J Diabetes Res. 2015; 2015: 681612.

16. Borer K. T. Counterregulation of insulin by leptin as key component of autonomic regulation of body weight. World J Diabetes. 2014; 5 (5): 606-29.

17. Boden G., Shulman G. I. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 2002; 32 (Suppl. 3): 14–23.

18. Tooke J. E., Hannemann M. M. Adverse endothelial function and the insulin resistance syndrome. J Intern Med 2000; 247 (4): 425–431.

19. Tripathy D., Mohanty P., Dhindsa S., et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 2003; 52 (12): 2882–2887.

20. Lim K., Burke S. L., Head G. A. Obesity-related hypertension and the role of insulin and leptin in high-fat-fed rabbits. Hypertension. 2013; 61: 628–634.

21. Lytsy P., Ingelsson E., Lind L., Arnlov J., Sundstrom J. Interplay of overweight and insulin resistance on hypertension development. J Hypertens. 2014; 32: 834–839.

22. Landsberg L. Insulin-mediated sympathetic stimulation: role in the pathogenesis of obesity-related hypertension (or, how insulin affects blood pressure, and why) J Hypertens. 2001; 19: 523–528.

23. Hu F. B., Stampfer M. J. Insulin resistance and hypertension: the chicken-egg question revisited. Circulation. 2005; 112: 1678–1680.

24. Malhotra A., Kang B. P., Cheung S., Opawumi D., Meggs L. G. Angiotensin II promotes glucose-induced activation of cardiac protein kinase C isozymes and phosphorylation of troponin I. Diabetes. 2001; 50: 1918–1926.

25. Briones A. M., Nguyen D. C. A., Callera G. E., Yogi A., Burger D., He Y., Correa J. W., Gagnon A. M., Gomez-Sanchez C. E., Gomez-Sanchez E. P., Sorisky A., Ooi T. C., Ruzicka M., Burns K. D., Touyz R. M. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension. 2012; 59: 1069–1078.

26. Vanecková I., Maletínská L., Behuliak M., et al. Obesity-related hypertension: possible pathophysiological mechanisms. J Endocrinol 2014; 223 (3): R. 63–R. 78.

27. Mehta P. K., Griendling K. K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007; 292 (1): C. 82–C. 97.

28. Gobal F., Deshmukh A., Shah S., Mehta J. L. Triad of metabolic syndrome, chronic kidney disease, and coronary heart disease with a focus on microalbuminuria death by overeating. J Am Coll Cardiol. 2011 Jun 7; 57 (23): 2303-8.

29. Dai Y., Mercanti F., Dai D., et al. LOX-1, a bridge between GLP-1R and mitochondrial ROS generation in human vascular smooth muscle cells. Biochem Biophys Res Commun 2013; 437 (1): 62–66.

30. Mena N. A., Sea E. A., Lucia S. IDF Diabetes Atlas – 2014 update [Internet] 2014. – https://www.idf.org