Журналов:     Статей:        

Валеология: Здоровье, Болезнь, Выздоровление. 2020; : 102-107

БОЛЕЗНИ ИММУННОЙ ДИСРЕГУЛЯЦИИ: КЛИНИКО-ЭПИДЕМИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ РАСПРОСТРАНЕННОСТИ, СВЯЗАННЫЕ С МУТАЦИЕЙ STAT 3 GOF

УСЕНОВА О. П., МОРЕНКО М. А., КОВЗЕЛЬ Е. Ф., ШНАЙДЕР К. В., ВЛАШЕНЮК К. Г., ГАТАУОВА М. Р.

Аннотация

   Понимание передачи сигналов и функции активатора транскрипции Янус-Киназы (JAK-STAT) резко возросло за последние годы, и был выявлен ряд первичных иммунодефицитов, возникающих из-за нарушения передачи сигналов JAK-STAT [1]. В данной обзорной статье представлены основные нозологические проявления болезней иммунной дисрегуляции (БИД), а именно мутации в STAT 3 GOF, их распространенность, клинические и генетические особенности, так как большая часть пациентов с БИД не диагностируется или диагностируются очень поздно.

Список литературы

1. Casanova J. L., Holland S. M., Notarangelo L. D. Inborn errors of human JAKs and STATs // Immunity. – 2012. - Vol.36. – Р. 515–528.

2. Harrison D. A. The Jak / STAT pathway // Cold Spring Harb Perspect Biol. – 2012. - Vol. 4.

3. Ghoreschi K., Laurence A., O’Shea J. J. Janus kinases in immune cell signaling // Immunol Rev. – 2009. - Vol. 228. – Р. 273–287.

4. O’Shea J. J., Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease // Immunity. – 2012. - Vol. 36. – Р. 542–550.

5. Akira S., Nishio Y., Inoue M., Wang X. J., Wei S., Matsusaka T. et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway // Cell. -1994. - Vol. 77. – Р.63–71.

6. Zhong Z., Wen Z., Darnell J. E., Jr. Stat 3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6 // Science. – 1994. - Vol. 8. – Р. 264-295.

7. Harris T. J., Grosso J. F., Yen H. R, Xin H., Kortylewski M., Albesiano E. et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity // Journal of immunology. – 2007. - Vol. 1. – Р. 179-177.

8. Takeda K., Noguchi K., Shi W., Tanaka T., Matsumoto M., Yoshida N. et al. Targeted disruption of the mouse Stat 3 gene leads to early embryonic lethality //Proceedings of the National Academy of Sciences of the United States of America. – 1997. - Vol. 15. – Р. 94-98.

9. Yu H., Lee H., Herrmann A., Buettner R., Jove R. Revisiting STAT 3 signalling in cancer: new and unexpected biological functions // Nature reviews Cancer. – 2014. - Vol. 14. – Р. 736–746.

10. Koskela H. L., Eldfors S., Ellonen P., van Adrichem A. J., Kuusanmaki H., Andersson E. I. et al. Somatic STAT 3 mutations in large granular lymphocytic leukemia // The New England journal of medicine. – 2012. - Vol. 17. - № 366. – Р. 1905–1913.

11. Holland S. M., DeLeo F. R., Elloumi H. Z., Hsu A. P., Uzel G., Brodsky N. et al. STAT3 mutations in the hyper-IgE syndrome // The New England journal of medicine. – 2007. - Vol. 357. – Р. 1608–1619.

12. Minegishi Y., Saito M., Tsuchiya S., Tsuge I., Takada H., Hara T. et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome // Nature. – 2007. - Vol. 448. – Р. 1058–1062.

13. Milner J. D., Brenchley J. M., Laurence A., Freeman A. F., Hill B. J., Elias K. M. et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome // Nature. – 2008. - Vol. 452. – Р. 773–776.

14. de Beaucoudrey L., Puel A., Filipe-Santos O., Cobat A., Ghandil P., Chrabieh M. et al. Mutations in STAT 3 and IL12 RB 1 impair the development of human IL-17-producing T cells // The Journal of experimental medicine. – 2008. - Vol. 205. – Р. 1543–1550.

15. Ma C. S., Chew G. Y., Simpson N., Priyadarshi A., Wong M., Grimbacher B. et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT 3 // The Journal of experimental medicine. – 2008. - Vol. 205. – Р. 1551–1557.

16. Renner E. D., Rylaarsdam S., Anover-Sombke S., Rack A. L., Reichenbach J., Carey J. C. et al. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H) 17 cell numbers, and variably defective STAT 3 phosphorylation in hyper-IgE syndrome // The Journal of allergy and clinical immunology. – 2008. - Vol. 122. – Р. 181–187.

17. Siegel A. M., Stone K. D., Cruse G., Lawrence M. G., Olivera A., Jung M. Y. et al. Diminished allergic disease in patients with STAT 3 mutations reveals a role for STAT 3 signaling in mast cell degranulation // The Journal of allergy and clinical immunology. – 2013. - Vol. 132. – Р. 1388–1396.

18. Boos A. C., Hagl B., Schlesinger A., Halm B. E., Ballenberger N., Pinarci M. et al. Atopic dermatitis, STAT 3-and DOCK 8-hyper-IgE syndromes differ in IgE-based sensitization pattern // Allergy. – 2014. - Vol. 69. – Р. 943–953.

19. Laurence A., Amarnath S., Mariotti J., Kim Y. C., Foley J., Eckhaus M. et al. STAT 3 transcription factor promotes instability of nTreg cells and limits generation of iTreg cells during acute murine graft-versus-host disease. // Immunity. – 2012. - Vol. 37. – Р. 209–222.

20. Durant L., Watford W. T., Ramos H. L., Laurence A., Vahedi G., Wei L. et al. Diverse targets of the transcription factor STAT 3 contribute to T cell pathogenicity and homeostasis. //Immunity. – 2010. - Vol. 32 (5). – Р. 605–615.

21. de Koning J. P., Soede-Bobok A. A., Ward A. C., Schelen A. M., Antonissen C., van Leeuwen D. et al. STAT 3-mediated differentiation and survival and of myeloid cells in response to granulocyte colony-stimulating factor: role for the cyclin-dependent kinase inhibitor p27(Kip1) // Oncogene. – 2000. - Vol. 19 (29). – Р. 3290–3298.

22. Jerez A., Clemente M. J., Makishima H., Koskela H., Leblanc F., Peng Ng K. et al. STAT 3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia // Blood. – 2012. - Vol. 120 (15). – Р. 3048–3057.

23. Franke A., Balschun T., Karlsen T. H., Hedderich J., May S., Lu T. et al. Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis // Nature genetics. –2008. - Vol. 40 (6). – Р. 713–715.

24. Willson T. A., Kuhn B. R., Jurickova I., Gerad S., Moon D., Bonkowski E. et al. STAT 3 genotypic variation and cellular STAT 3 activation and colon leukocyte recruitment in pediatric Crohn disease // Journal of pediatric gastroenterology and nutrition. – 2012. - Vol. 55 (1). – Р. 32–43.

25. Jostins L., Ripke S., Weersma R. K., Duerr R. H., McGovern D. P., Hui K. Y. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease //Nature. - 2012. - Vol.491 (7422). – Р. 119-124.

26. Flanagan S. E., Haapaniemi E., Russell M. A., Caswell R., Lango Allen H., De Franco E. et al. Activating germline mutations in STAT 3 cause early-onset multi-organ autoimmune disease // Nature genetics. – 2014. - Vol. 46 (8). – Р. 812–814.

27. Haapaniemi E. M., Kaustio M., Rajala H. L., van Adrichem A. J., Kainulainen L., Glumoff V. et al. Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT 3 // Blood. – 2015. - Vol. 125 (4). – Р. 639–648.

28. Milner J. D., Vogel T. P., Forbes L., Ma C. A., Stray-Pedersen A., Niemela J. E. et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT 3 gain-of-function mutations // Blood. – 2015. - Vol. 125 (4). – Р. 591–599. This study expands the phenotype for STAT 3 GOF patients by presenting 13 patients in 10 families with significant early-onset lymphoproliferation, autoimmune disease and immunodeficiency. This group went on to explore the mechanism which includes abnormal STAT 1 /STAT 5 activity with decreased Tregs and increased SOCS 3 expression.

29. Haddad E. STAT 3: too much may be worse than not enough! // Blood. – 2015. - Vol. 125 (4). – Р. 583–584.

30. Kanai T., Jenks J., Nadeau K. C. The STAT 5b Pathway Defect and Autoimmunity // Frontiers in immunology. – 2012. – Vol. 3. – Р. 234.

31. Carow B., Rottenberg M. E. SOCS 3, a Major Regulator of Infection and Inflammation. STAT 1, STAT 5 // Frontiers in immunology. – 2014. - Vol. 5. – Р. 58.

Valeology: Health - Illnes - recovery. 2020; : 102-107

DISEASES OF IMMUNE DYSREGULATION: CLINICAL AND EPIDEMIOLOGICAL FEATURES OF THE PREVALENCE OF STAT 3 GOF MUTATION-RELATED

USSENOVA O. P., MORENKO M. A., KOVZEL E. F., SCHNAIDER K. V., VLASHENYUK K. G., GATAOVA M. R.

Abstract

   Understanding of JAK-STAT signaling and function has increased dramatically in recent years, and a number of primary immunodeficiencies have been identified due to impaired JAK-STAT signaling. This review article presents the main nosological manifestations of diseases of immune dysregulation (BID), namely mutations in STAT 3 GOF, their prevalence, clinical and genetic features. Because most patients with BID are not diagnosed or are diagnosed very late.

References

1. Casanova J. L., Holland S. M., Notarangelo L. D. Inborn errors of human JAKs and STATs // Immunity. – 2012. - Vol.36. – R. 515–528.

2. Harrison D. A. The Jak / STAT pathway // Cold Spring Harb Perspect Biol. – 2012. - Vol. 4.

3. Ghoreschi K., Laurence A., O’Shea J. J. Janus kinases in immune cell signaling // Immunol Rev. – 2009. - Vol. 228. – R. 273–287.

4. O’Shea J. J., Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease // Immunity. – 2012. - Vol. 36. – R. 542–550.

5. Akira S., Nishio Y., Inoue M., Wang X. J., Wei S., Matsusaka T. et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway // Cell. -1994. - Vol. 77. – R.63–71.

6. Zhong Z., Wen Z., Darnell J. E., Jr. Stat 3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6 // Science. – 1994. - Vol. 8. – R. 264-295.

7. Harris T. J., Grosso J. F., Yen H. R, Xin H., Kortylewski M., Albesiano E. et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity // Journal of immunology. – 2007. - Vol. 1. – R. 179-177.

8. Takeda K., Noguchi K., Shi W., Tanaka T., Matsumoto M., Yoshida N. et al. Targeted disruption of the mouse Stat 3 gene leads to early embryonic lethality //Proceedings of the National Academy of Sciences of the United States of America. – 1997. - Vol. 15. – R. 94-98.

9. Yu H., Lee H., Herrmann A., Buettner R., Jove R. Revisiting STAT 3 signalling in cancer: new and unexpected biological functions // Nature reviews Cancer. – 2014. - Vol. 14. – R. 736–746.

10. Koskela H. L., Eldfors S., Ellonen P., van Adrichem A. J., Kuusanmaki H., Andersson E. I. et al. Somatic STAT 3 mutations in large granular lymphocytic leukemia // The New England journal of medicine. – 2012. - Vol. 17. - № 366. – R. 1905–1913.

11. Holland S. M., DeLeo F. R., Elloumi H. Z., Hsu A. P., Uzel G., Brodsky N. et al. STAT3 mutations in the hyper-IgE syndrome // The New England journal of medicine. – 2007. - Vol. 357. – R. 1608–1619.

12. Minegishi Y., Saito M., Tsuchiya S., Tsuge I., Takada H., Hara T. et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome // Nature. – 2007. - Vol. 448. – R. 1058–1062.

13. Milner J. D., Brenchley J. M., Laurence A., Freeman A. F., Hill B. J., Elias K. M. et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome // Nature. – 2008. - Vol. 452. – R. 773–776.

14. de Beaucoudrey L., Puel A., Filipe-Santos O., Cobat A., Ghandil P., Chrabieh M. et al. Mutations in STAT 3 and IL12 RB 1 impair the development of human IL-17-producing T cells // The Journal of experimental medicine. – 2008. - Vol. 205. – R. 1543–1550.

15. Ma C. S., Chew G. Y., Simpson N., Priyadarshi A., Wong M., Grimbacher B. et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT 3 // The Journal of experimental medicine. – 2008. - Vol. 205. – R. 1551–1557.

16. Renner E. D., Rylaarsdam S., Anover-Sombke S., Rack A. L., Reichenbach J., Carey J. C. et al. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H) 17 cell numbers, and variably defective STAT 3 phosphorylation in hyper-IgE syndrome // The Journal of allergy and clinical immunology. – 2008. - Vol. 122. – R. 181–187.

17. Siegel A. M., Stone K. D., Cruse G., Lawrence M. G., Olivera A., Jung M. Y. et al. Diminished allergic disease in patients with STAT 3 mutations reveals a role for STAT 3 signaling in mast cell degranulation // The Journal of allergy and clinical immunology. – 2013. - Vol. 132. – R. 1388–1396.

18. Boos A. C., Hagl B., Schlesinger A., Halm B. E., Ballenberger N., Pinarci M. et al. Atopic dermatitis, STAT 3-and DOCK 8-hyper-IgE syndromes differ in IgE-based sensitization pattern // Allergy. – 2014. - Vol. 69. – R. 943–953.

19. Laurence A., Amarnath S., Mariotti J., Kim Y. C., Foley J., Eckhaus M. et al. STAT 3 transcription factor promotes instability of nTreg cells and limits generation of iTreg cells during acute murine graft-versus-host disease. // Immunity. – 2012. - Vol. 37. – R. 209–222.

20. Durant L., Watford W. T., Ramos H. L., Laurence A., Vahedi G., Wei L. et al. Diverse targets of the transcription factor STAT 3 contribute to T cell pathogenicity and homeostasis. //Immunity. – 2010. - Vol. 32 (5). – R. 605–615.

21. de Koning J. P., Soede-Bobok A. A., Ward A. C., Schelen A. M., Antonissen C., van Leeuwen D. et al. STAT 3-mediated differentiation and survival and of myeloid cells in response to granulocyte colony-stimulating factor: role for the cyclin-dependent kinase inhibitor p27(Kip1) // Oncogene. – 2000. - Vol. 19 (29). – R. 3290–3298.

22. Jerez A., Clemente M. J., Makishima H., Koskela H., Leblanc F., Peng Ng K. et al. STAT 3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia // Blood. – 2012. - Vol. 120 (15). – R. 3048–3057.

23. Franke A., Balschun T., Karlsen T. H., Hedderich J., May S., Lu T. et al. Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis // Nature genetics. –2008. - Vol. 40 (6). – R. 713–715.

24. Willson T. A., Kuhn B. R., Jurickova I., Gerad S., Moon D., Bonkowski E. et al. STAT 3 genotypic variation and cellular STAT 3 activation and colon leukocyte recruitment in pediatric Crohn disease // Journal of pediatric gastroenterology and nutrition. – 2012. - Vol. 55 (1). – R. 32–43.

25. Jostins L., Ripke S., Weersma R. K., Duerr R. H., McGovern D. P., Hui K. Y. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease //Nature. - 2012. - Vol.491 (7422). – R. 119-124.

26. Flanagan S. E., Haapaniemi E., Russell M. A., Caswell R., Lango Allen H., De Franco E. et al. Activating germline mutations in STAT 3 cause early-onset multi-organ autoimmune disease // Nature genetics. – 2014. - Vol. 46 (8). – R. 812–814.

27. Haapaniemi E. M., Kaustio M., Rajala H. L., van Adrichem A. J., Kainulainen L., Glumoff V. et al. Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT 3 // Blood. – 2015. - Vol. 125 (4). – R. 639–648.

28. Milner J. D., Vogel T. P., Forbes L., Ma C. A., Stray-Pedersen A., Niemela J. E. et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT 3 gain-of-function mutations // Blood. – 2015. - Vol. 125 (4). – R. 591–599. This study expands the phenotype for STAT 3 GOF patients by presenting 13 patients in 10 families with significant early-onset lymphoproliferation, autoimmune disease and immunodeficiency. This group went on to explore the mechanism which includes abnormal STAT 1 /STAT 5 activity with decreased Tregs and increased SOCS 3 expression.

29. Haddad E. STAT 3: too much may be worse than not enough! // Blood. – 2015. - Vol. 125 (4). – R. 583–584.

30. Kanai T., Jenks J., Nadeau K. C. The STAT 5b Pathway Defect and Autoimmunity // Frontiers in immunology. – 2012. – Vol. 3. – R. 234.

31. Carow B., Rottenberg M. E. SOCS 3, a Major Regulator of Infection and Inflammation. STAT 1, STAT 5 // Frontiers in immunology. – 2014. - Vol. 5. – R. 58.