Traumatology and Orthopaedics of Kazakhstan. 2021; 1: 43-47
Применение имплантов с напылением медью и серебром при перипротезной инфекции коленного сустава
Балгазаров С. С., Рамазанов Ж. К., Абилов Р. С., Морошан А. В., Атепилева А. М., Крикливый А. А.
https://doi.org/10.52889/1684-9280-2021-1-56-43-47Аннотация
Современные исследования описывают новые способы нанесения напыления серебра и меди, которые увеличивают биосовместимость материалов и помогают более эффективно бороться или предотвращать периимплантную инфекцию. В данной работе мы собрали варианты использования покрытия имплантов серебром и медью, описанных в различных научных публикациях. Также, в данную работы нами были включены статьи, описывающие новые методики нанесения серебра и меди на импланты. Покрытие имплантов серебром имеет высокую антибактериальную активность и активно используется в современной травматологии и ортопедии.
Список литературы
1. Bozic K.J., Kurtz S.M., Lau E. Ong K. et al. The epidemiology of revision total knee arthroplasty in the united states. Clinical Orthopaedics and Related Research. 2010; 468(1): 45-51. https://doi.org/10.1007/s11999-009-0945-0.
2. Bozic K.J., Kurtz S.M., Lau E., Ong K. et al. The epidemiology of revision total hip arthroplasty in the united states. Journal of Bone and Joint Surgery A. 2009; 91(1): 128-133.
3. Gallo J., Panacek A., Prucek R., Kriegova E. et al. Silver Nanocoating Technology in the Prevention of Prosthetic Joint Infection. 2016; 9(5): 337. https://doi.org/10.3390/ma9050337.
4. Saeed K., McLaren A. C, Schwarz E.M., Antoci V. et al. 2018 international consensus meeting on musculoskeletal infection: Summary from the biofilm workgroup and consensus on biofilm related musculoskeletal infections. 2019; 37(5): 1007- 1017. https://doi.org/10.1002/jor.24229
5. Zajonz D., Birke U., Ghanem M., Prietzel T. et al. Silver-coated modular Megaendoprostheses in salvage revision arthroplasty after periimplant infection with extensive bone loss - A pilot study of 34 patients. 2017; 18(1): 383. https://doi.org/10.1186/s12891-017-1742-7.
6. Hardes J., Ahrens H., Gebert C., Streitbuerger A. et al. Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials. 2007; 28: 2869-75. https://doi.org/10.1016/j.biomaterials.2007.02.033.
7. Glehr M., Leithner A., Friesenbichler J., Goessler W. et al. Argyria following the use of silver-coated megaprostheses: no association between the development of local argyria and elevated silver levels. Bone Joint J. 2013; 95-B (7): 988-92. https://doi.org/10.1302/0301-620X.95B7.31124.
8. Khalilpour P., Lampe K., Wagener M., Stigler B. et al. Ag/SiOxCy plasma polymer coating for antimicrobial protection of fracture fixation devices. J Biomed Mater Res B ApplBiomater. 2010; 94: 196-202. https://doi.org/10.1002/jbm.b.31641.
9. Alt V., Heiss C., Rupp M. Treatment of a Recurrent Periprosthetic Joint Infection with an Intramedullary Knee Arthrodesis System with Low-Amount Metallic Silver Coating. 2019; 4(3): 111-114. https://doi.org/10.7150/jbji.34484.
10. Abdulrehman T., Qadri S., Skariah S., Sultan A. Boron doped silver-copper alloy nanoparticle targeting intracellular S. 2020; 15(4): e0231276. https://doi.org/10.1371/journal.pone.0231276.
11. Fiore M., Sambri A., Zucchini R., Giannini C., Silver-coated megaprosthesis in prevention and treatment of periprosthetic infections: a systematic review and meta-analysis about efficacy and toxicity in primary and revision surgery. Eur J Orthop Surg Traumatol. 2021; 31(2): 201-220. https://doi.org/10.1007/s00590-020-02779-z.
12. Николаев Н.С., Любимова Л.В., Пчелова Н.Н., Преображенская Е.В. Использование имплантатов с покрытием на основе двумерно-упорядоченного линейно-цепочечного углерода, легированного серебром, для лечения перипротезной инфекции // Травматология и ортопедия России. 2019. – Т.25. - №4. - С.98-108. https://doi.org/10.21823/2311-2905-2019-25-4-98-108.
13. Hashimoto A., Miyamoto H., Kii S., Kobatake T. et al. Time-dependent efficacy of combination of silver-containing hydroxyapatite coating and vancomycin on methicillin-resistant Staphylococcus aureus biofilm formation in vitro. 2021; 14 (81): 1-5. https://doi.org/10.1186/s13104-021-05499-7
14. Fabritius M., Al-Munajjed А.А., Freytag C., Julke H. et al. Antimicrobial Silver Multilayer Coating for Prevention of Bacterial Colonization of Orthopedic Implants. 2020; 13(6): 1415. https://doi.org/:10.3390/ma13061415.
15. Grass G., Rensing C., Solioz M. Metallic Copper as an Antimicrobial Surface. American Society for Microbiology Journals. 2011; 77(5): 1541-1547. https://doi.org/10.1128/AEM.02766-10.
16. Harrasser N., Jussen S., Obermeir A., Kmeth R. Antibacterial potency of different deposition methods of silver and copper containing diamond-like carbon coated polyethylene. 2016; 20(1): 1-10. https://doi.org/10.1186/s40824-016-0062-6.
17. Stranak V., Rebl H., Wulff H., Zietz C. Deposition of thin titanium-copper films with antimicrobial effect by advanced magnetron sputtering methods. 2011; 31(7): 1512-1519. https://doi.org/10.1016/j.msec.2011.06.009.
18. Gould S., Fielder M.D., Kelly A.F., Morgan M., et al. The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens. Annals of Microbiology. 2009; 59 (1): https://doi.org/10.1007/BF03175613.
19. Li Y., Liu L., Wan P., Zhai Z. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations. Biomaterials. 2016; 106: 250-263. https://doi.org/10.1016/j.biomaterials.2016.08.031.
20. Huang L., Heng Y., Xiang H.B., Yu B., et al. Physiochemical properties of copper doped calcium sulfate in vitro and angiogenesis in vivo. Biotechnic & Histochemistry. 2020; 96: 117-124. https://doi.org/10.1080/10520295.2020.1776392.
21. Thukkaram M., Vaidulych M., Kylian O., Rigole P. et al. Biological activity and antimicrobial property of Cu/a-C:H nanocomposites and nanolayered coatings on titanium substrates. Mater Sci Eng C Mater Biol Appl. 2021; 119: 111513. https://doi.org/10.1016/j.msec.2020.111513.
22. Hu J., Li H., Wang X., Yang L. et al. Effect of ultrasonic micro-arc oxidation on the antibacterial properties and cell biocompatibility of Ti-Cu alloy for biomedical application. Mater Sci Eng C Mater Biol Appl. 2020; 115: 110921. https://doi.org/10.1016/j.msec.2020.110921. Epub 2020 Apr 11.
Traumatology and Orthopaedics of Kazakhstan. 2021; 1: 43-47
Copper and Silver Plated Implants for Periprosthetic Knee Infection
Balgazarov Serik , Ramazanov Zhanatay , Abilov Ruslan , Moroshan Artem , Atepileva Aliya , Krikliviy Alexander
https://doi.org/10.52889/1684-9280-2021-1-56-43-47Abstract
Current research is describing new ways of applying silver and copper sputters that increase the biocompatibility of materials and help fight or prevent peri-implant infection more effectively. In this paper, we have collected options for the use of coating implants with silver and copper, described in various scientific publications. Also, in this work, we included articles describing new techniques for applying silver and copper to implants. Silver coating of implants has a high antibacterial activity and is actively used in modern traumatology and orthopedics.
References
1. Bozic K.J., Kurtz S.M., Lau E. Ong K. et al. The epidemiology of revision total knee arthroplasty in the united states. Clinical Orthopaedics and Related Research. 2010; 468(1): 45-51. https://doi.org/10.1007/s11999-009-0945-0.
2. Bozic K.J., Kurtz S.M., Lau E., Ong K. et al. The epidemiology of revision total hip arthroplasty in the united states. Journal of Bone and Joint Surgery A. 2009; 91(1): 128-133.
3. Gallo J., Panacek A., Prucek R., Kriegova E. et al. Silver Nanocoating Technology in the Prevention of Prosthetic Joint Infection. 2016; 9(5): 337. https://doi.org/10.3390/ma9050337.
4. Saeed K., McLaren A. C, Schwarz E.M., Antoci V. et al. 2018 international consensus meeting on musculoskeletal infection: Summary from the biofilm workgroup and consensus on biofilm related musculoskeletal infections. 2019; 37(5): 1007- 1017. https://doi.org/10.1002/jor.24229
5. Zajonz D., Birke U., Ghanem M., Prietzel T. et al. Silver-coated modular Megaendoprostheses in salvage revision arthroplasty after periimplant infection with extensive bone loss - A pilot study of 34 patients. 2017; 18(1): 383. https://doi.org/10.1186/s12891-017-1742-7.
6. Hardes J., Ahrens H., Gebert C., Streitbuerger A. et al. Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials. 2007; 28: 2869-75. https://doi.org/10.1016/j.biomaterials.2007.02.033.
7. Glehr M., Leithner A., Friesenbichler J., Goessler W. et al. Argyria following the use of silver-coated megaprostheses: no association between the development of local argyria and elevated silver levels. Bone Joint J. 2013; 95-B (7): 988-92. https://doi.org/10.1302/0301-620X.95B7.31124.
8. Khalilpour P., Lampe K., Wagener M., Stigler B. et al. Ag/SiOxCy plasma polymer coating for antimicrobial protection of fracture fixation devices. J Biomed Mater Res B ApplBiomater. 2010; 94: 196-202. https://doi.org/10.1002/jbm.b.31641.
9. Alt V., Heiss C., Rupp M. Treatment of a Recurrent Periprosthetic Joint Infection with an Intramedullary Knee Arthrodesis System with Low-Amount Metallic Silver Coating. 2019; 4(3): 111-114. https://doi.org/10.7150/jbji.34484.
10. Abdulrehman T., Qadri S., Skariah S., Sultan A. Boron doped silver-copper alloy nanoparticle targeting intracellular S. 2020; 15(4): e0231276. https://doi.org/10.1371/journal.pone.0231276.
11. Fiore M., Sambri A., Zucchini R., Giannini C., Silver-coated megaprosthesis in prevention and treatment of periprosthetic infections: a systematic review and meta-analysis about efficacy and toxicity in primary and revision surgery. Eur J Orthop Surg Traumatol. 2021; 31(2): 201-220. https://doi.org/10.1007/s00590-020-02779-z.
12. Nikolaev N.S., Lyubimova L.V., Pchelova N.N., Preobrazhenskaya E.V. Ispol'zovanie implantatov s pokrytiem na osnove dvumerno-uporyadochennogo lineino-tsepochechnogo ugleroda, legirovannogo serebrom, dlya lecheniya periproteznoi infektsii // Travmatologiya i ortopediya Rossii. 2019. – T.25. - №4. - S.98-108. https://doi.org/10.21823/2311-2905-2019-25-4-98-108.
13. Hashimoto A., Miyamoto H., Kii S., Kobatake T. et al. Time-dependent efficacy of combination of silver-containing hydroxyapatite coating and vancomycin on methicillin-resistant Staphylococcus aureus biofilm formation in vitro. 2021; 14 (81): 1-5. https://doi.org/10.1186/s13104-021-05499-7
14. Fabritius M., Al-Munajjed A.A., Freytag C., Julke H. et al. Antimicrobial Silver Multilayer Coating for Prevention of Bacterial Colonization of Orthopedic Implants. 2020; 13(6): 1415. https://doi.org/:10.3390/ma13061415.
15. Grass G., Rensing C., Solioz M. Metallic Copper as an Antimicrobial Surface. American Society for Microbiology Journals. 2011; 77(5): 1541-1547. https://doi.org/10.1128/AEM.02766-10.
16. Harrasser N., Jussen S., Obermeir A., Kmeth R. Antibacterial potency of different deposition methods of silver and copper containing diamond-like carbon coated polyethylene. 2016; 20(1): 1-10. https://doi.org/10.1186/s40824-016-0062-6.
17. Stranak V., Rebl H., Wulff H., Zietz C. Deposition of thin titanium-copper films with antimicrobial effect by advanced magnetron sputtering methods. 2011; 31(7): 1512-1519. https://doi.org/10.1016/j.msec.2011.06.009.
18. Gould S., Fielder M.D., Kelly A.F., Morgan M., et al. The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens. Annals of Microbiology. 2009; 59 (1): https://doi.org/10.1007/BF03175613.
19. Li Y., Liu L., Wan P., Zhai Z. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations. Biomaterials. 2016; 106: 250-263. https://doi.org/10.1016/j.biomaterials.2016.08.031.
20. Huang L., Heng Y., Xiang H.B., Yu B., et al. Physiochemical properties of copper doped calcium sulfate in vitro and angiogenesis in vivo. Biotechnic & Histochemistry. 2020; 96: 117-124. https://doi.org/10.1080/10520295.2020.1776392.
21. Thukkaram M., Vaidulych M., Kylian O., Rigole P. et al. Biological activity and antimicrobial property of Cu/a-C:H nanocomposites and nanolayered coatings on titanium substrates. Mater Sci Eng C Mater Biol Appl. 2021; 119: 111513. https://doi.org/10.1016/j.msec.2020.111513.
22. Hu J., Li H., Wang X., Yang L. et al. Effect of ultrasonic micro-arc oxidation on the antibacterial properties and cell biocompatibility of Ti-Cu alloy for biomedical application. Mater Sci Eng C Mater Biol Appl. 2020; 115: 110921. https://doi.org/10.1016/j.msec.2020.110921. Epub 2020 Apr 11.
События
-
Журнал «Концепт: Философия, религия, культура» принят в Scopus >>>
9 июл 2025 | 13:25 -
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52 -
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32