Журналов:     Статей:        

Инфекция и иммунитет. 2017; 7: 41-50

ВИРУС ЭПШТЕЙНА–БАРР У БОЛЬНЫХ РАКОМ НОСОГЛОТКИ И ЗДОРОВЫХ ЛИЦ В ДВУХ ГЕОГРАФИЧЕСКИ РАЗЛИЧНЫХ РЕГИОНАХ РОССИИ

Сенюта Н. Б., Игнатова А. В., Ломая М. В., Гончарова Е. В., Щербак Л. Н., Душенькина Т. Е., Гугунов Д. В., Мудунов А. М., Гурцевич В. Э.

https://doi.org/10.15789/2220-7619-2017-1-41-50

Аннотация

Известно, что вирус Эпштейна–Барр (ВЭБ), широко распространенный в человеческой популяции, является также этиологическим агентом для широкого спектра злокачественных новообразований. Примечательной особенностью опухолей, ассоциированных с ВЭБ, является их отличающийся уровень заболеваемости в различных географических регионах. На уровни заболеваемости ВЭБ-ассоциированными патологиями оказывает влияние вариабельность многочисленных локусов генома вируса и его онкогена — латентного мембранного белка 1 (LMP1), с которым связан трансформирующий потенциал вируса. Учитывая многонациональный состав населения России, разнообразие географических зон и условий его проживания, представлялось актуальным изучить у жителей из разных географических регионов страны характер их взаимоотношения с ВЭБ. Для решения поставленной задачи антительный ответ к локально циркулирующим штаммам ВЭБ, определяемый методом непрямой иммунофлуоресценции, изучали у представителей Цент рального, Северо-Кавказского и Дальневосточного федеральных округов, здоровых и больных различными опухолями головы и шеи. Полученные титры антител сопоставляли с показателями заболеваемости в этих же округах опухолями носоглотки (ОНГ). С целью выяснения наличия структурных модификаций в гене LMP1 у штаммов ВЭБ, циркулирующих в изучаемых географических регионах, указанный ген из биологического материала, собранного от представителей изучаемых групп, был амплифицирован методом «гнездной» ПЦР и секвенирован. Исследования показали, что уровни гуморального ответа к ВЭБ у представителей, вошедших в исследование регионов, существенно разнятся. При этом было обнаружено, что у жителей Республики Дагестан и Чеченской Республики (представителей Северо-Кавказского федерального округа), имеет место корреляция между усиленным гуморальным ответом к ВЭБ и повышенной заболеваемостью ОНГ. Поскольку среди ОНГ доминирует ВЭБ-ассоциированная форма рака носоглотки (РНГВЭБ), то полученные данные позволяют предположить наличие у населения этих республик генетической предрасположенности к повышенной репликации ВЭБ и, соответственно, к повышенной заболеваемости РНГВЭБ. Исследование также показало, что представители изученных регионов инфицированы штаммами ВЭБ, образцы LMP1 которых относятся к известным в литературе вариантам, таким как B95.8, China 1, Med+, Med– и NC, но вариант LMP1, специ фически ассоциированный с РНГВЭБ, выявлен не был. Проведенное исследование впервые выявило генетическую разнородность штаммов ВЭБ, циркулирующих среди населения различных географических регионов страны, и наличие корреляции между уровнями гуморального ответа к ВЭБ и заболеваемостью опухолями носоглотки, включая РНГВЭБ.

Список литературы

1. Blake S.M., Eliopoulos A.G., Dawson C.W., Young L.S. The transmembrane domains of the EBV-encoded latent membrane protein 1 (LMP1) variant CAO regulate enhanced signalling activity. Virology, 2001, vol. 282, no. 2, pp. 278–287. doi: 10.1006/viro.2001.0828

2. De-The G., Lavoue M.F., Muenz L. Differences in EBV antibody titres of patients with nasopharyngeal carcinoma originating from high, intermediate and low incidence. IARC Sci. Publ. 1978, vol. 20, pp. 471–481.

3. Edwards R.H., Seillier-Moiseiwitsch F., Raab-Traub N. Signature amino acid changes in latent membrane protein 1 distinguish Epstein–Barr virus strains. Virology, 1999, vol. 261, no. 1, pp. 79–95. doi: 10.1006/viro.1999.9855

4. Gratama J.W., Ernberg I. Molecular epidemiology of Epstein–Barr virus infection. Adv. Cancer Res., 1995, vol. 67, pp. 197–255.

5. Guo L., Tang M., Yang L., Xiao L., Bode A.M., Li L., Dong Z., Cao Y. Epstein–Barr virus oncoprotein LMP1 mediates survivin upregulation by p53 contributing to G1/S cell cycle progression in nasopharyngeal carcinoma. Int. J. Mol. Med., 2012, vol. 29, no. 4, pp. 574–580. doi: 10.3892/ijmm.2012.889

6. Gurtsevitch V.E., Iakovleva L.S., Shcherbak L.N. Goncharova E.V., Smirnova K.V., Diduk S.V., Kondratova V.N., Maksimovich D.M., Lichtenstein A.V., Senyuta N.B. The LMP1 oncogene sequence variations in patients with oral tumours associated or not associated with the Epstein–Barr virus. Mol. Biol. (Mosk.), 2013, vol. 47, no. 6, pp. 987–995.

7. Gurtsevitch V., Ruiz R., Stepina V., Plachov I., Le Riverend E., Glazkova T., Lavoué M.F., Paches A., Aliev B., Mazurenko N. Epstein–Barr viral serology in nasopharyngeal carcinoma patients in the USSR and Cuba, and its value for differential diagnosis of the disease. Int. J. Cancer, 1986, vol. 37, no. 3, pp. 375–381.

8. Hahn P., Novikova E., Scherback L., Janik C., Pavlish O., Arkhipov V., Nicholls J., Müller-Lantzsch N., Gurtsevitch V., Grässer F.A. The LMP1 gene isolated from Russian nasopharyngeal carcinoma has no 30-bp deletion. Int. J. Cancer, 2001, vol. 91, no. 6, pp. 815–821.

9. Horikawa T., Yoshizaki T., Kondo S., Furukawa M,. Kaizaki Y., Pagano J.S. Epstein–Barr virus latent membrane protein 1 induces Snail and epithelial-mesenchymal transition in metastatic nasopharyngeal carcinoma. Br. J. Cancer, 2011, vol. 104, no. 7, pp. 1160–1167. doi: 10.1038/bjc.2011.38

10. Ji M.F., Yu Y.L., Cheng W.M., Zong Y.S., Ng P.S., Chua D.T., Ng M.H. Detection of stage I nasopharyngeal carcinoma by serologic screening and clinical examination. Chin J. Cancer, 2011, vol. 30, no. 2, pp. 120–123.

11. Johnson R.J., Stack M., Hazlewood S.A., Jones M., Blackmore C.G., Hu L.F., Rowe M. The 30-base-pair deletion in Chinese variants of the Epstein–Barr virus LMP1 gene is not the major effector of functional differences between variant LMP1 genes in human lymphocytes. J. Virol., 1998, vol. 72, no. 5, pp. 4038–4048.

12. Lung M.L., Chang G.C. Detection of distinct Epstein–Barr virus genotypes in NPC biopsies from southern Chinese and Caucasians. Int. J. Cancer, 1992, vol. 52, no. 1, pp. 34–37.

13. Lung M.L., Lam W.P., Sham J., Choy D., Yong Sheng Z., Guo H.Y., Ng M.H. Detection and prevalence of the «f» variant of Epstein–Barr virus in southern China. Virology, 1991, vol. 185, no. 1, pp. 67–71.

14. Man C., Rosa J., Lee L.T., Lee V.H., Chow B.K., Lo K.W., Doxsey S., Wu Z.G., Kwong Y.L., Jin D.Y., Cheung A.L., Tsao S.W. Latent membrane protein 1 suppresses RASSF1A expression, disrupts microtubule structures and induces chromosomal aberrations in human epithelial cells. Oncogene, 2007, vol. 26, no. 21, pp. 3069–3080. doi: 10.1038/sj.onc.1210106

15. Nitta T., Chiba A., Yamamoto N., Yamaoka S. Lack of cytotoxic property in a variant of Epstein–Barr virus latent membrane protein-1 isolated from nasopharyngeal carcinoma. Cell Signal, 2004, vol. 16, no. 9, pp. 1071–1081. doi:10.1016/j.cellsig.2004.03.001

16. Rickinson A.B., Young L.S., Rowe M. Influence of the Epstein–Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J. Virol., 1987, vol. 61, no. 5, pp. 1310–1317.

17. Tierney R.J., Steven N., Young L.S., Rickinson A.B. Epstein–Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J. Virol., 1994, vol. 68, no. 11, pp. 7374–7385.

18. Tzellos S., Farrell P.J. Epstein–Barr virus sequence variation-biology and disease. Pathogens, 2012, vol. 1, no. 2, pp. 156–174. doi: 10.3390/pathogens1020156

19. Wang D., Liebowitz D., Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell, 1985, vol. 43, no. 3, pp. 831–840.

20. Young L.S., Dawson C.W., Eliopoulos A.G. The expression and function of Epstein–Barr virus encoded latent genes. Mol. Pathol., 2000, vol. 53, no. 5, pp. 238–247.

21. Yu M.C., Yuan J.M. Epidemiology of nasopharyngeal carcinoma. Semin. Cancer Biol. 2002, vol. 12, no. 6, pp. 421–429.

22. Zhou X.G., Sandvej K., Li P.J., Ji X.L., Yan Q.H., Zhang X.P., Da J.P., Hamilton-Dutoit S.J. Epstein–Barr virus gene polymorphisms in Chinese Hodgkin’s disease cases and healthy donors: identification of three distinct virus variants. J. Gen. Virol., 2001, vol. 82, no. 5, pp. 1157–1167. doi: 10.1099/0022-1317-82-5-1157

23. Zhu X., Wang Y., Sun Y., Zheng J., Zhu D. MiR-155 up-regulation by LMP1 DNA contributes to increased nasopharyngeal carcinoma cell proliferation and migration. Eur. Arch. Otorhinolaryngol., 2014, vol. 271, no. 7, pp. 1939–1945. doi: 10.1007/s00405-013-2818-0

Russian Journal of Infection and Immunity. 2017; 7: 41-50

EPSTEIN–BARR VIRUS IN THE POPULATION OF TWO GEOGRAPHICALLY DIFFERENT REGIONS OF RUSSIA

Senyuta N. B., Ignatova A. V., Lomaya M. V., Goncharova E. V., Scherback L. N., Dushenkina T. E., Gugunov D. V., Mudunov A. M., Gurtsevitch V. E.

https://doi.org/10.15789/2220-7619-2017-1-41-50

Abstract

It is well known that the Epstein–Barr virus (EBV) being widely spread in the human population is also the etiologic agent for a number of malignancies. A notable feature of tumors associated with EBV is their different incidence in various geographical regions, that, as suggested, related with mutational events in multiple loci of the EBV genome and its oncogene, the latent membrane protein 1 (LMP1), associated with the transforming potential of the virus. Given the multi-ethnic composition of Russian population and the diversity of geographical areas and conditions of their residence, it was relevant to examine the representatives of different geographical regions for the nature of their relationship with EBV. To solve this task the antibody response to locally circulating EBV strains, determined by indirect immunofluorescence, was studied in residents of the Central, North Caucasus and Far Eastern Federal Districts, represented by healthy individuals and patients with various head and neck tumors. The levels of antibody titers obtained were compared with the incidence rates of nasopharyngeal tumors (NPT) in population of above Districts. In order to determine possible structural modifications in LMP1 gene of EBV strains persisting in selected geographic regions, samples of the gene have been amplified from a biological material collected by “nested” PCR and sequenced. The results obtained have shown that levels of antibody response to EBV among representatives of the regions included in the study vary significantly. It was found that in residents of the Dagestan and the Chechen Republics, the inhabitants of the North Caucasus Federal District, the correlation between enhanced humoral response to EBV and increased incidence of NPT was detected. Since among NPT the EBV-associated form of nasopharyngeal carcinoma (NPCEBV) is dominated, the findings allow us to suggest that the population of these Republics have genetic predisposition to increased EBV replication and, consequently, an elevated incidence of NPCEBV. The study also showed that representatives of the regions tested are infected with EBV strains, LMP1 variants of which such as B95.8, China 1, Med+, Med– and NC, are known in the literature. However, LMP1 variant, specifically associated with NPCEBV, has not been identified. This study showed for the first time the genetic heterogeneity of EBV strains circulating among population of different geographical regions of the country, and the existence of correlation between antibody response to EBV and the incidence of nasopharyngeal tumors, including NPCEBV.

References

1. Blake S.M., Eliopoulos A.G., Dawson C.W., Young L.S. The transmembrane domains of the EBV-encoded latent membrane protein 1 (LMP1) variant CAO regulate enhanced signalling activity. Virology, 2001, vol. 282, no. 2, pp. 278–287. doi: 10.1006/viro.2001.0828

2. De-The G., Lavoue M.F., Muenz L. Differences in EBV antibody titres of patients with nasopharyngeal carcinoma originating from high, intermediate and low incidence. IARC Sci. Publ. 1978, vol. 20, pp. 471–481.

3. Edwards R.H., Seillier-Moiseiwitsch F., Raab-Traub N. Signature amino acid changes in latent membrane protein 1 distinguish Epstein–Barr virus strains. Virology, 1999, vol. 261, no. 1, pp. 79–95. doi: 10.1006/viro.1999.9855

4. Gratama J.W., Ernberg I. Molecular epidemiology of Epstein–Barr virus infection. Adv. Cancer Res., 1995, vol. 67, pp. 197–255.

5. Guo L., Tang M., Yang L., Xiao L., Bode A.M., Li L., Dong Z., Cao Y. Epstein–Barr virus oncoprotein LMP1 mediates survivin upregulation by p53 contributing to G1/S cell cycle progression in nasopharyngeal carcinoma. Int. J. Mol. Med., 2012, vol. 29, no. 4, pp. 574–580. doi: 10.3892/ijmm.2012.889

6. Gurtsevitch V.E., Iakovleva L.S., Shcherbak L.N. Goncharova E.V., Smirnova K.V., Diduk S.V., Kondratova V.N., Maksimovich D.M., Lichtenstein A.V., Senyuta N.B. The LMP1 oncogene sequence variations in patients with oral tumours associated or not associated with the Epstein–Barr virus. Mol. Biol. (Mosk.), 2013, vol. 47, no. 6, pp. 987–995.

7. Gurtsevitch V., Ruiz R., Stepina V., Plachov I., Le Riverend E., Glazkova T., Lavoué M.F., Paches A., Aliev B., Mazurenko N. Epstein–Barr viral serology in nasopharyngeal carcinoma patients in the USSR and Cuba, and its value for differential diagnosis of the disease. Int. J. Cancer, 1986, vol. 37, no. 3, pp. 375–381.

8. Hahn P., Novikova E., Scherback L., Janik C., Pavlish O., Arkhipov V., Nicholls J., Müller-Lantzsch N., Gurtsevitch V., Grässer F.A. The LMP1 gene isolated from Russian nasopharyngeal carcinoma has no 30-bp deletion. Int. J. Cancer, 2001, vol. 91, no. 6, pp. 815–821.

9. Horikawa T., Yoshizaki T., Kondo S., Furukawa M,. Kaizaki Y., Pagano J.S. Epstein–Barr virus latent membrane protein 1 induces Snail and epithelial-mesenchymal transition in metastatic nasopharyngeal carcinoma. Br. J. Cancer, 2011, vol. 104, no. 7, pp. 1160–1167. doi: 10.1038/bjc.2011.38

10. Ji M.F., Yu Y.L., Cheng W.M., Zong Y.S., Ng P.S., Chua D.T., Ng M.H. Detection of stage I nasopharyngeal carcinoma by serologic screening and clinical examination. Chin J. Cancer, 2011, vol. 30, no. 2, pp. 120–123.

11. Johnson R.J., Stack M., Hazlewood S.A., Jones M., Blackmore C.G., Hu L.F., Rowe M. The 30-base-pair deletion in Chinese variants of the Epstein–Barr virus LMP1 gene is not the major effector of functional differences between variant LMP1 genes in human lymphocytes. J. Virol., 1998, vol. 72, no. 5, pp. 4038–4048.

12. Lung M.L., Chang G.C. Detection of distinct Epstein–Barr virus genotypes in NPC biopsies from southern Chinese and Caucasians. Int. J. Cancer, 1992, vol. 52, no. 1, pp. 34–37.

13. Lung M.L., Lam W.P., Sham J., Choy D., Yong Sheng Z., Guo H.Y., Ng M.H. Detection and prevalence of the «f» variant of Epstein–Barr virus in southern China. Virology, 1991, vol. 185, no. 1, pp. 67–71.

14. Man C., Rosa J., Lee L.T., Lee V.H., Chow B.K., Lo K.W., Doxsey S., Wu Z.G., Kwong Y.L., Jin D.Y., Cheung A.L., Tsao S.W. Latent membrane protein 1 suppresses RASSF1A expression, disrupts microtubule structures and induces chromosomal aberrations in human epithelial cells. Oncogene, 2007, vol. 26, no. 21, pp. 3069–3080. doi: 10.1038/sj.onc.1210106

15. Nitta T., Chiba A., Yamamoto N., Yamaoka S. Lack of cytotoxic property in a variant of Epstein–Barr virus latent membrane protein-1 isolated from nasopharyngeal carcinoma. Cell Signal, 2004, vol. 16, no. 9, pp. 1071–1081. doi:10.1016/j.cellsig.2004.03.001

16. Rickinson A.B., Young L.S., Rowe M. Influence of the Epstein–Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J. Virol., 1987, vol. 61, no. 5, pp. 1310–1317.

17. Tierney R.J., Steven N., Young L.S., Rickinson A.B. Epstein–Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J. Virol., 1994, vol. 68, no. 11, pp. 7374–7385.

18. Tzellos S., Farrell P.J. Epstein–Barr virus sequence variation-biology and disease. Pathogens, 2012, vol. 1, no. 2, pp. 156–174. doi: 10.3390/pathogens1020156

19. Wang D., Liebowitz D., Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell, 1985, vol. 43, no. 3, pp. 831–840.

20. Young L.S., Dawson C.W., Eliopoulos A.G. The expression and function of Epstein–Barr virus encoded latent genes. Mol. Pathol., 2000, vol. 53, no. 5, pp. 238–247.

21. Yu M.C., Yuan J.M. Epidemiology of nasopharyngeal carcinoma. Semin. Cancer Biol. 2002, vol. 12, no. 6, pp. 421–429.

22. Zhou X.G., Sandvej K., Li P.J., Ji X.L., Yan Q.H., Zhang X.P., Da J.P., Hamilton-Dutoit S.J. Epstein–Barr virus gene polymorphisms in Chinese Hodgkin’s disease cases and healthy donors: identification of three distinct virus variants. J. Gen. Virol., 2001, vol. 82, no. 5, pp. 1157–1167. doi: 10.1099/0022-1317-82-5-1157

23. Zhu X., Wang Y., Sun Y., Zheng J., Zhu D. MiR-155 up-regulation by LMP1 DNA contributes to increased nasopharyngeal carcinoma cell proliferation and migration. Eur. Arch. Otorhinolaryngol., 2014, vol. 271, no. 7, pp. 1939–1945. doi: 10.1007/s00405-013-2818-0