Журналов:     Статей:        

Инфекция и иммунитет. 2022; 12: 9-20

Молекулярные диагностические платформы, созданные на базе систем CRISPR/Cas

Волков А. А., Долгова А. С., Дедков В. Г.

https://doi.org/10.15789/2220-7619-CCB-1843

Аннотация

Последние несколько лет системы CRISPR/Cas активно исследуются и используются для широкого спектра прикладных задач. Многообразие вариантов их применения обусловлено способностью нуклеаз типа Cas направленно расщеплять заданные последовательности нуклеиновых кислот. При этом исследователь может задавать необходимую последовательность направляющих элементов cистемы, в роли которых выступают так называемые единые гидовые РНК, что позволяет системе воздействовать на определенные мишени. Такое свойство и стало одной из причин интереса к системам CRISPR/Cas. Одним из первых направлений применения данных систем было использование их для геномного редактирования. В дальнейшем список потенциальных возможностей расширился: например, CRISPR/Cas можно задействовать в генотерапии и эпигенетических исследованиях. Из единых гидовых РНК могут быть составлены библиотеки, выступающие основой для создания вирусных векторов с последующим трансдуцированием бактериальных клеток и нокаутированием указанных мишеней при помощи cas-белков. Такой подход позволяет осуществлять поиск бактериальных генов, ответственных за устойчивость или чувствительность к различным препаратам. Использование этих систем в молекулярной диагностике инфекционных заболеваний считается одним из наиболее многообещающих направлений. Диагностика при помощи  CRISPR/Cas  позволяет обнаруживать в образцах даже небольшие концентрации патогенных организмов за счет детекции их нуклеотидных последовательностей. При этом такие анализы оказываются точными, быстрыми и несложными в применении, а для функционирования ряда платформ даже не требуется дорогостоящее оборудование, поскольку уже разработаны методы быстрой и простой пробоподготовки, а современные подходы преамплификации позволяют уйти от использования термоциклических аппаратов. Примечательно, что уже открыто огромное число естественных систем CRISPR/Cas различных типов. Такое изобилие способствует разработке разнообразных искусственных систем, каждая из которых обладает своими особенными характеристиками. На их базе создается и множество диагностических платформ, различающихся по свойствам, что позволяет исследователям и медицинским работникам подбирать наилучший метод для решения определенных задач. Для выбора подходящей платформы важно иметь представление об устройстве и функционировании систем CRISPR/Cas, а следовательно, необходима актуальная классификация систем, на базе которой, в свою очередь, уже удобно оценивать само многообразие платформ молекулярной диагностики и представлять типовые характеристики и нюансы устройства для каждого метода. Таким образом, данный обзор, посвященный преимущественно платформам молекулярной диагностики инфекционных заболеваний, также затрагивает вопросы функционирования, устройств и классификации систем CRISPR/Cas.

Список литературы

1. Дятлов И.А. Возможности использования CRISPR-Cas-системы для диагностических целей в медицинской микробиологии // Бактериология. 2017. Т. 2, № 4. С. 5–6.

2. Тюменцев А.И., Тюменцева М.А. CRISPR нуклеазы // Генетические технологии / Ю.В. Михайлова, А.М. Нагорных, В.В. Петров, А.Е. Судьина, А.И. Тюменцев, М.А. Тюменцева, А.А. Шеленков; под ред. В.Г. Акимкина. М.: ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, 2020. С. 63–85.

3. Патент № 2707542 Российская Федерация, МПК C12N 9/22, C12N 15/09, C12P 21/02, C07K 1/18, C07K 1/32, C07K 1/36 (2019.08). Способ получения препарата рекомбинантной нуклеазы CAS, по существу, свободного от бактериальных эндотоксинов, полученный данным способом препарат и содержащий его набор для использования в системе CRISPR/Cas. № 2019109018; заявлено 2019.03.28: опубликовано 2019.11.27 / Акимкин В.Г., Тюменцев А.И., Тюменцева М.А., Шагин Д.А. Патентообладатель: ФБУН ЦНИИ эпидемиологии Роспотребнадзора. 131 с.

4. Патент № 2747820 Российская Федерация, МПК C12Q 1/6816, C12N 9/22, C12N 15/113 (2021.02). Система CRISPR-Cas для выявления ДНК вируса Джона Каннингема (JCPyV) в ультранизких концентрациях. № 2020139162; заявлено 2020.11.30: опубликовано 2021.05.14 / Тюменцев А.И., Тюменцева М.А., Акимкин В.Г. Патентообладатель: ФБУН ЦНИИ эпидемиологии Роспотребнадзора. 21 с.

5. Ackerman C.M., Myhrvold C., Thakku S.G., Freije C.A., Metsky H.C., Yang D.K., Ye S.H., Boehm C.K., Kosoko-Thoroddsen T.S.F., Kehe J., Nguyen T.G., Carter A., Kulesa A., Barnes J.R., Dugan V.G., Hung D.T., Blainey P.C., Sabeti P.C. Massively multiplexed nucleic acid detection with Cas13. Nature, 2020, vol. 582, no. 7811, pp. 277–282. doi: 10.1038/s41586-020-2279-8

6. Agarwal N., Gupta R. History, evolution and classification of CRISPR-Cas associated systems. Prog. Mol. Biol. Transl. Sci., 2021, vol. 179, pp. 11–76. doi: 10.1016/bs.pmbts.2020.12.012

7. Anders C., Niewoehner O., Duerst A., Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 2014, vol. 513, no. 7519, pp. 569–573. doi: 10.1038/nature13579

8. Aquino-Jarquin G. CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic. Nanomed.: Nanotechnol. Biol. Med., 2019, vol. 18, pp. 428–431. doi: 10.1016/j.nano.2019.03.006

9. Arizti-Sanz J., Freije C.A., Stanton A.C., Petros B.A., Boehm C.K., Siddiqui S., Shaw B.M., Adams G., Kosoko-Thoroddsen T.S.F., Kemball M.E., Uwanibe J.N., Ajogbasile F.V., Eromon P.E., Gross R., Wronka L., Caviness K., Hensley L.E., Bergman N.H., MacInnis B.L., Myhrvold C. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nature Communications, 2020, vol. 11, no. 1: 5921. doi: 10.1038/s41467-020-19097-x

10. Barrangou R. Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biology, 2015, vol. 16, no. 1: 247. doi: 10.1186/s13059-015-0816-9

11. Bauer D.E., Canver M.C., Orkin S.H. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. J. Vis. Exp., 2015, vol. 95: e52118. doi: 10.3791/52118

12. Bonini A., Poma N., Vivaldi F., Kirchhain A., Salvo P., Bottai D., Tavanti A., Di Francesco F. Advances in biosensing: the CRISPR/Cas system as a new powerful tool for the detection of nucleic acids. J. Pharm. Biomed., 2021, vol. 192: 113645. doi: 10.1016/j.jpba.2020.113645

13. Cofsky J.C., Karandur D., Huang C.J., Witte I.P., Kuriyan J., Doudna J.A. CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks. ELife, 2020, vol. 9: e55143. doi: 10.7554/eLife.55143

14. Dai Y., Somoza R.A., Wang L., Welter J.F., Li Y., Caplan A.I., Liu C.C. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angew. Chem. Int. Ed., 2019, vol. 58, no. 48, pp. 17399–17405. doi: 10.1002/anie.201910772

15. Gootenberg J.S., Abudayyeh O.O., Kellner M.J., Joung J., Collins J.J., Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a and Csm6. Science, 2018, vol. 360, no. 6387, pp. 439–444. doi: 10.1126/science.aaq0179

16. Hajian R., Balderston S., Tran T., DeBoer T., Etienne J., Sandhu M., Wauford N.A., Chung J.Y., Nokes J., Athaiya M., Paredes J., Peytavi R., Goldsmith B., Murthy N., Conboy I.M., Aran K. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng., 2019, vol. 3, no. 6, pp. 427–437. doi: 10.1038/s41551-019-0371-x

17. Harrington L.B., Burstein D., Chen J.S., Paez-Espino D., Ma E., Witte I.P., Cofsky J.C., Kyrpides N.C., Banfield J.F., Doudna J.A. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 2018, vol. 362, no. 6416, pp. 839– 842. doi: 10.1126/science.aav4294

18. Horvath P., Barrangou R. CRISPR/Cas, the immune system of Bacteria and Archaea. Science, 2010, vol. 327, no. 5962, pp. 167– 170. doi: 10.1126/science.1179555

19. Ishino Y., Krupovic M., Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J. Bacteriol., 2018, vol. 200, no. 7: e00580-17. doi: 10.1128/JB.00580-17

20. Ishino Y., Shinagawa H., Makino K., Amemura M., Nakatura A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol., 1987, vol. 169, no. 12, pp. 5429–5433. doi: 10.1128/jb.169.12.5429-5433.1987

21. Jiang Y., Chen B., Duan C., Sun B., Yang J., Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol., 2015, vol. 81, no. 7, pp. 2506–2514. doi: 10.1128/AEM.04023-14

22. Joung J., Ladha A., Saito M., Kim N.-G., Woolley A.E., Segel M., Barretto R.P.J., Ranu A., Macrae R.K., Faure G., Ioannidi E.I., Krajeski R.N., Bruneau R., Huang M.-L.W., Yu X.G., Li J.Z., Walker B.D., Hung D.T., Greninger A.L., Zhang F. Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. N. Engl. J. Med., 2020, vol. 383, no. 15, pp. 1492–1494. doi: 10.1056/nejmc2026172

23. Kaminski M.M., Abudayyeh O.O., Gootenberg J.S., Zhang F., Collins J.J. CRISPR-based diagnostics. Nat. Biomed. Eng., 2021, vol. 5, no. 7, pp. 643–656. doi: 10.1038/s41551-021-00760-7

24. Kellner M.J., Koob J.G., Gootenberg J.S., Abudayyeh O.O., Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc., 2019, vol. 14, no. 10, pp. 2986–3012. doi: 10.1038/s41596-019-0210-2

25. Kim S., Ji S., Koh H.R. Crispr as a diagnostic tool. Biomolecules, 2021, vol. 11, no. 8: 1162. doi: 10.3390/biom11081162

26. Koonin E.V., Makarova K.S. Origins and evolution of CRISPR-Cas systems. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2019, vol. 374, no. 1772: 20180087. doi: 10.1098/rstb.2018.0087

27. Lau A., Ren C., Lee L.P. Critical review on where CRISPR meets molecular diagnostics. Progress in Biomedical Engineering, 2020, vol. 3, no 1: 012001. doi: 10.1088/2516-1091/abbf5e

28. Lee R.A., De Puig H., Nguyen P.Q., Angenent-Mari N.M., Donghia N.M., McGee J.P., Dvorin J.D., Klapperich C.M., Pollock N.R., Collins J.J. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria. Proc. Natl. Acad. Sci. USA, 2020, vol. 117, no. 41, pp. 25722–25731. doi: 10.1073/pnas.2010196117

29. Li C.L., Hor L.I., Chang Z.F., Tsai L.C., Yang W.Z., Yuan H.S. DNA binding and cleavage by the periplasmic nuclease Vvn: a novel structure with a known active site. EMBO Journal, 2003, vol. 22, no. 15, pp. 4014–4025. doi: 10.1093/emboj/cdg377

30. Li S.Y., Cheng Q.X., Li X.Y., Zhang Z.L., Gao S., Cao R.B., Zhao G.P., Wang J., Wang J.M. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discovery, 2018, vol. 4: 20. doi: 10.1038/s41421-018-0028-z

31. Li Y., Li S., Wang J., Liu G. CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol., 2019, vol. 37, no. 7, pp. 730–743. doi: 10.1016/j.tibtech.2018.12.005

32. Li Z., Zhang H., Xiao R., Han R., Chang L. Cryo-EM structure of the RNA-guided ribonuclease Cas12g. Nat. Chem. Biol., 2021, vol. 17, no. 4, pp. 387–393. doi: 10.1038/s41589-020-00721-2

33. Makarova K.S., Wolf Y.I., Alkhnbashi O.S., Costa F., Shah S.A., Saunders S.J., Barrangou R., Brouns S.J.J., Charpentier E., Haft D.H., Horvath P., Moineau S., Mojica F.J.M., Terns R.M., Terns M.P., White M.F., Yakunin A.F., Garrett R.A., Van Der Oost J., Koonin E.V. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol., 2015, vol. 13, no. 11, pp. 722–736. doi: 10.1038/nrmicro3569

34. Makarova K.S., Wolf Y.I., Iranzo J., Shmakov S.A., Alkhnbashi O.S., Brouns S.J.J., Charpentier E., Cheng D., Haft D.H., Horvath P., Moineau S., Mojica F.J.M., Scott D., Shah S.A., Siksnys V., Terns M.P., Venclovas Č., White M.F., Yakunin A.F., Yan W., Zhang F., Garrett R.A., Backofen R., van der Oost J., Barrangou R., Koonin E.V. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol., 2020, vol. 18, no. 2, pp. 67–83. doi: 10.1038/s41579-019-0299-x

35. Mans R., van Rossum H.M., Wijsman M., Backx A., Kuijpers N.G.A., van den Broek M., Daran-Lapujade P., Pronk J.T., van Maris A.J.A., Daran J.M.G. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res., 2015, vol. 15, no. 2: fov004. doi: 10.1093/femsyr/fov004

36. Marraffini L.A. CRISPR-Cas immunity in prokaryotes. Nature, 2015, vol. 526, no. 7571, pp. 55–61. doi: 10.1038/nature15386

37. Mustafa M.I., Makhawi A.M. SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases and cancer-associated mutations. Preprints, 2020, 2020040080. doi: 10.20944/preprints202004.0080.v1

38. Myhrvold C., Freije C.A., Gootenberg J.S., Abudayyeh O.O., Metsky H.C., Durbin A.F., Kellner M.J., Tan A.L., Paul L.M., Parham L.A., Garcia K.F., Barnes K.G., Chak B., Mondini A., Nogueira M.L., Isern S., Michael S.F., Lorenzana I., Yozwiak N.L., MacInnis B.L., Bosch I., Gehrke L., Zhang F., Sabeti P.C. Field-deployable viral diagnostics using CRISPR-Cas13. Science, 2018, vol. 360, no. 6387, pp. 444–448. doi: 10.1126/science.aas8836

39. Nishimasu H., Ran F.A., Hsu P.D., Konermann S., Shehata S.I., Dohmae N., Ishitani R., Zhang F., Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, vol. 156, no. 5, pp. 935–949. doi: 10.1016/j.cell.2014.02.001

40. Piepenburg O., Williams C.H., Stemple D.L., Armes N.A. DNA detection using recombination proteins. PLoS Biology, 2006, vol. 4, no. 7, pp. 1115–1121. doi: 10.1371/journal.pbio.0040204

41. Pinilla-Redondo R., Mayo-Muñoz D., Russel J., Garrett R.A., Randau L., Sørensen S.J., Shah S.A. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res., 2020, vol. 48, no. 4, pp. 2000–2012. doi: 10.1093/nar/gkz1197

42. Quan J., Langelier C., Kuchta A., Batson J., Teyssier N., Lyden A., Caldera S., McGeever A., Dimitrov B., King R., Wilheim J., Murphy M., Ares L.P., Travisano K.A., Sit R., Amato R., Mumbengegwi D.R., Smith J.L., Bennett A., Gosling R., Mourani P.M., Calfee C.S., Neff N.F., Chow E.D., Kim P.S., Greenhouse B., DeRisi J.L., Crawford E.D. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res., 2019, vol. 47, no. 14: e83. doi: 10.1093/nar/gkz418

43. Shen J., Zhou X., Shan Y., Yue H., Huang R., Hu J., Xing D. Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction. Nat. Commun., 2020, vol. 11: 267. doi: 10.1038/s41467-019-14135-9

44. Shmakov S., Smargon A., Scott D., Cox D., Pyzocha N., Yan W., Abudayyeh O.O., Gootenberg J.S., Makarova K.S., Wolf Y.I., Severinov K., Zhang F., Koonin E.V. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol., 2017, vol. 15, no. 3, pp. 169–182. doi: 10.1038/nrmicro.2016.184

45. Sontheimer E.J., Barrangou R. The bacterial origins of the CRISPR genome-editing revolution. HGT, 2015, vol. 26, no. 7, pp. 413–424. doi: 10.1089/hum.2015.091

46. Teng F., Guo L., Cui T., Wang X.G., Xu K., Gao Q., Zhou Q., Li W. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol., 2019, vol. 20, no. 1: 132. doi: 10.1186/s13059-019-1742-z

47. Varble A., Marraffini L.A. Three New C’s for CRISPR: collateral, communicate, cooperate. Trends Genet., 2019, vol. 35, no. 6, pp. 446–456. doi: 10.1016/j.tig.2019.03.009

48. Wang M., Zhang R., Li J. CRISPR/cas systems redefine nucleic acid detection: principles and methods. Biosens. Bioelectron., 2020, vol. 165: 112430. doi: 10.1016/j.bios.2020.112430

49. Wang T., Liu Y., Sun H.H., Yin B.C., Ye B.C. An RNA-Guided Cas9 nickase-based method for universal isothermal DNA amplification. Angew. Chem. Int. Ed., 2019, vol. 58, no. 16, pp. 5382–5386. doi: 10.1002/anie.201901292

50. Yan F., Wang W., Zhang J. CRISPR-Cas12 and Cas13: the lesser known siblings of CRISPR-Cas9. Cell Biol. Toxicol., 2019, vol. 35, no. 6, pp. 489–492. doi: 10.1007/s10565-019-09489-1

51. Zhang J., Lv H., Li L., Chen M., Gu D., Wang J., Xu Y. Recent improvements in CRISPR-based amplification-free pathogen detection. Front. Microbiol., 2021, vol. 12: 751408. doi: 10.3389/fmicb.2021.751408

52. Zhang Y., Zhang C.Y. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Analytical Chemistry, 2012, vol. 84, no. 1, pp. 224–231. doi: 10.1021/ac202405q

53. Zhou T., Huang R., Huang M., Shen J., Shan Y., Xing D. CRISPR/Cas13a powered portable electrochemiluminescence chip for ultrasensitive and specific MiRNA detection. Advanced Science, 2020, vol. 7, no. 13: 1903661. doi: 10.1002/advs.201903661

54. Zhou W., Hu L., Ying L., Zhao Z., Chu P.K., Yu X.F. A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat. Commun., 2018, vol. 9, no. 1: 5012. doi: 10.1038/s41467-018-07324-5

Russian Journal of Infection and Immunity. 2022; 12: 9-20

CRISPR/Cas-based diagnostic platforms

Volkov A. A., Dolgova A. S., Dedkov V. G.

https://doi.org/10.15789/2220-7619-CCB-1843

Abstract

Over the last few years, CRISPR/Cas systems have been extensively studied and used for a wide range of applied purposes. The variety of their applications is accounted for by the ability of Cas-type nucleases to targetly cleave specified nucleic acid sequences. In this case, the researcher might set the necessary sequence of the guiding elements in the CRISPR/Cas system, played by so-called single guide RNAs allowing it to act on select targets. This potential underlies one of the reasons for exerting interest in CRISPR/Cas systems. One of the first areas for applying these systems was its use for genomic editing. Later, the list of potential opportunities has been expanded: e.g., they can be used in gene therapy and epigenetic research. It is possible to create sgRNA libraries which might be used to create a pool of viral vectors applied for bacterial cell transformation with subsequent cas-protein transduction that cause target gene knockout. This approach allows finding genes responsible for resistance or sensibility to diverse substances. Using such systems in molecular diagnostics of infectious diseases is considered as one of the most promising directions allowing to detect even extremely low concentrations of pathogenic organisms in samples due to their specific nucleotide sequences. Simultaneously, such assays turn out to be accurate, rapid and easy to utilize. In addition, some platforms may work without using expensive equipment, because methods for fast and simple sample preparation have already been developed, whereas modern preamplification approaches allow to avoid applying thermocycling devices. Interestingly, a great amount of diverse types of natural CRISPR/Cas systems have been already discovered. Such abundance promotes development of multiple artificial systems, each of which exerting own unique characteristics. Therefore, a variety of diagnostic platforms with different properties are created on their basis that allows researchers and physicians to choose an optimal approach for performing specific tasks. For this reason, insights into structure and operation of CRISPR/Cas systems are necessary for selecting a suitable platform. The current classification of systems is based on such principles serving as the basis, in turn, for convenient evaluation of the very variety of molecular diagnostics platforms and presentation of the typical technical characteristics and nuances for each method. Thus, this review, which is mainly devoted to the platforms for molecular diagnostics of infectious diseases, also touches upon the issues of functioning, devices, and classification of CRISPR/Cas systems.

References

1. Dyatlov I.A. Vozmozhnosti ispol'zovaniya CRISPR-Cas-sistemy dlya diagnosticheskikh tselei v meditsinskoi mikrobiologii // Bakteriologiya. 2017. T. 2, № 4. S. 5–6.

2. Tyumentsev A.I., Tyumentseva M.A. CRISPR nukleazy // Geneticheskie tekhnologii / Yu.V. Mikhailova, A.M. Nagornykh, V.V. Petrov, A.E. Sud'ina, A.I. Tyumentsev, M.A. Tyumentseva, A.A. Shelenkov; pod red. V.G. Akimkina. M.: FBUN TsNII Epidemiologii Rospotrebnadzora, 2020. S. 63–85.

3. Patent № 2707542 Rossiiskaya Federatsiya, MPK C12N 9/22, C12N 15/09, C12P 21/02, C07K 1/18, C07K 1/32, C07K 1/36 (2019.08). Sposob polucheniya preparata rekombinantnoi nukleazy CAS, po sushchestvu, svobodnogo ot bakterial'nykh endotoksinov, poluchennyi dannym sposobom preparat i soderzhashchii ego nabor dlya ispol'zovaniya v sisteme CRISPR/Cas. № 2019109018; zayavleno 2019.03.28: opublikovano 2019.11.27 / Akimkin V.G., Tyumentsev A.I., Tyumentseva M.A., Shagin D.A. Patentoobladatel': FBUN TsNII epidemiologii Rospotrebnadzora. 131 s.

4. Patent № 2747820 Rossiiskaya Federatsiya, MPK C12Q 1/6816, C12N 9/22, C12N 15/113 (2021.02). Sistema CRISPR-Cas dlya vyyavleniya DNK virusa Dzhona Kanningema (JCPyV) v ul'tranizkikh kontsentratsiyakh. № 2020139162; zayavleno 2020.11.30: opublikovano 2021.05.14 / Tyumentsev A.I., Tyumentseva M.A., Akimkin V.G. Patentoobladatel': FBUN TsNII epidemiologii Rospotrebnadzora. 21 s.

5. Ackerman C.M., Myhrvold C., Thakku S.G., Freije C.A., Metsky H.C., Yang D.K., Ye S.H., Boehm C.K., Kosoko-Thoroddsen T.S.F., Kehe J., Nguyen T.G., Carter A., Kulesa A., Barnes J.R., Dugan V.G., Hung D.T., Blainey P.C., Sabeti P.C. Massively multiplexed nucleic acid detection with Cas13. Nature, 2020, vol. 582, no. 7811, pp. 277–282. doi: 10.1038/s41586-020-2279-8

6. Agarwal N., Gupta R. History, evolution and classification of CRISPR-Cas associated systems. Prog. Mol. Biol. Transl. Sci., 2021, vol. 179, pp. 11–76. doi: 10.1016/bs.pmbts.2020.12.012

7. Anders C., Niewoehner O., Duerst A., Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 2014, vol. 513, no. 7519, pp. 569–573. doi: 10.1038/nature13579

8. Aquino-Jarquin G. CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic. Nanomed.: Nanotechnol. Biol. Med., 2019, vol. 18, pp. 428–431. doi: 10.1016/j.nano.2019.03.006

9. Arizti-Sanz J., Freije C.A., Stanton A.C., Petros B.A., Boehm C.K., Siddiqui S., Shaw B.M., Adams G., Kosoko-Thoroddsen T.S.F., Kemball M.E., Uwanibe J.N., Ajogbasile F.V., Eromon P.E., Gross R., Wronka L., Caviness K., Hensley L.E., Bergman N.H., MacInnis B.L., Myhrvold C. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nature Communications, 2020, vol. 11, no. 1: 5921. doi: 10.1038/s41467-020-19097-x

10. Barrangou R. Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biology, 2015, vol. 16, no. 1: 247. doi: 10.1186/s13059-015-0816-9

11. Bauer D.E., Canver M.C., Orkin S.H. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. J. Vis. Exp., 2015, vol. 95: e52118. doi: 10.3791/52118

12. Bonini A., Poma N., Vivaldi F., Kirchhain A., Salvo P., Bottai D., Tavanti A., Di Francesco F. Advances in biosensing: the CRISPR/Cas system as a new powerful tool for the detection of nucleic acids. J. Pharm. Biomed., 2021, vol. 192: 113645. doi: 10.1016/j.jpba.2020.113645

13. Cofsky J.C., Karandur D., Huang C.J., Witte I.P., Kuriyan J., Doudna J.A. CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks. ELife, 2020, vol. 9: e55143. doi: 10.7554/eLife.55143

14. Dai Y., Somoza R.A., Wang L., Welter J.F., Li Y., Caplan A.I., Liu C.C. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angew. Chem. Int. Ed., 2019, vol. 58, no. 48, pp. 17399–17405. doi: 10.1002/anie.201910772

15. Gootenberg J.S., Abudayyeh O.O., Kellner M.J., Joung J., Collins J.J., Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a and Csm6. Science, 2018, vol. 360, no. 6387, pp. 439–444. doi: 10.1126/science.aaq0179

16. Hajian R., Balderston S., Tran T., DeBoer T., Etienne J., Sandhu M., Wauford N.A., Chung J.Y., Nokes J., Athaiya M., Paredes J., Peytavi R., Goldsmith B., Murthy N., Conboy I.M., Aran K. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng., 2019, vol. 3, no. 6, pp. 427–437. doi: 10.1038/s41551-019-0371-x

17. Harrington L.B., Burstein D., Chen J.S., Paez-Espino D., Ma E., Witte I.P., Cofsky J.C., Kyrpides N.C., Banfield J.F., Doudna J.A. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 2018, vol. 362, no. 6416, pp. 839– 842. doi: 10.1126/science.aav4294

18. Horvath P., Barrangou R. CRISPR/Cas, the immune system of Bacteria and Archaea. Science, 2010, vol. 327, no. 5962, pp. 167– 170. doi: 10.1126/science.1179555

19. Ishino Y., Krupovic M., Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J. Bacteriol., 2018, vol. 200, no. 7: e00580-17. doi: 10.1128/JB.00580-17

20. Ishino Y., Shinagawa H., Makino K., Amemura M., Nakatura A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol., 1987, vol. 169, no. 12, pp. 5429–5433. doi: 10.1128/jb.169.12.5429-5433.1987

21. Jiang Y., Chen B., Duan C., Sun B., Yang J., Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol., 2015, vol. 81, no. 7, pp. 2506–2514. doi: 10.1128/AEM.04023-14

22. Joung J., Ladha A., Saito M., Kim N.-G., Woolley A.E., Segel M., Barretto R.P.J., Ranu A., Macrae R.K., Faure G., Ioannidi E.I., Krajeski R.N., Bruneau R., Huang M.-L.W., Yu X.G., Li J.Z., Walker B.D., Hung D.T., Greninger A.L., Zhang F. Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. N. Engl. J. Med., 2020, vol. 383, no. 15, pp. 1492–1494. doi: 10.1056/nejmc2026172

23. Kaminski M.M., Abudayyeh O.O., Gootenberg J.S., Zhang F., Collins J.J. CRISPR-based diagnostics. Nat. Biomed. Eng., 2021, vol. 5, no. 7, pp. 643–656. doi: 10.1038/s41551-021-00760-7

24. Kellner M.J., Koob J.G., Gootenberg J.S., Abudayyeh O.O., Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc., 2019, vol. 14, no. 10, pp. 2986–3012. doi: 10.1038/s41596-019-0210-2

25. Kim S., Ji S., Koh H.R. Crispr as a diagnostic tool. Biomolecules, 2021, vol. 11, no. 8: 1162. doi: 10.3390/biom11081162

26. Koonin E.V., Makarova K.S. Origins and evolution of CRISPR-Cas systems. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2019, vol. 374, no. 1772: 20180087. doi: 10.1098/rstb.2018.0087

27. Lau A., Ren C., Lee L.P. Critical review on where CRISPR meets molecular diagnostics. Progress in Biomedical Engineering, 2020, vol. 3, no 1: 012001. doi: 10.1088/2516-1091/abbf5e

28. Lee R.A., De Puig H., Nguyen P.Q., Angenent-Mari N.M., Donghia N.M., McGee J.P., Dvorin J.D., Klapperich C.M., Pollock N.R., Collins J.J. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria. Proc. Natl. Acad. Sci. USA, 2020, vol. 117, no. 41, pp. 25722–25731. doi: 10.1073/pnas.2010196117

29. Li C.L., Hor L.I., Chang Z.F., Tsai L.C., Yang W.Z., Yuan H.S. DNA binding and cleavage by the periplasmic nuclease Vvn: a novel structure with a known active site. EMBO Journal, 2003, vol. 22, no. 15, pp. 4014–4025. doi: 10.1093/emboj/cdg377

30. Li S.Y., Cheng Q.X., Li X.Y., Zhang Z.L., Gao S., Cao R.B., Zhao G.P., Wang J., Wang J.M. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discovery, 2018, vol. 4: 20. doi: 10.1038/s41421-018-0028-z

31. Li Y., Li S., Wang J., Liu G. CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol., 2019, vol. 37, no. 7, pp. 730–743. doi: 10.1016/j.tibtech.2018.12.005

32. Li Z., Zhang H., Xiao R., Han R., Chang L. Cryo-EM structure of the RNA-guided ribonuclease Cas12g. Nat. Chem. Biol., 2021, vol. 17, no. 4, pp. 387–393. doi: 10.1038/s41589-020-00721-2

33. Makarova K.S., Wolf Y.I., Alkhnbashi O.S., Costa F., Shah S.A., Saunders S.J., Barrangou R., Brouns S.J.J., Charpentier E., Haft D.H., Horvath P., Moineau S., Mojica F.J.M., Terns R.M., Terns M.P., White M.F., Yakunin A.F., Garrett R.A., Van Der Oost J., Koonin E.V. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol., 2015, vol. 13, no. 11, pp. 722–736. doi: 10.1038/nrmicro3569

34. Makarova K.S., Wolf Y.I., Iranzo J., Shmakov S.A., Alkhnbashi O.S., Brouns S.J.J., Charpentier E., Cheng D., Haft D.H., Horvath P., Moineau S., Mojica F.J.M., Scott D., Shah S.A., Siksnys V., Terns M.P., Venclovas Č., White M.F., Yakunin A.F., Yan W., Zhang F., Garrett R.A., Backofen R., van der Oost J., Barrangou R., Koonin E.V. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol., 2020, vol. 18, no. 2, pp. 67–83. doi: 10.1038/s41579-019-0299-x

35. Mans R., van Rossum H.M., Wijsman M., Backx A., Kuijpers N.G.A., van den Broek M., Daran-Lapujade P., Pronk J.T., van Maris A.J.A., Daran J.M.G. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res., 2015, vol. 15, no. 2: fov004. doi: 10.1093/femsyr/fov004

36. Marraffini L.A. CRISPR-Cas immunity in prokaryotes. Nature, 2015, vol. 526, no. 7571, pp. 55–61. doi: 10.1038/nature15386

37. Mustafa M.I., Makhawi A.M. SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases and cancer-associated mutations. Preprints, 2020, 2020040080. doi: 10.20944/preprints202004.0080.v1

38. Myhrvold C., Freije C.A., Gootenberg J.S., Abudayyeh O.O., Metsky H.C., Durbin A.F., Kellner M.J., Tan A.L., Paul L.M., Parham L.A., Garcia K.F., Barnes K.G., Chak B., Mondini A., Nogueira M.L., Isern S., Michael S.F., Lorenzana I., Yozwiak N.L., MacInnis B.L., Bosch I., Gehrke L., Zhang F., Sabeti P.C. Field-deployable viral diagnostics using CRISPR-Cas13. Science, 2018, vol. 360, no. 6387, pp. 444–448. doi: 10.1126/science.aas8836

39. Nishimasu H., Ran F.A., Hsu P.D., Konermann S., Shehata S.I., Dohmae N., Ishitani R., Zhang F., Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, vol. 156, no. 5, pp. 935–949. doi: 10.1016/j.cell.2014.02.001

40. Piepenburg O., Williams C.H., Stemple D.L., Armes N.A. DNA detection using recombination proteins. PLoS Biology, 2006, vol. 4, no. 7, pp. 1115–1121. doi: 10.1371/journal.pbio.0040204

41. Pinilla-Redondo R., Mayo-Muñoz D., Russel J., Garrett R.A., Randau L., Sørensen S.J., Shah S.A. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res., 2020, vol. 48, no. 4, pp. 2000–2012. doi: 10.1093/nar/gkz1197

42. Quan J., Langelier C., Kuchta A., Batson J., Teyssier N., Lyden A., Caldera S., McGeever A., Dimitrov B., King R., Wilheim J., Murphy M., Ares L.P., Travisano K.A., Sit R., Amato R., Mumbengegwi D.R., Smith J.L., Bennett A., Gosling R., Mourani P.M., Calfee C.S., Neff N.F., Chow E.D., Kim P.S., Greenhouse B., DeRisi J.L., Crawford E.D. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res., 2019, vol. 47, no. 14: e83. doi: 10.1093/nar/gkz418

43. Shen J., Zhou X., Shan Y., Yue H., Huang R., Hu J., Xing D. Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction. Nat. Commun., 2020, vol. 11: 267. doi: 10.1038/s41467-019-14135-9

44. Shmakov S., Smargon A., Scott D., Cox D., Pyzocha N., Yan W., Abudayyeh O.O., Gootenberg J.S., Makarova K.S., Wolf Y.I., Severinov K., Zhang F., Koonin E.V. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol., 2017, vol. 15, no. 3, pp. 169–182. doi: 10.1038/nrmicro.2016.184

45. Sontheimer E.J., Barrangou R. The bacterial origins of the CRISPR genome-editing revolution. HGT, 2015, vol. 26, no. 7, pp. 413–424. doi: 10.1089/hum.2015.091

46. Teng F., Guo L., Cui T., Wang X.G., Xu K., Gao Q., Zhou Q., Li W. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol., 2019, vol. 20, no. 1: 132. doi: 10.1186/s13059-019-1742-z

47. Varble A., Marraffini L.A. Three New C’s for CRISPR: collateral, communicate, cooperate. Trends Genet., 2019, vol. 35, no. 6, pp. 446–456. doi: 10.1016/j.tig.2019.03.009

48. Wang M., Zhang R., Li J. CRISPR/cas systems redefine nucleic acid detection: principles and methods. Biosens. Bioelectron., 2020, vol. 165: 112430. doi: 10.1016/j.bios.2020.112430

49. Wang T., Liu Y., Sun H.H., Yin B.C., Ye B.C. An RNA-Guided Cas9 nickase-based method for universal isothermal DNA amplification. Angew. Chem. Int. Ed., 2019, vol. 58, no. 16, pp. 5382–5386. doi: 10.1002/anie.201901292

50. Yan F., Wang W., Zhang J. CRISPR-Cas12 and Cas13: the lesser known siblings of CRISPR-Cas9. Cell Biol. Toxicol., 2019, vol. 35, no. 6, pp. 489–492. doi: 10.1007/s10565-019-09489-1

51. Zhang J., Lv H., Li L., Chen M., Gu D., Wang J., Xu Y. Recent improvements in CRISPR-based amplification-free pathogen detection. Front. Microbiol., 2021, vol. 12: 751408. doi: 10.3389/fmicb.2021.751408

52. Zhang Y., Zhang C.Y. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Analytical Chemistry, 2012, vol. 84, no. 1, pp. 224–231. doi: 10.1021/ac202405q

53. Zhou T., Huang R., Huang M., Shen J., Shan Y., Xing D. CRISPR/Cas13a powered portable electrochemiluminescence chip for ultrasensitive and specific MiRNA detection. Advanced Science, 2020, vol. 7, no. 13: 1903661. doi: 10.1002/advs.201903661

54. Zhou W., Hu L., Ying L., Zhao Z., Chu P.K., Yu X.F. A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat. Commun., 2018, vol. 9, no. 1: 5012. doi: 10.1038/s41467-018-07324-5