Инфекция и иммунитет. 2021; 11: 433-446
Цитокины и нейроспецифические белки при вирусных энцефалитах и судорожном синдроме у детей. II. Судорожный синдром
Алексеева Л. А., Железникова Г. Ф., Горелик Е. Ю., Скрипченко Н. В., Жирков А. А.
https://doi.org/10.15789/2220-7619-CAN-1449Аннотация
Во второй части обзора приведены новые сведения о факторах патогенеза судорожного синдрома у детей, в том числе о значительной роли вирусной инфекции в развитии судорог и эпилепсии (ЭПЛ) у детей, о чем свидетельствуют данные клинических и экспериментальных исследований. Различные формы судорожного синдрома, ассоциированного с вирусной инфекцией, включают фебрильные судороги и фебрильный эпилептический статус, острые симптоматические судороги при энцефалитах и постэнцефалитическую эпилепсию. Причинным фактором фебрильных судорог и фебрильного эпилептического статуса чаще всего является герпесвирус человека 6 типа, который выделен и при височной эпилепсии. Фебрильные судороги, и особенно фебрильный эпилептический статус, ассоциированы с развитием в дальнейшем эпилепсии. Особого внимания заслуживает эпилептический синдром, связанный с фебрильными инфекциями (FIRES), поражающий чаще детей школьного возраста и отличающийся крайне тяжелым течением и неблагоприятным исходом. Судорожный синдром ассоциирован с системным воспалением и гиперпродукцией провоспалительных цитокинов, повышающих проницаемость гематоэнцефалического барьера и функциональную активность резидентных клеток мозга, которые участвуют в генерации судорог и поддерживают эпилептогенез. С учетом ведущей роли воспаления в генезе судорожного синдрома цитокины и хемокины в последние десятилетия широко изучаются в качестве возможных прогностических критериев эпилептогенеза. Нейроспецифические белки исследуются как маркеры поражения клеток мозга при разных воспалительных заболеваниях центральной нервной системы. В первой части обзора были изложены современные сведения о системном и локальном ответе цитокинов/хемокинов при вирусных энцефалитах. Здесь представлены клинические исследования в основном за последние 5—7 лет с определением цитокинов/хемокинов и нейроспецифических белков у детей с разными формами судорожного синдрома, в том числе эпилепсией. Обсуждаются ассоциации уровня биомаркеров с клиническими параметрами болезни и возможность их использования в диагностике и прогнозе ее дальнейшего течения.
Список литературы
1. Алексеева Л.А., Железникова Г.Ф., Горелик Е.Ю., Скрипченко Н.В., Жирков А.А. Цитокины и нейроспецифические белки при вирусных энцефалитах и судорожном синдроме у детей. I. Вирусные энцефалиты // Инфекция и иммунитет. 2020. Т. 10, № 4. С. 625—638. doi: 10.15789/22207619CAN1448
2. Вашура Л.В., Савенкова М.С., Савенков М.П., Калугина М.Ю., Каражас Н.В., Рыбалкина Т.Н., Самсонович И.Р. Значение вируса герпеса 6-го типа в генезе судорожного синдрома у детей // Детские инфекции. 2014. Т. 13, № 4. С. 18-23. doi: 10.22627/2072-8107-2014-13-4-18-23
3. Горелик Е.Ю., Войтенков В.Б., Скрипченко Н.В., Вильниц А.А., Иванова М.В., Климкин А.В. Острые нейроинфекции и симптоматическая эпилепсия у детей: причинно-следственные связи (обзор литературы) // Журнал инфектологии. 2017. Т. 9, № 3. С. 5-13. doi: 10.22625/2072-6732-2017-9-3-5-13
4. Горяйнов С.А., Процкий С.В., Охотин В.Е., Павлова Г.В., Ревищин А.В., Потапов А.А. О роли астроглии в головном мозге в норме и патологии // Анналы клинической и экспериментальной неврологии. 2013. Т. 7, № 1. С. 45-51.
5. Заваденко А.Н., Дегтярева М.Г., Заваденко Н.Н., Медведев М.И. Неонатальные судороги: особенности клинической диагностики // Детская больница. 2013. № 4. C. 41-48.
6. Мухин К.Ю. Фокальные кортикальные дисплазии: клинико-электро-нейровизуализационные характеристики // Русский журнал детской неврологии. 2016. Т. 11, № 2. C. 8—24. doi: 10.17650/2073-8803-2016-11-2-8-24
7. Симонова Е.В., Харламова Ф.С., Учайкин В.Ф., Дроздова И.М., Семенова Л.П., Анджель А.Е. Лимбический энцефалит герпесвирусной этиологии // Детские инфекции. 2014. Т. 13, № 4. С. 6—13. doi: 10.22627/2072-8107-2014-13-4-6-13
8. Скрипченко Н.В., Кривошеенко Е.М., Команцев В.Н., Горелик Е.Ю., Минченко С.И. Гетерогенность судорожного синдрома при инфекционных заболеваниях у детей. Нейроинфекции у детей. СПб: Тактик-Студио, 2015. С. 691—707.
9. Alapirtti T., Lehtimaki K., Nieminen R., Makinen R., Raitanen J., Moilanen E., Makinen J., Peltola J. The production of IL-6 in acute epileptic seizure: a video-EEG study. J Neuroimmunol., 2018, vol. 316, pp. 50-55. doi: 10.1016/j.jneuroim.2017.12.008
10. Bartolini L., Libbey J., Ravizza T., Fujinami R., Jacobson S., Gaillard W. Viral triggers and inflammatory mechanisms in pediatric epilepsy. Mol. Neurobiol., 2019, vol. 56, no. 3, pp. 1897-1907. doi: 10.1007/s12035-018-1215-5
11. Bartolini L., Piras E., Sullivan K., Gillen S., Bumbut A., Lin C., Leibovitch E., Graves J., Waubant E., Chamberlain J., Gaillard W., Jacobson S. Detection of HHV-6 and EBV and cytokine levels in saliva from children with seizures: results of a multi-center crosssectional study. Front. Neurol., 2018, vol. 9: 834. doi: 10.3389/fneur.2018.00834
12. Bedner P., Dupper A., Huttmann K., Muller J., Herde M., Dublin P., Deshpande T., Schramm J., Haussler U., Haas C., Henneberger C., Theis M., Steinhauser C. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain, 2015, vol. 138, no. 5, pp. 1208-1222. doi: 10.1093/brain/awv067
13. Bhalala U., Koehler R., Kannan S. Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front. Pediatr., 2015, vol. 2, pp. 144. doi: 10.3389/fped.2014.00144
14. Caraballo R., Reyes G., Avaria M., Buompadre M., Gonzalez M., Fortini S., Cersosimo R. Febrile infection-related epilepsy syndrome: a study of 12 patients. Seizure, 2013, vol. 22, no. 7, pp. 553-559. doi: 10.1016/j.seizure.2013.04.005
15. Chen Q., Li M., Zhang X., Zhang X., Zhong R., Lin W. Association between interleukin-6 gene polymorphisms and febrile seizure risk: a meta-analysis. Medicine (Baltimore), 2019, vol. 98, no. 39: e17167. doi: 10.1097/MD.0000000000017167
16. Choi J., Choi S., Kim S., Kim H., Lim B., Hwang H., Chae J., Kim K., Oh S., Kim E., Shin J. Association analysis of interleukin-1в, interleukin-6, and HMGB1 variants with postictal serum cytokine levels in children with febrile seizure and generalized epilepsy with febrile seizure plus. J. Clin. Neurol., 2019, vol. 15, no. 4, pp. 555-563. doi: 10.3988/jcn.2019.15.4.555
17. Choi J., Min H., Shin J. Increased levels of HMGB1 and proinflammatory cytokines in children with febrile seizures. J. Neuroinflammation, 2011, vol. 8: 135. doi: 10.1186/1742-2094-8-135
18. Choy M., Dube C., Ehrengruber M., Baram T. Inflammatory processes, febrile seizures, and subsequent epileptogenesis. Epilepsy Curr., 2014, vol. 14, no 1, pp. 15-22. doi: 10.5698/1535-7511-14.s2.15
19. De Vries E., van den Munckhof B., Braun K., van Royen-Kerkhof A., de Jager W., Jansen F. Inflammatory mediators in human epilepsy: A systematic review and meta-analysis. Neurosci. Biobehav. Rev., 2016, vol. 63, pp. 177-190. doi: 10.1016/j.neubio-rev.2016.02.007
20. DeSena A., Do T., Schulert G. Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. J. Neuroinflammation, 2018, vol. 15, no. 1: 38. doi: 10.1186/s12974-018-1063-2
21. Gallentine W., Shinnar S., Hesdorffer D., Epstein L., Nordli D., Lewis D., Frank L., Seinfeld S., Shinnar R., Cornett K., Liu B., Moshe S., Sun S. Plasma cytokines associated with febrile status epilepticus in children: a potential biomarker for acute hippocampal injury. Epilepsia, 2017, vol. 58, no. 6, pp. 1102-1111. doi: 10.1111/epi.13750
22. Gunawan P., Saharso D., Sari D. Correlation of serum S100B levels with brain magnetic resonance imaging abnormalities in children with status epilepticus. Korean J. Pediatr., 2019, vol. 62, no. 7, pp. 281-285. doi: 10.3345/kjp.2018.07017
23. Ha J., Choi J., Kwon A., Kim K., Kim S., Bae S., Son J., Kim S., Kwak B., Lee R. Interleukin-4 and tumor necrosis factor-alpha levels in children with febrile seizures. Seizure, 2018, vol. 58, pp. 156-162. doi: 10.1016/j.seizure.2018.04.004
24. Haque A., Polcyn R., Matzelle D., Banik N. New insights into the role of neuron-specific enolase in neuro-inflammation, neurodegeneration, and neuroprotection. Brain Sci., 2018, vol. 8, no. 2, pp. 33. doi: 10.3390/brainsci8020033
25. He J., Li S., Shu H., Yu S., Liu S., Yin Q., Yang H. The interleukin 17 system in cortical lesions in focal cortical dysplasias. J. Neuropathol. Exp. Neurol., 2013, vol. 72, no. 2, pp. 152-163. doi: 10.1097/NEN.0b013e318281262e
26. He J., Wu K., Li S., Shu H., Zhang C., Liu S., Yang M., Yin Q., Yang H. Expression of the interleukin 17 in cortical tubers of the tuberous sclerosis complex. J. Neuroimmunol., 2013, vol. 262, no. 1-2, pp. 85-91. doi: 10.1016/j.jneuroim.2013.05.007
27. Hu M., Huang G., Wu C., Lin J., Hsia S., Wang H., Lin K. Analysis of plasma multiplex cytokines for children with febrile seizures and severe acute encephalitis. J. Child. Neurol., 2014, vol. 29, no. 2, pp. 182-186. doi: 10.1177/0883073813488829
28. Ichiyama T., Suenaga N., Kajimoto M., Tohyama J., Isumi H., Kubota M., Mori M., Furukawa S. Serum and CSF levels of cytokines in acute encephalopathy following prolonged febrile seizures . Brain Dev., 2008, vol. 30, no. 1, pp. 47-52. doi: 10.1016/j.braindev.2007.05.008
29. Ishikawa N., Kobayashi Y., Fujii Y., Kobayashi M. Increased interleukin-6 and high-sensitivity C-reactive protein levels in pediatric epilepsy patients with frequent, refractory generalized motor seizures. Seizure, 2015, vol. 25, pp. 136-140. doi: 10.1016/j.seizure.2014.10.007
30. Kacinski M., Budziszewska B., Lason W., Zaj^c A., Skowronek-Bala B., Leskiewicz M., Kubik A., Basta-Kaim A. Level of S100B protein, neuron specific enolase, orexin A, adiponectin and insulin-like growth factor in serum of pediatric patients suffering from sleep disorders with or without epilepsy. Pharmacol. Rep., 2012, vol. 64, no. 6, pp. 1427-1433. doi: 10.1016/s1734-1140(12)70940-4
31. Kenney-Jung D., Vezzani A., Kahoud R., LaFrance-Corey R., Ho M., Muskardin T., Wirrell E., Howe C., Payne E. Febrile infection-related epilepsy syndrome treated with anakinra. Ann. Neurol., 2016, vol. 80, no. 6, pp. 939-945. doi: 10.1002/ana.24806
32. Kim K., Kwak B., Kwon A., Ha J., Kim S., Bae S., Son J., Kim S., Lee R. Analysis of plasma multiplex cytokines and increased level of IL-10 and IL-1Ra cytokines in febrile seizures. J. Neuroinflammation, 2017, vol. 14, no. 1: 200. doi: 10.1186/s12974-017-0974-7
33. Kimizu T., Takahashi Y., Oboshi T., Horino A., Omatsu H., Koike T., Yoshitomi S., Yamaguchi T., Otani H., Ikeda H., Imai K., Shigematsu H., Inoue Y. Chronic dysfunction of blood-brain barrier in patients with post-encephalitic/encephalopathic epilepsy. Seizure, 2018, vol. 63, pp. 85—90. doi: 10.1016/j.seizure.2018.11.005
34. Kobylarek D., Iwanowski P., Lewandowska Z., Limphaibool N., Szafranek S., Labrzycka A., Kozubski W. Advances in the potential biomarkers of epilepsy. Front. Neurol., 2019, vol. 10: 685. doi: 10.3389/fneur.2019.00685
35. Koh S. Role of neuroinflammation in evolution of childhood epilepsy. J. Child. Neurol., 2018, vol. 33, no. 1, pp. 64—72. doi: 10.1177/0883073817739528
36. Kothur K., Bandodkar S., Wienholt L., Chu S., Pope A., Gill D., Dale R. Etiology is the key determinant of neuroinflammation in epilepsy: elevation of cerebrospinal fluid cytokines and chemokines in febrile infection-related epilepsy syndrome and febrile status epilepticus. Epilepsia, 2019, vol. 60, no. 8, pp. 1678—1688. doi: 10.1111/epi.16275
37. Kramer U., Chi C., Lin K., Specchio N., Sahin M., Olson H., Nabbout R., Kluger G., Lin J., van Baalen A. Febrile infection-related epilepsy syndrome (FIRES): pathogenesis, treatment, and outcome: a multicenter study on 77 children. Epilepsia, 2011, vol. 52, no. 11, pp. 1956-1965. doi: 10.1111/j.1528-1167.2011.03250.x
38. Kumar P., Chan D., Lim A., Paleja B., Ling S., Yun L., Poh S., Ngoh A., Arkachaisri T., Yeo J., Albani S. Pro-inflammatory, IL-17 pathways dominate the architecture of the immunome in pediatric refractory epilepsy. JCI Insight, 2019, vol. 4, no. 8: e126337. doi: 10.1172/jci.insight.126337
39. Kwon A., Kwak B., Kim K., Ha J., Kim S., Bae S., Son J., Kim S., Lee R. Cytokine levels in febrile seizure patients: a systematic review and meta-analysis. Seizure, 2018, vol. 59, pp. 5-10. doi: 10.1016/j.seizure.2018.04.023
40. Mao L., Ding J., Peng W., Ma Y., Zhang Y., Fan W., Wang X. Interictal interleukin-17A levels are elevated and correlate with seizure severity of epilepsy patients. Epilepsia, 2013, vol. 54, no. 9: e142-5. doi: 10.1111/epi.12337
41. Mikkonen K., Pekkala N., Pokka T., Romner B., Uhari M., Rantala H. S100B proteins in febrile seizures. Seizure, 2012, vol. 21, no. 2, pp. 144-146. doi: 10.1016/j.seizure.2011.10.006
42. Numis A., Foster-Barber A., Deng X., Rogers E., Barkovich A., Ferriero D., Glass H. Early changes in pro-inflammatory cytokine levels in neonates with encephalopathy are associated with remote epilepsy. Pediatr. Res., 2019, vol. 86, no. 5, pp. 616-621. doi: 10.1038/s41390-019-0473-x
43. Patterson K., Baram T., Shinnar S. Origins of temporal lobe epilepsy: febrile seizures and febrile status epilepticus. Neurotherapeutics, 2014, vol. 11, no. 2, pp. 242-250. doi: 10.1007/s13311-014-0263-4
44. Pillai S., Mohammad S., Hacohen Y., Tantsis E., Prelog K., Barnes E., Gill D., Lim M., Brilot F., Vincent A., Dale R. Postencephalitic epilepsy and drug-resistant epilepsy after infectious and antibody-associated encephalitis in childhood: clinical and etiologic risk factors. Epilepsia, 2016, vol. 57, no. 1, pp. e7-e11. doi: 10.1111/epi.13253
45. Pisani F., Piccolo B., Cantalupo G., Copioli C., Fusco C., Pelosi A., Tassinari C., Seri S. Neonatal seizures and postneonatal epilepsy: a 7-y follow-up study. Pediatr. Res., 2012, vol. 72, no. 2, pp. 186-193. doi: 10.1038/pr.2012.66
46. Saghazadeh A., Mastrangelo M., Rezaei N. Genetic background of febrile seizures. Rev. Neurosci., 2014, vol. 25, no. 1, pp. 129161. doi: 10.1515/revneuro-2013-0053
47. Sakuma H., Tanuma N., Kuki I., Takahashi Y., Shiomi M., Hayashi M. Intrathecal overproduction of proinflammatory cytokines and chemokines in febrile infection-related refractory status epilepticus. J. Neurol. Neurosurg. Psychiatry, 2015, vol. 86, no. 7, pp. 820-822. doi: 10.1136/jnnp-2014-309388
48. Serino D., Santarone M., Caputo D., Fusco L. Febrile infection-relate epilepsy syndrome (FIRES): prevalence, impact and management strategies. Neuropsychiatr. Dis. Treat., 2019, vol. 15, pp. 1897-1903. doi: 10.2147/NDT.S177803
49. Shi L., Chen R., Zhang H., Jiang C., Gong J. Cerebrospinal fluid neuron specific enolase, interleukin-1 в and erythropoietin concentrations in children after seizures. Child's Nerv. Syst., 2017, vol. 33, no. 5, pp. 805-811. doi: 10.1007/s00381-017-3359-4
50. Shiihara T., Miyake T., Izumi S., Sugihara S., Watanabe M., Takanashi J., Kubota M., Kato M. Serum and CSF biomarkers in acute pediatric neurological disorders. Brain Dev., 2014, vol. 36, no. 6, pp. 489-495. doi: 10.1016/j.braindev.2013.06.011
51. Uludag I., Bilgin S., Zorlu Y., Tuna G., Kirkali G. Interleukin-6, interleukin-1 beta and interleukin-1 receptor antagonist levels in epileptic seizures. Seizure, 2013, vol. 22, no. 6, pp. 457-461. doi: 10.1016/j.seizure.2013.03.004
52. Van Baalen A., Vezzani A., Hausler M., Kluger G. Febrile infection-related epilepsy syndrome: clinical review and hypotheses of epileptogenesis. Neuropediatrics, 2017, vol. 48, no. 1, pp. 5-18. doi: 10.1055/s-0036-1597271
53. Vargas-Sanchez K., Mogilevskaya M., Rodrlguez-Perez J., Rubiano M., Javela J., Gonzalez-Reyes R. Astroglial role in the pathophysiology of status epilepticus: an overview. Oncotarget, 2018, vol. 9, no. 42, pp. 26954-26976. doi: 10.18632/oncotarget.25485
54. Vezzani A., Aronica E., Mazarati A., Pittman Q. Epilepsy and brain inflammation. Exp. Neurol., 2013, vol. 244, pp. 11-21. doi: 10.1016/j.expneurol.2011.09.033
55. Vezzani A., Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology, 2015, vol. 96, pp. 70-82. doi: 10.1016/j.neuropharm.2014.10.027
56. Vitaliti G., Pavone P., Marino S., Saporito M., Corsello G., Falsaperla R. Molecular mechanism involved in the pathogenesis of early-onset epileptic encephalopathy. Front. Mol. Neurosci., 2019, vol. 12, pp. 118. doi: 10.3389/fnmol.2019.00118
57. Walker L., Janigro D., Heinemann U., Riikonen R., Bernard C., Patel M. WONOEP appraisal: molecular and cellular biomarkers for epilepsy. Epilepsia, 2016, vol. 57, no. 9, pp. 1354-1362. doi: 10.1111/epi.13460
58. Wilcox K., Vezzani A. Does brain inflammation mediate pathological outcomes in epilepsy? Adv. Exp. Med. Biol., 2014, vol. 813, pp. 169-183. doi: 10.1007/978-94-017-8914-1_14
59. Wipfler P., Dunn N., Beiki O., Trinka E., Fogdell-Hahn A. The viral hypothesis of mesial temporal lobe epilepsy — is human herpes virus-6 the missing link? A systematic review and meta-analysis. Seizure, 2018, vol. 54, pp. 33-40. doi: 10.1016/j.seizure.2017.11.015
60. Xanthos D., Sandkuhler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat. Rev. Neurosci., 2014, vol. 15, no. 1, pp. 43-53. doi: 10.1038/nrn3617
61. Xu D., Robinson A., Ishii T., Duncan D., Alden T., Goings G., Ifergan I., Podojil J., Penaloza-MacMaster P., Kearney J., Swanson G., Miller S., Koh S. Peripherally derived T regulatory and y§ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J. Exp. Med., 2018, vol. 215, no. 4, pp. 1169-1186. doi: 10.1084/jem.20171285
62. Youn Y., Kim S., Sung I., Chung S., Kim Y., Lee I. Serial examination of serum IL-8, IL-10 and IL-1Ra levels is significant in neonatal seizures induced by hypoxic-ischaemic encephalopathy. Scand. J. Immunol., 2012, vol. 76, no. 3, pp. 286-293. doi: 10.1111/j.1365-3083.2012.02710.x
63. Zhu M., Chen J., Guo H., Ding L., Zhang Y., Xu Y. High mobility group protein B1 (HMGB1) and interleukin-1e as prognostic biomarkers of epilepsy in children. J. Child Neurol., 2018, vol. 33, no. 14, pp. 909-917. doi: 10.1177/0883073818801654
Russian Journal of Infection and Immunity. 2021; 11: 433-446
Cytokines and neuro-specific proteins in viral encephalitis and convulsive syndrome in children. II. Convulsive syndrome
Alekseeva L. A., Zheleznikova G. F., Gorelik E. Y., Sckripchenko N. V., Zhirkov A. A.
https://doi.org/10.15789/2220-7619-CAN-1449Abstract
In this Section we provide new data on the pathogenetic factors in pediatric convulsive syndrome, including a prominent role of viral infection in developing seizures and epilepsy (EPL) in children, as evidenced by clinical and experimental studies. Various forms of convulsive syndrome associated with viral infection include febrile convulsions and febrile epileptic status, encephalitis-related acute symptomatic seizures, and postencephalitic epilepsy. The human herpesvirus-6 isolated in temporal lobe epilepsy is a frequent causative agent of febrile seizures and febrile epileptic status. Febrile seizures and, especially, febrile epileptic status are associated with further developing epilepsy. Of special note is the febrile infection-related epileptic syndrome (FIRES) more often affecting school-aged children and characterized by extremely severe course and unfavorable outcome. Convulsive syndrome is associated with systemic inflammation and overproduced pro-inflammatory cytokines that increase permeability of the blood-brain barrier and functional activity of brain-resident cells, which are involved in eliciting seizures and maintaining epileptogenesis. Taking into consideration the key role of inflammation underlying convulsive syndrome, in recent decades cytokines and chemokines have been widely studied as possible prognostic criteria for epileptogenesis. Neuron-specific proteins are examined as markers of brain cell damage in various inflammatory diseases of the central nervous system. The first Section of the review presented current understanding on systemic and local cytokine/chemokine response in viral encephalitis. Here we present clinical trials published within the last 5—7 years assessing cytokines/chemokines and neuron-specific proteins in children with various forms of convulsive syndrome, including epilepsy. Association between biomarker level and disease clinical parameters as well as potential for their use to diagnose and predict its further course are discussed.
References
1. Alekseeva L.A., Zheleznikova G.F., Gorelik E.Yu., Skripchenko N.V., Zhirkov A.A. Tsitokiny i neirospetsificheskie belki pri virusnykh entsefalitakh i sudorozhnom sindrome u detei. I. Virusnye entsefality // Infektsiya i immunitet. 2020. T. 10, № 4. S. 625—638. doi: 10.15789/22207619CAN1448
2. Vashura L.V., Savenkova M.S., Savenkov M.P., Kalugina M.Yu., Karazhas N.V., Rybalkina T.N., Samsonovich I.R. Znachenie virusa gerpesa 6-go tipa v geneze sudorozhnogo sindroma u detei // Detskie infektsii. 2014. T. 13, № 4. S. 18-23. doi: 10.22627/2072-8107-2014-13-4-18-23
3. Gorelik E.Yu., Voitenkov V.B., Skripchenko N.V., Vil'nits A.A., Ivanova M.V., Klimkin A.V. Ostrye neiroinfektsii i simptomaticheskaya epilepsiya u detei: prichinno-sledstvennye svyazi (obzor literatury) // Zhurnal infektologii. 2017. T. 9, № 3. S. 5-13. doi: 10.22625/2072-6732-2017-9-3-5-13
4. Goryainov S.A., Protskii S.V., Okhotin V.E., Pavlova G.V., Revishchin A.V., Potapov A.A. O roli astroglii v golovnom mozge v norme i patologii // Annaly klinicheskoi i eksperimental'noi nevrologii. 2013. T. 7, № 1. S. 45-51.
5. Zavadenko A.N., Degtyareva M.G., Zavadenko N.N., Medvedev M.I. Neonatal'nye sudorogi: osobennosti klinicheskoi diagnostiki // Detskaya bol'nitsa. 2013. № 4. C. 41-48.
6. Mukhin K.Yu. Fokal'nye kortikal'nye displazii: kliniko-elektro-neirovizualizatsionnye kharakteristiki // Russkii zhurnal detskoi nevrologii. 2016. T. 11, № 2. C. 8—24. doi: 10.17650/2073-8803-2016-11-2-8-24
7. Simonova E.V., Kharlamova F.S., Uchaikin V.F., Drozdova I.M., Semenova L.P., Andzhel' A.E. Limbicheskii entsefalit gerpesvirusnoi etiologii // Detskie infektsii. 2014. T. 13, № 4. S. 6—13. doi: 10.22627/2072-8107-2014-13-4-6-13
8. Skripchenko N.V., Krivosheenko E.M., Komantsev V.N., Gorelik E.Yu., Minchenko S.I. Geterogennost' sudorozhnogo sindroma pri infektsionnykh zabolevaniyakh u detei. Neiroinfektsii u detei. SPb: Taktik-Studio, 2015. S. 691—707.
9. Alapirtti T., Lehtimaki K., Nieminen R., Makinen R., Raitanen J., Moilanen E., Makinen J., Peltola J. The production of IL-6 in acute epileptic seizure: a video-EEG study. J Neuroimmunol., 2018, vol. 316, pp. 50-55. doi: 10.1016/j.jneuroim.2017.12.008
10. Bartolini L., Libbey J., Ravizza T., Fujinami R., Jacobson S., Gaillard W. Viral triggers and inflammatory mechanisms in pediatric epilepsy. Mol. Neurobiol., 2019, vol. 56, no. 3, pp. 1897-1907. doi: 10.1007/s12035-018-1215-5
11. Bartolini L., Piras E., Sullivan K., Gillen S., Bumbut A., Lin C., Leibovitch E., Graves J., Waubant E., Chamberlain J., Gaillard W., Jacobson S. Detection of HHV-6 and EBV and cytokine levels in saliva from children with seizures: results of a multi-center crosssectional study. Front. Neurol., 2018, vol. 9: 834. doi: 10.3389/fneur.2018.00834
12. Bedner P., Dupper A., Huttmann K., Muller J., Herde M., Dublin P., Deshpande T., Schramm J., Haussler U., Haas C., Henneberger C., Theis M., Steinhauser C. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain, 2015, vol. 138, no. 5, pp. 1208-1222. doi: 10.1093/brain/awv067
13. Bhalala U., Koehler R., Kannan S. Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front. Pediatr., 2015, vol. 2, pp. 144. doi: 10.3389/fped.2014.00144
14. Caraballo R., Reyes G., Avaria M., Buompadre M., Gonzalez M., Fortini S., Cersosimo R. Febrile infection-related epilepsy syndrome: a study of 12 patients. Seizure, 2013, vol. 22, no. 7, pp. 553-559. doi: 10.1016/j.seizure.2013.04.005
15. Chen Q., Li M., Zhang X., Zhang X., Zhong R., Lin W. Association between interleukin-6 gene polymorphisms and febrile seizure risk: a meta-analysis. Medicine (Baltimore), 2019, vol. 98, no. 39: e17167. doi: 10.1097/MD.0000000000017167
16. Choi J., Choi S., Kim S., Kim H., Lim B., Hwang H., Chae J., Kim K., Oh S., Kim E., Shin J. Association analysis of interleukin-1v, interleukin-6, and HMGB1 variants with postictal serum cytokine levels in children with febrile seizure and generalized epilepsy with febrile seizure plus. J. Clin. Neurol., 2019, vol. 15, no. 4, pp. 555-563. doi: 10.3988/jcn.2019.15.4.555
17. Choi J., Min H., Shin J. Increased levels of HMGB1 and proinflammatory cytokines in children with febrile seizures. J. Neuroinflammation, 2011, vol. 8: 135. doi: 10.1186/1742-2094-8-135
18. Choy M., Dube C., Ehrengruber M., Baram T. Inflammatory processes, febrile seizures, and subsequent epileptogenesis. Epilepsy Curr., 2014, vol. 14, no 1, pp. 15-22. doi: 10.5698/1535-7511-14.s2.15
19. De Vries E., van den Munckhof B., Braun K., van Royen-Kerkhof A., de Jager W., Jansen F. Inflammatory mediators in human epilepsy: A systematic review and meta-analysis. Neurosci. Biobehav. Rev., 2016, vol. 63, pp. 177-190. doi: 10.1016/j.neubio-rev.2016.02.007
20. DeSena A., Do T., Schulert G. Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. J. Neuroinflammation, 2018, vol. 15, no. 1: 38. doi: 10.1186/s12974-018-1063-2
21. Gallentine W., Shinnar S., Hesdorffer D., Epstein L., Nordli D., Lewis D., Frank L., Seinfeld S., Shinnar R., Cornett K., Liu B., Moshe S., Sun S. Plasma cytokines associated with febrile status epilepticus in children: a potential biomarker for acute hippocampal injury. Epilepsia, 2017, vol. 58, no. 6, pp. 1102-1111. doi: 10.1111/epi.13750
22. Gunawan P., Saharso D., Sari D. Correlation of serum S100B levels with brain magnetic resonance imaging abnormalities in children with status epilepticus. Korean J. Pediatr., 2019, vol. 62, no. 7, pp. 281-285. doi: 10.3345/kjp.2018.07017
23. Ha J., Choi J., Kwon A., Kim K., Kim S., Bae S., Son J., Kim S., Kwak B., Lee R. Interleukin-4 and tumor necrosis factor-alpha levels in children with febrile seizures. Seizure, 2018, vol. 58, pp. 156-162. doi: 10.1016/j.seizure.2018.04.004
24. Haque A., Polcyn R., Matzelle D., Banik N. New insights into the role of neuron-specific enolase in neuro-inflammation, neurodegeneration, and neuroprotection. Brain Sci., 2018, vol. 8, no. 2, pp. 33. doi: 10.3390/brainsci8020033
25. He J., Li S., Shu H., Yu S., Liu S., Yin Q., Yang H. The interleukin 17 system in cortical lesions in focal cortical dysplasias. J. Neuropathol. Exp. Neurol., 2013, vol. 72, no. 2, pp. 152-163. doi: 10.1097/NEN.0b013e318281262e
26. He J., Wu K., Li S., Shu H., Zhang C., Liu S., Yang M., Yin Q., Yang H. Expression of the interleukin 17 in cortical tubers of the tuberous sclerosis complex. J. Neuroimmunol., 2013, vol. 262, no. 1-2, pp. 85-91. doi: 10.1016/j.jneuroim.2013.05.007
27. Hu M., Huang G., Wu C., Lin J., Hsia S., Wang H., Lin K. Analysis of plasma multiplex cytokines for children with febrile seizures and severe acute encephalitis. J. Child. Neurol., 2014, vol. 29, no. 2, pp. 182-186. doi: 10.1177/0883073813488829
28. Ichiyama T., Suenaga N., Kajimoto M., Tohyama J., Isumi H., Kubota M., Mori M., Furukawa S. Serum and CSF levels of cytokines in acute encephalopathy following prolonged febrile seizures . Brain Dev., 2008, vol. 30, no. 1, pp. 47-52. doi: 10.1016/j.braindev.2007.05.008
29. Ishikawa N., Kobayashi Y., Fujii Y., Kobayashi M. Increased interleukin-6 and high-sensitivity C-reactive protein levels in pediatric epilepsy patients with frequent, refractory generalized motor seizures. Seizure, 2015, vol. 25, pp. 136-140. doi: 10.1016/j.seizure.2014.10.007
30. Kacinski M., Budziszewska B., Lason W., Zaj^c A., Skowronek-Bala B., Leskiewicz M., Kubik A., Basta-Kaim A. Level of S100B protein, neuron specific enolase, orexin A, adiponectin and insulin-like growth factor in serum of pediatric patients suffering from sleep disorders with or without epilepsy. Pharmacol. Rep., 2012, vol. 64, no. 6, pp. 1427-1433. doi: 10.1016/s1734-1140(12)70940-4
31. Kenney-Jung D., Vezzani A., Kahoud R., LaFrance-Corey R., Ho M., Muskardin T., Wirrell E., Howe C., Payne E. Febrile infection-related epilepsy syndrome treated with anakinra. Ann. Neurol., 2016, vol. 80, no. 6, pp. 939-945. doi: 10.1002/ana.24806
32. Kim K., Kwak B., Kwon A., Ha J., Kim S., Bae S., Son J., Kim S., Lee R. Analysis of plasma multiplex cytokines and increased level of IL-10 and IL-1Ra cytokines in febrile seizures. J. Neuroinflammation, 2017, vol. 14, no. 1: 200. doi: 10.1186/s12974-017-0974-7
33. Kimizu T., Takahashi Y., Oboshi T., Horino A., Omatsu H., Koike T., Yoshitomi S., Yamaguchi T., Otani H., Ikeda H., Imai K., Shigematsu H., Inoue Y. Chronic dysfunction of blood-brain barrier in patients with post-encephalitic/encephalopathic epilepsy. Seizure, 2018, vol. 63, pp. 85—90. doi: 10.1016/j.seizure.2018.11.005
34. Kobylarek D., Iwanowski P., Lewandowska Z., Limphaibool N., Szafranek S., Labrzycka A., Kozubski W. Advances in the potential biomarkers of epilepsy. Front. Neurol., 2019, vol. 10: 685. doi: 10.3389/fneur.2019.00685
35. Koh S. Role of neuroinflammation in evolution of childhood epilepsy. J. Child. Neurol., 2018, vol. 33, no. 1, pp. 64—72. doi: 10.1177/0883073817739528
36. Kothur K., Bandodkar S., Wienholt L., Chu S., Pope A., Gill D., Dale R. Etiology is the key determinant of neuroinflammation in epilepsy: elevation of cerebrospinal fluid cytokines and chemokines in febrile infection-related epilepsy syndrome and febrile status epilepticus. Epilepsia, 2019, vol. 60, no. 8, pp. 1678—1688. doi: 10.1111/epi.16275
37. Kramer U., Chi C., Lin K., Specchio N., Sahin M., Olson H., Nabbout R., Kluger G., Lin J., van Baalen A. Febrile infection-related epilepsy syndrome (FIRES): pathogenesis, treatment, and outcome: a multicenter study on 77 children. Epilepsia, 2011, vol. 52, no. 11, pp. 1956-1965. doi: 10.1111/j.1528-1167.2011.03250.x
38. Kumar P., Chan D., Lim A., Paleja B., Ling S., Yun L., Poh S., Ngoh A., Arkachaisri T., Yeo J., Albani S. Pro-inflammatory, IL-17 pathways dominate the architecture of the immunome in pediatric refractory epilepsy. JCI Insight, 2019, vol. 4, no. 8: e126337. doi: 10.1172/jci.insight.126337
39. Kwon A., Kwak B., Kim K., Ha J., Kim S., Bae S., Son J., Kim S., Lee R. Cytokine levels in febrile seizure patients: a systematic review and meta-analysis. Seizure, 2018, vol. 59, pp. 5-10. doi: 10.1016/j.seizure.2018.04.023
40. Mao L., Ding J., Peng W., Ma Y., Zhang Y., Fan W., Wang X. Interictal interleukin-17A levels are elevated and correlate with seizure severity of epilepsy patients. Epilepsia, 2013, vol. 54, no. 9: e142-5. doi: 10.1111/epi.12337
41. Mikkonen K., Pekkala N., Pokka T., Romner B., Uhari M., Rantala H. S100B proteins in febrile seizures. Seizure, 2012, vol. 21, no. 2, pp. 144-146. doi: 10.1016/j.seizure.2011.10.006
42. Numis A., Foster-Barber A., Deng X., Rogers E., Barkovich A., Ferriero D., Glass H. Early changes in pro-inflammatory cytokine levels in neonates with encephalopathy are associated with remote epilepsy. Pediatr. Res., 2019, vol. 86, no. 5, pp. 616-621. doi: 10.1038/s41390-019-0473-x
43. Patterson K., Baram T., Shinnar S. Origins of temporal lobe epilepsy: febrile seizures and febrile status epilepticus. Neurotherapeutics, 2014, vol. 11, no. 2, pp. 242-250. doi: 10.1007/s13311-014-0263-4
44. Pillai S., Mohammad S., Hacohen Y., Tantsis E., Prelog K., Barnes E., Gill D., Lim M., Brilot F., Vincent A., Dale R. Postencephalitic epilepsy and drug-resistant epilepsy after infectious and antibody-associated encephalitis in childhood: clinical and etiologic risk factors. Epilepsia, 2016, vol. 57, no. 1, pp. e7-e11. doi: 10.1111/epi.13253
45. Pisani F., Piccolo B., Cantalupo G., Copioli C., Fusco C., Pelosi A., Tassinari C., Seri S. Neonatal seizures and postneonatal epilepsy: a 7-y follow-up study. Pediatr. Res., 2012, vol. 72, no. 2, pp. 186-193. doi: 10.1038/pr.2012.66
46. Saghazadeh A., Mastrangelo M., Rezaei N. Genetic background of febrile seizures. Rev. Neurosci., 2014, vol. 25, no. 1, pp. 129161. doi: 10.1515/revneuro-2013-0053
47. Sakuma H., Tanuma N., Kuki I., Takahashi Y., Shiomi M., Hayashi M. Intrathecal overproduction of proinflammatory cytokines and chemokines in febrile infection-related refractory status epilepticus. J. Neurol. Neurosurg. Psychiatry, 2015, vol. 86, no. 7, pp. 820-822. doi: 10.1136/jnnp-2014-309388
48. Serino D., Santarone M., Caputo D., Fusco L. Febrile infection-relate epilepsy syndrome (FIRES): prevalence, impact and management strategies. Neuropsychiatr. Dis. Treat., 2019, vol. 15, pp. 1897-1903. doi: 10.2147/NDT.S177803
49. Shi L., Chen R., Zhang H., Jiang C., Gong J. Cerebrospinal fluid neuron specific enolase, interleukin-1 v and erythropoietin concentrations in children after seizures. Child's Nerv. Syst., 2017, vol. 33, no. 5, pp. 805-811. doi: 10.1007/s00381-017-3359-4
50. Shiihara T., Miyake T., Izumi S., Sugihara S., Watanabe M., Takanashi J., Kubota M., Kato M. Serum and CSF biomarkers in acute pediatric neurological disorders. Brain Dev., 2014, vol. 36, no. 6, pp. 489-495. doi: 10.1016/j.braindev.2013.06.011
51. Uludag I., Bilgin S., Zorlu Y., Tuna G., Kirkali G. Interleukin-6, interleukin-1 beta and interleukin-1 receptor antagonist levels in epileptic seizures. Seizure, 2013, vol. 22, no. 6, pp. 457-461. doi: 10.1016/j.seizure.2013.03.004
52. Van Baalen A., Vezzani A., Hausler M., Kluger G. Febrile infection-related epilepsy syndrome: clinical review and hypotheses of epileptogenesis. Neuropediatrics, 2017, vol. 48, no. 1, pp. 5-18. doi: 10.1055/s-0036-1597271
53. Vargas-Sanchez K., Mogilevskaya M., Rodrlguez-Perez J., Rubiano M., Javela J., Gonzalez-Reyes R. Astroglial role in the pathophysiology of status epilepticus: an overview. Oncotarget, 2018, vol. 9, no. 42, pp. 26954-26976. doi: 10.18632/oncotarget.25485
54. Vezzani A., Aronica E., Mazarati A., Pittman Q. Epilepsy and brain inflammation. Exp. Neurol., 2013, vol. 244, pp. 11-21. doi: 10.1016/j.expneurol.2011.09.033
55. Vezzani A., Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology, 2015, vol. 96, pp. 70-82. doi: 10.1016/j.neuropharm.2014.10.027
56. Vitaliti G., Pavone P., Marino S., Saporito M., Corsello G., Falsaperla R. Molecular mechanism involved in the pathogenesis of early-onset epileptic encephalopathy. Front. Mol. Neurosci., 2019, vol. 12, pp. 118. doi: 10.3389/fnmol.2019.00118
57. Walker L., Janigro D., Heinemann U., Riikonen R., Bernard C., Patel M. WONOEP appraisal: molecular and cellular biomarkers for epilepsy. Epilepsia, 2016, vol. 57, no. 9, pp. 1354-1362. doi: 10.1111/epi.13460
58. Wilcox K., Vezzani A. Does brain inflammation mediate pathological outcomes in epilepsy? Adv. Exp. Med. Biol., 2014, vol. 813, pp. 169-183. doi: 10.1007/978-94-017-8914-1_14
59. Wipfler P., Dunn N., Beiki O., Trinka E., Fogdell-Hahn A. The viral hypothesis of mesial temporal lobe epilepsy — is human herpes virus-6 the missing link? A systematic review and meta-analysis. Seizure, 2018, vol. 54, pp. 33-40. doi: 10.1016/j.seizure.2017.11.015
60. Xanthos D., Sandkuhler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat. Rev. Neurosci., 2014, vol. 15, no. 1, pp. 43-53. doi: 10.1038/nrn3617
61. Xu D., Robinson A., Ishii T., Duncan D., Alden T., Goings G., Ifergan I., Podojil J., Penaloza-MacMaster P., Kearney J., Swanson G., Miller S., Koh S. Peripherally derived T regulatory and y§ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J. Exp. Med., 2018, vol. 215, no. 4, pp. 1169-1186. doi: 10.1084/jem.20171285
62. Youn Y., Kim S., Sung I., Chung S., Kim Y., Lee I. Serial examination of serum IL-8, IL-10 and IL-1Ra levels is significant in neonatal seizures induced by hypoxic-ischaemic encephalopathy. Scand. J. Immunol., 2012, vol. 76, no. 3, pp. 286-293. doi: 10.1111/j.1365-3083.2012.02710.x
63. Zhu M., Chen J., Guo H., Ding L., Zhang Y., Xu Y. High mobility group protein B1 (HMGB1) and interleukin-1e as prognostic biomarkers of epilepsy in children. J. Child Neurol., 2018, vol. 33, no. 14, pp. 909-917. doi: 10.1177/0883073818801654
События
-
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52 -
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32 -
Журнал «Творчество и современность» присоединился к Elpub! >>>
27 мая 2025 | 12:38