Журналов:     Статей:        

Инфекция и иммунитет. 2021; 11: 111-122

Основные и малые субпопулции лимфоцитов крови и цереброспинальной жидкости при менингитах у детей

Жирков А. А., Алексеева Л. А., Железникова Г. Ф., Скрипченко Н. В., Монахова Н. Е., Бессонова Т. В.

https://doi.org/10.15789/2220-7619-MAM-1255

Аннотация

Введение. Анализ современных литературных данных указывает на недостаточную изученность субпопуляционного состава лимфоцитов крови и цереброспинальной жидкости (ЦСЖ) при нейроинфекциях у детей. Установлено, что клетки основных популяций лимфоцитов делятся на множество малых (минорных) субпопуляций.

Цель данного исследования — изучить относительное содержание основных и малых субпопуляций лимфоцитов крови и ЦСЖ детей, переносящих серозный менингит (СМ) (вирусный) или гнойный менингит (ГМ) (бактериальный).

Материалы и методы. Методом проточной цитометрии проведено фенотипирование лимфоцитов крови и ЦСЖ детей в возрасте от 4 месяцев до 17 лет с диагнозом СМ (n = 86) и ГМ (n = 39). В качестве сравнения исследованы образцы крови и ЦСЖ детей, переносящих ОРВИ с синдромом менингизма (n = 27). Исследовано относительное содержание основных субпопуляций: CD3+ Т-лимфоцитов, Т-хелперов — CD3+CD4+ Th, цитотоксических Т-лимфоцитов — CD3+CD8+ CTL, натуральных киллеров — CD3-CD16+CD56+ NK, В-клеток — CD3-CD19+); малых субпопуляций лимфоцитов: двойных позитивных (DP) (CD3+CD4+CD8+), двойных негативных (DN) (CD3+CD4-CD8-) Т-клеток, NKT (CD3+CD16+CD56+), CD3-CD8+ NK, CD3+CD8dim и CD3+CD8bright).

Результаты. В остром периоде ГМ и СМ в крови и ЦСЖ выявлены достоверные отличия от группы сравнения в содержании основных и малых субпопуляций лимфоцитов. Характерным для субпопуляционного состава лимфоцитов крови при СМ явилось преобладание Т-клеток, Th, CTL, NK, NKT, DN, CD3-CD8+ NK, CD3+CD8bright и CD3+CD8dim при существенном более низком содержании B-клеток по сравнению с ГМ. В ЦСЖ детей с СМ превалировали Т-клетки и Th, тогда как количество B-клеток и CD3-CD8+ NK было ниже по сравнению с показателями при ГМ. В динамике заболевания также выявлены различия субпопуляционного состава ЦСЖ и крови в зависимости от нозологической формы при сохранении отличий от группы сравнения некоторых основных и малых субпопуляций лимфоцитов. Расчет соотношения «ликвор/кровь» для основных и малых субпопуляций лимфоцитов выявил в группе сравнения превалирование в ЦСЖ большинства субпопуляций (коэффициенты варьировали от 1,2 до 16,4), за исключением B-клеток, NK и CD3-CD8+NK, количество которых в ЦСЖ было сниженным по сравнению с кровью (коэффициенты варьировали от 0,07 до 0,31). При СМ и ГМ происходили различные изменения соотношения «ЦСЖ/кровь» для большинства исследованных субпопуляций в остром периоде и периоде реконвалесценции с характерными особенностями для каждой нозологической формы.

Заключение. Полученные результаты свидетельствуют о наличии особенностей в активации системного и интратекального иммунного ответа при серозных (вирусных) и гнойных (бактериальных) менингитах у детей и могут быть использованы в качестве дополнительного дифференциально-диагностического критерия.

Список литературы

1. Акинфиева О.В., Бубнова Л.Н., Бессмельцев С.С. NKT-клетки: характерные свойства и функциональная значимость для регуляции иммунного ответа // Онкогематология. 2010. Т. 5, № 4. C. 39—47.

2. Алексеева Л.А., Железникова Г.Ф., Жирков А.А., Скрипченко Н.В., Вильниц А.А., Монахова Н.Е., Бессонова Т.В. Субпопуляции лимфоцитов и цитокины в крови и цереброспинальной жидкости при вирусных и бактериальных менингитах у детей // Инфекция и иммунитет. 2016. Т. 6, № 1. С. 33—44. doi: 0.15789/2220-7619-2016-1-33-44

3. Балмасова И.П., Венгеров Ю.Я., Раздобарина С.Е., Нагибина М.В. Иммунопатогенетические особенности бактериальных гнойных менингитов // Эпидемиология и инфекционные болезни. 2014. Т. 19, № 5. С. 17—22.

4. Жирков А.А., Алексеева Л.А., Железникова Г.Ф., Монахова Н.Е., Бессонова Т.В. Субпопуляционный состав лимфоцитов цереброспинальной жидкости детей с острой респираторной вирусной инфекцией, протекающей с синдромом менингизма // Медицинская иммунология. 2019. Т. 21, № 6. С. 1033—1042. doi: 10.15789/1563-0625-2019-6-1033-1042

5. Хайдуков С.В. Малые субпопуляции Т-хелперов (Th наивные тимические, Th наивные центральные, Th9, Th22 и CD4+CD8+ дважды положительные Т-клетки // Медицинская иммунология. 2013. Т. 15, № 6. С. 503—512. doi: 10.15789/1563-0625-2013-6-503-512

6. Хайдуков С.В., Байдун Л.В. Современные подходы к оценке клеточной составляющей иммунного статуса // Медицинский алфавит. 2015. Т. 2, № 8. С. 44—51.

7. Ярилин А.А. Иммунология. Москва: ГЭОТАР-Медиа, 2010. 752 c.

8. Ahmed R.K., Poiret T., Ambati A., Rane L., Remberger M., Omazic B., Vudattu N.K., Winiarski J., Ernberg I., Axelsson-Robertson R., Magalhaes I., Castelli C., Ringden O., Maeurer M. TCR+CD4-CD8- T cells in antigen-specific MHC class I-restricted T-cell responses after allogeneic hematopoietic stem cell transplantation. J. Immunother., 2014, vol. 37, no. 8, pp. 416425. doi: 10.1097/CJI.0000000000000047

9. Bristeau-Leprince A., Mateo V., Lim A., Magerus-Chatinet A., Solary E., Fischer A., Rieux-Laucat F., Gougeon M.-L. Human TCRa/e+ CD4-CD8- double-negative t cells in patients with autoimmune lymphoproliferative syndrome express restricted Ve TCR diversity and are clonally related to CD8+ t cells. J. Immunol., 2014, vol. 181, no. 1, pp. 440-448. doi: 10.4049/jimmunol.181.1.440

10. Campbell J.P., Guy K., Cosgrove C., Florida-James G.D., Simpson R.J. Total lymphocyte CD8 expression is not a reliable marker of cytotoxic T-cell populations in human peripheral blood following an acute bout of high-intensity exercise. Brain. Behav. Immun., 2008, vol. 22, no. 3, pp. 375-380. doi: 10.1016/j.bbi.2007.09.001

11. D’Acquisto F., Crompton T. CD3+CD4-CD8- (double negative) T cells: saviours or villains of the immune response? Biochem. Pharmacol., 2011, vol. 82, no. 4, pp. 333-340. doi: 10.1016/j.bcp.2011.05.019

12. Das G., Augustine M.M., Das J., Bottomly K., Ray P., Ray A. An important regulatory role for CD4+CD8aa T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease. PNAS, 2003, vol. 100, no. 9, pp. 5324-5329. doi: 10.1073/pnas.0831037100

13. Eller M.A., Goonetilleke N., Tassaneetrithep B., Eller L.A., Costanzo C., Johnson S., Betts M.R., Krebs S.J., Slike B.M., Nitayaphan S., Rono K., Tovanabutra S., Maganga L., Kibuuka H., Jagodzinski L., Peel S., Rolland M., Marovich M.A., Kim J.H., Michael N.L., Robb M.L., Streeck H. Expansion of inefficient HIV-specific CD8+ T cells during acute infection. J. Virol., 2016, vol. 90, no. 8, pp. 4005-4016. doi: 10.1128/JVI.02785-15

14. Fernandez C.S., Kelleher A.D., Finlayson R., Godfrey D.I., Kent S.J. NKT cell depletion in humans during early HIV infection. Immunol. Cell Biol., 2014, vol. 92, no. 7, pp. 578-590. doi: 10.1038/icb.2014.25

15. Frahm M.A., Picking R.A., Kuruc J.D., McGee K.S., Gay C.L., Eron J.J., Hicks C.B., Tomaras G.D., Ferrari G. CD4+CD8+ T-cells represent a significant portion of the anti-HIV T-cell response to acute HIV infection. J. Immunol., 2014, vol. 71, no. 11, pp. 3831-3840. doi: 10.4049/jimmunol.1103701

16. Gianchecchi E., Vittorio D., Fierabracci A. NK cells in autoimmune diseases: linking innate and adaptive immune responses. Autoimmun. Rev., 2018, vol. 17, no. 2, pp. 142-154. doi: 10.1016/j.autrev.2017.11.018

17. Graaf De M.T., Smitt P.A., Luitwieler R.L., Van Velzen C., Van Den Broek P.D., Kraan J., Gratama J.W. Central memory CD4+ T cells dominate the normal cerebrospinal fluid. Cytometry Part B (Clinical Cytometry), 2011, vol. 80, no. 1, pp. 43-50. doi: 10.1002/cyto.b.20542

18. Hegde S., Chen X., Keaton J.M., Reddington F., Besra G.S., Gumperz J.E. NKT cells direct monocytes into a DC differentiation pathway. J. Leukoc. Biol., 2007, vol. 81, no. 5, pp. 1224-1235. doi: 10.1189/jlb.1206718

19. Kaiser P., Joos B., Niederost B., Weber R., Gunthard H.F., Fischer M. Productive human immunodeficiency virus type 1 infection in peripheral blood predominantly takes place in CD4/CD8 double-negative T lymphocytes. J. Virol., 2007, vol. 81, no. 18, pp. 9693-9706. doi: 10.1128/JVI.00492-07

20. Keir M.E., Rosenberg M.G., Sandberg J.K., Jordan K.A., Wiznia A., Nixon D.F., Stoddart C.A., McCune J.M. Generation of CD3+CD8low thymocytes in the HIV type 1-infected thymus. J. Immunol., 2014, vol. 169, no. 5, pp. 2788-2796. doi: 10.4049/jimmunol.169.5.2788

21. Kitchen S.G., Jones N.R., LaForge S., Whitmire J.K., Vu B.A., Galic Z., Brooks D.G., Brown S.J., Kitchen C.M., Zack J.A. CD4 on CD8+ T cells directly enhances effector function and is a target for HIV infection. PNAS, 2004, vol. 101, no. 23, pp. 8727-8732. doi: 10.1073/pnas.0401500101

22. Kowarik M.C., Grummel V., Wemlinger S., Buck D., Weber M.S., Berthele A., Hemmer B. Immune cell subtyping in the cerebrospinal fluid of patients with neurological diseases. J Neurol., 2014, vol. 261, pp. 130-143. doi: 10.1007/s00415-013-7145-2

23. Kumar V., Terry L. Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology, 2014, vol. 142, no. 3, pp. 321-336. doi: 10.1111/imm.12247

24. Ligocki A.J., Niederkorn J.Y. Advances on non-CD4+Foxp3+ T regulatory cells: CD8+, type 1, and double negative T regulatory cells in organ transplantation. Transplantation, 2015, vol. 20, no. 2, pp. 163-178. doi: 10.1097/TP.0000000000000813

25. Lin H., Nieda M., Rozenkov V., Nicol A.J. Analysis of the effect of different NKT cell subpopulations on the activation of CD4 and CD8 T cells, NK cells, and B cells. Exp. Hematol., 2006, vol. 34, no. 3, pp. 289-295. doi: 10.1016/j.exphem.2005.12.008

26. Marrero I., Ware R., Kumar V. Type II NKT cells in inflammation, autoimmunity, microbial immunity, and cancer. Front. Immunol., 2015, vol. 6, pp. 1-6. doi: 10.3389/fimmu.2015.00316

27. Ouyang L., Li X., Liang Z., Yang D., Gong F. CD8low T-cell subpopulation is increased in patients with chronic hepatitis B virus infection. Mol. Immunol., 2013, vol. 56, no. 4, pp. 698-704. doi: 10.1016/j.molimm.2013.07.003

28. Overgaard N.H., Jung J.-W., Steptoe R.J., Wells J.W. CD4+/CD8+ double-positive T cells: more than just a developmental stage? J. Leukoc. Biol., 2015, vol. 97, no. 1, pp. 31-38. doi: 10.1189/jlb.1RU0814-382

29. Rhost S., Sedimbi S., Kadri N., Cardell S.L. immunomodulatory type II natural killer T Lymphocytes in health and disease. Scand. J. Immunol., 2012, vol. 76, no. 3, pp. 246-255. doi: 10.1111/j.1365-3083.2012.02750.x

30. Schonrich G., Raftery M.J. CDl-restricted T cells during persistent virus infections: “sympathy for the devil”. Front Immunol., 2018, vol. 9, pp. 1-16. doi: 10.3389/fimmu.2018.00545

31. Singh A.K., Tripathi P., Cardell S.L. Type II NKT cells: an elusive population with immunoregulatory properties. Front Immunol., 2018, vol. 9, pp. 1-8. doi: 10.3389/fimmu.2018.01969

32. Torina A., Guggino G., Pio M., Manna L., Sireci G. The Janus face of NKT cell function in autoimmunity and infectious diseases. Int. J. Mol. Sci., 2018, vol. 19, no. 440, pp. 1-10. doi: 10.3390/ijms19020440

33. Tosano F., Bucciol G., Pantano G., Putti M.C., Sanzari M.C., Basso G., Plebani M. Lymphocytes subsets reference value in childhood. Cytometry Part A, 2015, vol. 87, no. 1, pp. 81-85. doi: 10.1002/cyto.a.22520

34. Trautmann A., Ruckert B., Schmid-Grendelmeier E., Niederery P., Blaser K., Akdis C.A. Human CD8 T cells of the peripheral blood contain a low CD8 expressing cytotoxic/effector subpopulation. Immunol., 2003, vol. 108, no. 3, pp. 305-312. doi: 10.1046/j.1365-2567.2003.01590.x

35. Tsunoda I., Tanaka T., Fujinami R.S. Regulatory role of CD1d in neurotropic virus infection. J. Virol., 2008, vol. 82, no. 20, pp. 10279-10289. doi: 10.1128/JVI.00734-08

36. Tupin E., Kinjo Y., Kronenberg M. The unique role of natural killer T cells in the response to microorganisms. Nat. Rev., 2007, vol. 5, no. 6, pp. 405-417. doi: 10.1038/nrmicro1657

37. Zajonc D.M., Girardi E. Recognition of microbial glycolipids by natural killer T cells. Front. Immunol., 2015, vol. 6, pp. 1-11. doi: 10.3389/fimmu.2015.00400

38. Zloza A., Al-Harthi L. Multiple populations of T lymphocytes are distinguished by the level of CD4 and CD8 coexpression and require individual consideration. J. Leukoc. Biol., 2006, vol. 79, no. 1, pp. 4-6. doi: 10.1189/jlb.0805455

Russian Journal of Infection and Immunity. 2021; 11: 111-122

Major and minor lymphocytes subpopulations in peripheral blood and cerebrospinal fluid of children with meningitis

Zhirkov A. A., Alekseeva L. A., Zheleznikova G. F., Sckripchenko N. V., Monakhova N. E., Bessonova T. V.

https://doi.org/10.15789/2220-7619-MAM-1255

Abstract

Introduction. The analysis of current publications indicates at our insufficient understanding of subpopulation composition of lymphocytes in peripheral blood and cerebrospinal fluid (CSF) during pediatric neuroinfectious diseases. It has been found that the main lymphocyte populations are divided into many small (minor) subpopulations.

The purpose of this research was to assess percentage of major and minor blood and CSF lymphocyte subsets in children with aseptic viral meningitis (AM) or bacterial purulent meningitis (BM).

Materials and methods. Phenotyping of blood and CSF lymphocytes of children aged from 4 months to 17 years diagnosed with AM (n = 86) and BM (n = 39) was carried out by using flow cytometry. As a comparison group, we analyzed peripheral blood and CSF samples collected from children with acute respiratory viral infections (ARVIs) associated with syndrome of meningism (n = 27). There was evaluated percentage of the major cell subpopulations (CD3+ T-lymphocytes, T-helpers — CD3+CD4+ Th, cytotoxic T-lymphocytes — CD3+CD8+ CTL, natural killer cells — CD3-CD16+CD56+ NK, B-cells — CD3-CD19+), as well as minor lymphocyte subsets (double positive (DP) (CD3+CD4+CD8+), double negative (DN) (CD3+CD4-CD8-) T-cells, NKT (CD3+CD16+CD56+), CD3-CD8+ NK, CD3+CD8dim and CD3+CD8 8bright).

Results. It was found that the acute period of BM and AM vs. the comparison group (ARVI) was characterized by significant differences in the blood and CSF composition of major and minor lymphocyte subsets. In particular, blood T-cells, Th, CTL, NK, NKT, DN, CD3-CD8+ NK, CD3+CD8bright and CD3+CD8dim dominated in parallel with significantly lowered B-cell frequency in AM vs. BM. In the CSF of children with AM, T-cells and Th prevailed, whereas count of B-cells and CD3-CD8+ NK was lower compared to those in BM. In addition, further differences were revealed in CSF and blood cell subset composition depending on nosological entity, while maintaining differences in some major and minor lymphocyte subpopulations lacked in the comparison group. Calculating the CSF/blood ratio for the major and minor lymphocyte subsets uncovered the prevalence for the majority of cell subpopulations (the coefficients ranged from 1.2 to 16.4) in the CSF of the comparison group (ARVI), except B-cells, NK and CD3-CD8+ NK (coefficients ranged from 0.07 to 0.31). AM and BM were featured with various changes in the CSF/blood ratio found for most of the studied subpopulations in the acute period as well as the recovery phase highlighted with characteristic traits for each nosological form.

Conclusion. The data obtained indicate about finding specific features in the activation of systemic and intrathecal immune response during viral and bacterial meningitis in children, which may be used as an additional differential diagnostic criterion.

References

1. Akinfieva O.V., Bubnova L.N., Bessmel'tsev S.S. NKT-kletki: kharakternye svoistva i funktsional'naya znachimost' dlya regulyatsii immunnogo otveta // Onkogematologiya. 2010. T. 5, № 4. C. 39—47.

2. Alekseeva L.A., Zheleznikova G.F., Zhirkov A.A., Skripchenko N.V., Vil'nits A.A., Monakhova N.E., Bessonova T.V. Subpopulyatsii limfotsitov i tsitokiny v krovi i tserebrospinal'noi zhidkosti pri virusnykh i bakterial'nykh meningitakh u detei // Infektsiya i immunitet. 2016. T. 6, № 1. S. 33—44. doi: 0.15789/2220-7619-2016-1-33-44

3. Balmasova I.P., Vengerov Yu.Ya., Razdobarina S.E., Nagibina M.V. Immunopatogeneticheskie osobennosti bakterial'nykh gnoinykh meningitov // Epidemiologiya i infektsionnye bolezni. 2014. T. 19, № 5. S. 17—22.

4. Zhirkov A.A., Alekseeva L.A., Zheleznikova G.F., Monakhova N.E., Bessonova T.V. Subpopulyatsionnyi sostav limfotsitov tserebrospinal'noi zhidkosti detei s ostroi respiratornoi virusnoi infektsiei, protekayushchei s sindromom meningizma // Meditsinskaya immunologiya. 2019. T. 21, № 6. S. 1033—1042. doi: 10.15789/1563-0625-2019-6-1033-1042

5. Khaidukov S.V. Malye subpopulyatsii T-khelperov (Th naivnye timicheskie, Th naivnye tsentral'nye, Th9, Th22 i CD4+CD8+ dvazhdy polozhitel'nye T-kletki // Meditsinskaya immunologiya. 2013. T. 15, № 6. S. 503—512. doi: 10.15789/1563-0625-2013-6-503-512

6. Khaidukov S.V., Baidun L.V. Sovremennye podkhody k otsenke kletochnoi sostavlyayushchei immunnogo statusa // Meditsinskii alfavit. 2015. T. 2, № 8. S. 44—51.

7. Yarilin A.A. Immunologiya. Moskva: GEOTAR-Media, 2010. 752 c.

8. Ahmed R.K., Poiret T., Ambati A., Rane L., Remberger M., Omazic B., Vudattu N.K., Winiarski J., Ernberg I., Axelsson-Robertson R., Magalhaes I., Castelli C., Ringden O., Maeurer M. TCR+CD4-CD8- T cells in antigen-specific MHC class I-restricted T-cell responses after allogeneic hematopoietic stem cell transplantation. J. Immunother., 2014, vol. 37, no. 8, pp. 416425. doi: 10.1097/CJI.0000000000000047

9. Bristeau-Leprince A., Mateo V., Lim A., Magerus-Chatinet A., Solary E., Fischer A., Rieux-Laucat F., Gougeon M.-L. Human TCRa/e+ CD4-CD8- double-negative t cells in patients with autoimmune lymphoproliferative syndrome express restricted Ve TCR diversity and are clonally related to CD8+ t cells. J. Immunol., 2014, vol. 181, no. 1, pp. 440-448. doi: 10.4049/jimmunol.181.1.440

10. Campbell J.P., Guy K., Cosgrove C., Florida-James G.D., Simpson R.J. Total lymphocyte CD8 expression is not a reliable marker of cytotoxic T-cell populations in human peripheral blood following an acute bout of high-intensity exercise. Brain. Behav. Immun., 2008, vol. 22, no. 3, pp. 375-380. doi: 10.1016/j.bbi.2007.09.001

11. D’Acquisto F., Crompton T. CD3+CD4-CD8- (double negative) T cells: saviours or villains of the immune response? Biochem. Pharmacol., 2011, vol. 82, no. 4, pp. 333-340. doi: 10.1016/j.bcp.2011.05.019

12. Das G., Augustine M.M., Das J., Bottomly K., Ray P., Ray A. An important regulatory role for CD4+CD8aa T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease. PNAS, 2003, vol. 100, no. 9, pp. 5324-5329. doi: 10.1073/pnas.0831037100

13. Eller M.A., Goonetilleke N., Tassaneetrithep B., Eller L.A., Costanzo C., Johnson S., Betts M.R., Krebs S.J., Slike B.M., Nitayaphan S., Rono K., Tovanabutra S., Maganga L., Kibuuka H., Jagodzinski L., Peel S., Rolland M., Marovich M.A., Kim J.H., Michael N.L., Robb M.L., Streeck H. Expansion of inefficient HIV-specific CD8+ T cells during acute infection. J. Virol., 2016, vol. 90, no. 8, pp. 4005-4016. doi: 10.1128/JVI.02785-15

14. Fernandez C.S., Kelleher A.D., Finlayson R., Godfrey D.I., Kent S.J. NKT cell depletion in humans during early HIV infection. Immunol. Cell Biol., 2014, vol. 92, no. 7, pp. 578-590. doi: 10.1038/icb.2014.25

15. Frahm M.A., Picking R.A., Kuruc J.D., McGee K.S., Gay C.L., Eron J.J., Hicks C.B., Tomaras G.D., Ferrari G. CD4+CD8+ T-cells represent a significant portion of the anti-HIV T-cell response to acute HIV infection. J. Immunol., 2014, vol. 71, no. 11, pp. 3831-3840. doi: 10.4049/jimmunol.1103701

16. Gianchecchi E., Vittorio D., Fierabracci A. NK cells in autoimmune diseases: linking innate and adaptive immune responses. Autoimmun. Rev., 2018, vol. 17, no. 2, pp. 142-154. doi: 10.1016/j.autrev.2017.11.018

17. Graaf De M.T., Smitt P.A., Luitwieler R.L., Van Velzen C., Van Den Broek P.D., Kraan J., Gratama J.W. Central memory CD4+ T cells dominate the normal cerebrospinal fluid. Cytometry Part B (Clinical Cytometry), 2011, vol. 80, no. 1, pp. 43-50. doi: 10.1002/cyto.b.20542

18. Hegde S., Chen X., Keaton J.M., Reddington F., Besra G.S., Gumperz J.E. NKT cells direct monocytes into a DC differentiation pathway. J. Leukoc. Biol., 2007, vol. 81, no. 5, pp. 1224-1235. doi: 10.1189/jlb.1206718

19. Kaiser P., Joos B., Niederost B., Weber R., Gunthard H.F., Fischer M. Productive human immunodeficiency virus type 1 infection in peripheral blood predominantly takes place in CD4/CD8 double-negative T lymphocytes. J. Virol., 2007, vol. 81, no. 18, pp. 9693-9706. doi: 10.1128/JVI.00492-07

20. Keir M.E., Rosenberg M.G., Sandberg J.K., Jordan K.A., Wiznia A., Nixon D.F., Stoddart C.A., McCune J.M. Generation of CD3+CD8low thymocytes in the HIV type 1-infected thymus. J. Immunol., 2014, vol. 169, no. 5, pp. 2788-2796. doi: 10.4049/jimmunol.169.5.2788

21. Kitchen S.G., Jones N.R., LaForge S., Whitmire J.K., Vu B.A., Galic Z., Brooks D.G., Brown S.J., Kitchen C.M., Zack J.A. CD4 on CD8+ T cells directly enhances effector function and is a target for HIV infection. PNAS, 2004, vol. 101, no. 23, pp. 8727-8732. doi: 10.1073/pnas.0401500101

22. Kowarik M.C., Grummel V., Wemlinger S., Buck D., Weber M.S., Berthele A., Hemmer B. Immune cell subtyping in the cerebrospinal fluid of patients with neurological diseases. J Neurol., 2014, vol. 261, pp. 130-143. doi: 10.1007/s00415-013-7145-2

23. Kumar V., Terry L. Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology, 2014, vol. 142, no. 3, pp. 321-336. doi: 10.1111/imm.12247

24. Ligocki A.J., Niederkorn J.Y. Advances on non-CD4+Foxp3+ T regulatory cells: CD8+, type 1, and double negative T regulatory cells in organ transplantation. Transplantation, 2015, vol. 20, no. 2, pp. 163-178. doi: 10.1097/TP.0000000000000813

25. Lin H., Nieda M., Rozenkov V., Nicol A.J. Analysis of the effect of different NKT cell subpopulations on the activation of CD4 and CD8 T cells, NK cells, and B cells. Exp. Hematol., 2006, vol. 34, no. 3, pp. 289-295. doi: 10.1016/j.exphem.2005.12.008

26. Marrero I., Ware R., Kumar V. Type II NKT cells in inflammation, autoimmunity, microbial immunity, and cancer. Front. Immunol., 2015, vol. 6, pp. 1-6. doi: 10.3389/fimmu.2015.00316

27. Ouyang L., Li X., Liang Z., Yang D., Gong F. CD8low T-cell subpopulation is increased in patients with chronic hepatitis B virus infection. Mol. Immunol., 2013, vol. 56, no. 4, pp. 698-704. doi: 10.1016/j.molimm.2013.07.003

28. Overgaard N.H., Jung J.-W., Steptoe R.J., Wells J.W. CD4+/CD8+ double-positive T cells: more than just a developmental stage? J. Leukoc. Biol., 2015, vol. 97, no. 1, pp. 31-38. doi: 10.1189/jlb.1RU0814-382

29. Rhost S., Sedimbi S., Kadri N., Cardell S.L. immunomodulatory type II natural killer T Lymphocytes in health and disease. Scand. J. Immunol., 2012, vol. 76, no. 3, pp. 246-255. doi: 10.1111/j.1365-3083.2012.02750.x

30. Schonrich G., Raftery M.J. CDl-restricted T cells during persistent virus infections: “sympathy for the devil”. Front Immunol., 2018, vol. 9, pp. 1-16. doi: 10.3389/fimmu.2018.00545

31. Singh A.K., Tripathi P., Cardell S.L. Type II NKT cells: an elusive population with immunoregulatory properties. Front Immunol., 2018, vol. 9, pp. 1-8. doi: 10.3389/fimmu.2018.01969

32. Torina A., Guggino G., Pio M., Manna L., Sireci G. The Janus face of NKT cell function in autoimmunity and infectious diseases. Int. J. Mol. Sci., 2018, vol. 19, no. 440, pp. 1-10. doi: 10.3390/ijms19020440

33. Tosano F., Bucciol G., Pantano G., Putti M.C., Sanzari M.C., Basso G., Plebani M. Lymphocytes subsets reference value in childhood. Cytometry Part A, 2015, vol. 87, no. 1, pp. 81-85. doi: 10.1002/cyto.a.22520

34. Trautmann A., Ruckert B., Schmid-Grendelmeier E., Niederery P., Blaser K., Akdis C.A. Human CD8 T cells of the peripheral blood contain a low CD8 expressing cytotoxic/effector subpopulation. Immunol., 2003, vol. 108, no. 3, pp. 305-312. doi: 10.1046/j.1365-2567.2003.01590.x

35. Tsunoda I., Tanaka T., Fujinami R.S. Regulatory role of CD1d in neurotropic virus infection. J. Virol., 2008, vol. 82, no. 20, pp. 10279-10289. doi: 10.1128/JVI.00734-08

36. Tupin E., Kinjo Y., Kronenberg M. The unique role of natural killer T cells in the response to microorganisms. Nat. Rev., 2007, vol. 5, no. 6, pp. 405-417. doi: 10.1038/nrmicro1657

37. Zajonc D.M., Girardi E. Recognition of microbial glycolipids by natural killer T cells. Front. Immunol., 2015, vol. 6, pp. 1-11. doi: 10.3389/fimmu.2015.00400

38. Zloza A., Al-Harthi L. Multiple populations of T lymphocytes are distinguished by the level of CD4 and CD8 coexpression and require individual consideration. J. Leukoc. Biol., 2006, vol. 79, no. 1, pp. 4-6. doi: 10.1189/jlb.0805455