Журналов:     Статей:        

Инфекция и иммунитет. 2019; 9: 583-588

Оценка и прогноз заболеваемости ОРВИ-гриппом с помощью математической модели SIR+A на территории Москвы в 2016 году

Контаров Н. А., Архарова Г. В., Гришунина Ю. Б., Гришунина С. А., Юминова Н. В.

https://doi.org/10.15789/2220-7619-2019-3-4-583-588

Аннотация

Из-за высокой трансмиссивности и способности вызывать крупные эпидемии, грипп представляет собой серьезную проблему для мирового здравоохранения. Эпидемии и пандемии гриппа связаны с изменениями в структуре общества, которые способствуют распространению новых штаммов в конкретных экологических и социальных условиях. В настоящее время грипп является одним из самых распространенных заболеваний в мире. Ежегодно он вызывает эпидемии или даже пандемии, нередко приводя к летальному исходу. Уникальная способность вирусов гриппа к изменчивости путем точечных мутаций, рекомбинаций и реассортации генов, сопровождающаяся изменением биологических свойств вируса — основная причина неконтролируемого распространения инфекции. В связи с этим изучение популяции восприимчивых индивидуумов с использованием вероятностных моделей не только дает дополнительную информацию о вспышке, но и позволяет отслеживать динамику эпидемии на контролируемых территориях. Понимание эпидемиологии гриппа имеет решающее значение в распределении ресурсов здравоохранения. Основой мерой общественного здравоохранения в борьбе с вирусом является вакцинация. Однако существуют уязвимые группы населения, такие как пожилые люди и лица с ослабленным иммунитетом, которые, как правило, не обладают защитным уровнем антител к вирусу гриппа. Несмотря на успехи в создании вакцин и средств химиотерапии, эпидемии гриппа по-прежнему имеют огромные масштабы. При этом достоверные способы прогноза заболеваемости с учетом скорости развития эпидемической ситуации на сегодняшний день отсутствуют. Отслеживание и прогнозирование возникающих эпидемий затруднено из-за несоответствия между динамикой эпидемии, которую можно анализировать по данным эпиднадзора, и системой отслеживания числа заболевших гриппом. Наличие мутаций у вируса гриппа усугубляют данную ситуацию, изменяя истинную динамику заболеваемости. Использование вероятностных моделей для оценки параметров стохастической эпидемии будет способствовать более точному прогнозу изменения заболеваемости. В настоящей работе с целью прогноза изменения заболеваемости используется вероятностная модель, учитывающая взаимосвязь между инфицированными, восприимчивыми и невосприимчивыми индивидуумами, а также агрессивностью внешних рисков — SIR+A. С помощью данной модели проведены оценка и прогноз заболеваемости ОРВИ-гриппом на территории Москвы в 2016 г. Введен и рассчитан новый параметр – интенсивность заражения, с помощью которого можно проводить достоверный анализ заболеваемости и осуществлять прогноз относительно ее изменения. 

Список литературы

1. Бароян О.В., Рвачев Л.А., Иванников Ю.Г. Моделирование и прогнозирование эпидемий гриппа для территории СССР. М.: Медицина, 1977. 546 с.

2. Бейли Н. Математика в биологии и медицине. Москва: Мир, 1970. 326 с.

3. Economou A., Lopez-Herrero M.J. The deterministic SIS epidemic model in a Markovian random environment. J. Math. Biol., 2016, vol. 73, no. 1, pp. 91–121. doi: 10.1007/s00285-015-0943-7

4. Pellis L, House T, Keeling M.J. Exact and approximate moment closures for non-Markovian network epidemics. J. Theor. Biol., 2015, vol. 382, pp. 160–177. doi: 10.1016/j.jtbi.2015.04.039

5. Rebuli N.P., Bean N.G., Ross J.V. Hybrid Markov chain models of S-I-R disease dynamics. J. Math. Biol., 2017, vol. 75, no. 3, pp. 521–541. doi: 10.1007/s00285-016-1085-2

Russian Journal of Infection and Immunity. 2019; 9: 583-588

SIR+A mathematical model for evaluating and predicting 2016–2017 ARVI-influenza incidence by using on the Moscow territory

Kontarov N. A., Arkharova G. V., Grishunina Yu. B., Grishunina S. A., Yuminova N. V.

https://doi.org/10.15789/2220-7619-2019-3-4-583-588

Abstract

Influenza is a major challenge to global healthcare due to its high transmissivity and ability to cause major epidemics. Influenza epidemics and pandemics are associated with changes in the society structure that contribute to the spread of new viral strains in certain environmental and social settings. Currently, influenza is one of the most common global diseases that results in annual epidemics or even pandemics, often leading to lethal outcome. Influenza viruses are uniquely prone to variability via point mutations, recombination and gene reassortment accompanied with changes in their biological properties considered as the main cause of uncontrolled infection spread. Hence, examining cohorts of predisposed individuals by using probability models provides not only additional information about viral outbreaks, but also allows monitoring dynamics of viral epidemics in controlled areas. Understanding influenza epidemiology is crucial for restructuring healthcare resources. Public healthcare service mainly relies on influenza vaccination. However, there are vulnerable cohorts such as elderly and immunocompromised individuals, which usually contain no protective antiinfluenza virus antibody level. Despite advances in the developing vaccines and chemotherapy, large-scale influenza epidemics still continue to emerge. Upon that, no reliable methods for disease prognosis based on rate of ongoing epidemic situation are currently available. Monitoring and predicting emerging epidemics is complicated due to discrepancy between dynamics of influenza epidemics that might be evaluated by using surveillance data as well as platform for tracking influenza incidence rate. However, it may be profoundly exacerbated by mutations found in the influenza virus genome by altering genuine morbidity dynamics. Use of probabilistic models for assessing parameters of stochastic epidemics would contribute to more accurately predicted changes in morbidity rate. Here, an SIR+A probabilistic model considering a relationship between infected, susceptible and protected individuals as well as the aggressiveness of external risks for predicting changes in influenza morbidity rate that allowed to evaluate and predict the 2016 ARVI influenza incidence rate in Moscow area. Moreover, introducing an intensity of infection parameter allows to conduct a reliable analysis of incidence rate and predict its changes.
References

1. Baroyan O.V., Rvachev L.A., Ivannikov Yu.G. Modelirovanie i prognozirovanie epidemii grippa dlya territorii SSSR. M.: Meditsina, 1977. 546 s.

2. Beili N. Matematika v biologii i meditsine. Moskva: Mir, 1970. 326 s.

3. Economou A., Lopez-Herrero M.J. The deterministic SIS epidemic model in a Markovian random environment. J. Math. Biol., 2016, vol. 73, no. 1, pp. 91–121. doi: 10.1007/s00285-015-0943-7

4. Pellis L, House T, Keeling M.J. Exact and approximate moment closures for non-Markovian network epidemics. J. Theor. Biol., 2015, vol. 382, pp. 160–177. doi: 10.1016/j.jtbi.2015.04.039

5. Rebuli N.P., Bean N.G., Ross J.V. Hybrid Markov chain models of S-I-R disease dynamics. J. Math. Biol., 2017, vol. 75, no. 3, pp. 521–541. doi: 10.1007/s00285-016-1085-2