Журналов:     Статей:        

Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2024; 23: 176-197

Возможные механизмы созревания нейрогенных опухолей

Зверев И. А., Друй А. Е.

https://doi.org/10.24287/1726-1708-2024-23-3-176-197

Аннотация

В последнее время произошло значительное развитие методов изучения морфологии и молекулярных процессов в тканях, клетках и субклеточных структурах. Благодаря этому появилась возможность получения качественно нового представления о причинах ранее необъяснимых клинических явлений в онкологии. Одним из наиболее загадочных феноменов является редкое парадоксальное свойство злокачественных новообразований становиться доброкачественными. В данном обзоре мы критически рассматриваем существующие гипотезы о механизмах, лежащих в основе созревания нейрогенных опухолей, с учетом новых данных об их происхождении и биологии и оцениваем перспективы применения этих знаний в клинике.

Список литературы

1. Papac R.J. Spontaneous regression of cancer. Cancer Treat Rev 1996; 22 (6): 395–423. DOI: 10.1016/S0305-7372(96)90023-7

2. Zeineldin M., Patel A.G., Dyer M.A. Neuroblastoma: When differentiation goes awry. Neuron 2022; 110 (18): 2916–28. DOI: 10.1016/j.neuron.2022.07.012

3. Cheung N.V., Zhang J., Lu C., Parker M., Bahrami A., Tickoo S.K., et al. Association of Age at Diagnosis and Genetic Mutations in Patients With Neuroblastoma. JAMA 2012; 307 (10): 1062–71. DOI: 10.1001/jama.2012.228

4. Lavarino C., Cheung N.K., Garcia I., Domenech G., de Torres C., Alaminos M., et al. Specific gene expression profiles and chromosomal abnormalities are associated with infant disseminated neuroblastoma. BMC Cancer 2009; 9: 44.

5. Wu Y., Zhang J. Study on differentially expressed genes between stage M and stage MS neuroblastoma. Front Oncol 2023; 12: 1083570. DOI: 10.3389/fonc.2022.1083570

6. Brodeur G.M. Spontaneous regression of neuroblastoma. Cell Tissue Res 2018; 372 (2): 277–86. DOI: 10.1007/s00441-017-2761-2

7. Kocak H., Ackermann S., Hero B., Kahlert Y., Oberthuer A., Juraeva D., et al. Hox-C9 activates the intrinsic pathway of apoptosis and is associated with spontaneous regression in neuroblastoma. Cell Death Dis 2013; 4 (4): e586.

8. Meng X., Li H., Fang E., Feng J., Zhao X. Comparison of stage 4 and stage 4s neuroblastoma identifes autophagy-related gene and LncRNA Signatures Associated With Prognosis. Front Oncol 2020; 19 (10): 1411.

9. Jin Z., Lu Y., Wu Y., Che J., Dong X. Development of differentiation modulators and targeted agents for treating neuroblastoma. Eur J Med Chem 2020; 207: 112818. DOI: 10.1016/j.ejmech.2020.112818

10. MacKenzie D.J. A Classification of the Tumours of the Glioma Group on a Histogenetic Basis With a Correlated Study of Prognosis. Can Med Assoc J 1926; 16 (7): 872.

11. Dong R., Yang R., Zhan Y., Lai H.-D., Ye C.-J., Yao X.-Y., et al. Single-Cell Characterization of Malignant Phenotypes and Developmental Trajectories of Adrenal Neuroblastoma. Cancer Cell 2020; 38 (5): 716–33.e6. DOI: 10.1016/j.ccell.2020.08.014

12. Jansky S., Sharma A.K., Körber V., Quintero A., Toprak U.H., Wecht E.M., et al. Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nat Genet 2021; 53 (5): 683–93. DOI: 10.1038/s41588-021-00806-1

13. Ponzoni M., Bachetti T., Corrias M.V., Brignole C., Pastorino F., Calarco E., et al. Recent advances in the developmental origin of neuroblastoma: an overview. J Exp Clin Cancer Res 2022; 41 (1): 92. DOI: 10.1186/s13046-022-02281-w

14. Sriha J., Louis-Brennetot C., Pierre-Eugène C., Baulande S., Raynal V., Kramdi A., et al. BET and CDK Inhibition Reveal Differences in the Proliferation Control of Sympathetic Ganglion Neuroblasts and Adrenal Chromaffin Cells. Cancers (Basel) 2022; 14 (11): 2755. DOI: 10.3390/cancers14112755

15. Thiele C. Neuroblastoma Cell Lines. J Human Cell Culture 1998; 1: 21–53.

16. van Groningen T., Koster J., Valentijn L.J., Zwijnenburg D.A., Akogul N., Hasselt N.E., et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet 2017; 49 (8): 1261–6. DOI: 10.1038/ng.3899

17. Boeva V., Louis-Brennetot C., Peltier A., Durand S., Pierre-Eugène C., Raynal V., et al. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries. Nat Genet 2017; 49 (9): 1408–13. DOI: 10.1038/ng.3921

18. Wolpaw A.J., Grossmann L.D., Dessau J.L., Dong M.M., Aaron B.J., Brafford P.A., et al. Epigenetic state determines inflammatory sensing in neuroblastoma. Proc Natl Acad Sci U S A 2022; 119 (6): e2102358119. DOI: 10.1073/pnas.2102358119

19. Sengupta S., Das S., Crespo A.C., Cornel A.M., Patel A.G., Mahadevan N.R., et al. Mesenchymal and adrenergic cell lineage states in neuroblastoma possess distinct immunogenic phenotypes. Nat Cancer 2022; 3: 1228–46.2022. DOI: 10.1038/s43018-022-00427-5

20. Zhu K., Xia Y., Tian X., He Y., Zhou J., Han R., et al. Characterization and therapeutic perspectives of differentiation-inducing therapy in malignant tumors. Front Genet 2023; 14: 1271381. DOI: 10.3389/fgene.2023.1271381

21. Zimmerman M.W., Durbin A.D., He S., Oppel F., Shi H., Tao T., et al. Retinoic acid rewires the adrenergic core regulatory circuitry of childhood neuroblastoma. Sci Adv 2021; 7 (43): eabe0834. DOI: 10.1126/sciadv.abe0834

22. van Groningen T., Niklasson C.U., Chan A., Akogul N., Westerhout E.M., von Stedingk K., et al. An immature subset of neuroblastoma cells synthesizes retinoic acid and depends on this metabolite. bioRxiv. 2021. DOI: 10.1101/2021.05.18.444639

23. Ross R.A., Spengler B.A., Biedler J.L. Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst 1983; 71 (4): 741–7.

24. Estus S., Zaks W.J., Freeman R.S., Gruda M., Bravo R., Johnson E.M. Jr. Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. J Cell Biol 1994; 127 (6 Pt 1): 1717–27. DOI: 10.1083/jcb.127.6.1717

25. Kogner P., Barbany G., Dominici C., Castello M.A., Raschella G., Persson H. Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res 1993; 53: 2044–50.

26. Nakaga w ar a A., Arima Nakagawara M., Scavarda N.J., Azar C.G., Cantor A.B., Brodeur G.M. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 1993; 328 (12): 847–54. DOI: 10.1056/NEJM199303253281205

27. Brodeur G.M., Nakagawara A., Yamashiro D.J., Ikegaki N., Liu X.G., Azar C.G., et al. Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol 1997; 31 (1–2): 49–55. DOI: 10.1023/a:1005729329526

28. Nakagawara A., Azar C.G., Scavarda N.J., Brodeur G.M. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 1994; 14 (1): 759–67. DOI: 10.1128/mcb.14.1.759-767.1994

29. Otsuka K., Sasada M., Iyoda T., Nohara Y., Sakai S., Asayama T. et al. Combining peptide TNIIIA2 with all-trans retinoic acid accelerates N-Myc protein degradation and neuronal differentiation in MYCN-amplified neuroblastoma cells. Am J Cancer Res 2019; 9 (2): 434–48.

30. Nosrat C.A., MacCallum D.K., Mistretta C.M. Distinctive spatiotemporal expression patterns for neurotrophins develop in gustatory papillae and lingual tissues in embryonic tongue organ cultures. Cell Tissue Res 2001; 303 (1): 35–45. DOI: 10.1007/s004410000271

31. Huang E.J., Reichardt L.F. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001; 24: 677–736. DOI: 10.1146/annurev.neuro.24.1.677

32. Bekinschtein P., Cammarota M., Katche C., Slipczuk L., Rossato J.I., Goldin A., et al. BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci U S A 2008; 105 (7): 2711–6. DOI: 10.1073/pnas.0711863105

33. D'Angelo B., Benedetti E., Di Loreto S., Cristiano L., Laurenti G., Cerù M.P., Cimini A., et al. Signal transduction pathways involved in PPARb/d-induced neuronal differentiation. J Cell Physiol 2011; 226 (8): 2170–80. DOI: 10.1002/jcp.22552

34. Ohnishi T., Sakamoto K., Asami-Odaka A., et al. Generation of a novel artificial TrkB agonist, BM17d99, using T7 phage-displayed random peptide libraries. Biochem Biophys Res Commun 2017; 483 (1): 101–6. DOI: 10.1016/j.bbrc.2016.12.186

35. Li T., Yu Y., Song Y., Li X., Lan D., Zhang P., et al. Activation of BDNF/TrkB pathway promotes prostate cancer progression via induction of epithelial-mesenchymal transition and anoikis resistance. FASEB J 2020; 34 (7): 9087–101. DOI: 10.1096/fj.201802159RRR

36. Yuan Y., Ye H.Q., Ren Q.C. Proliferative role of BDNF/TrkB signaling is associated with anoikis resistance in cervical cancer. Oncol Rep 2018; 40 (2): 621–34. DOI: 10.3892/or.2018.6515

37. Colucci-D'Amato L., Speranza L., Volpicelli F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci 2020; 21 (20): 7777. DOI: 10.3390/ijms21207777

38. Lim J.Y., Park S.I., Kim S.M., Jun J.A., Oh J.H., Ryu C.H., et al. Neural differentiation of brain-derived neurotrophic factor-expressing human umbilical cord blood-derived mesenchymal stem cells in culture via TrkB-mediated ERK and b-catenin phosphorylation and following transplantation into the developing brain. Cell Transplant 2011; 20 (11–12): 1855–66. DOI: 10.3727/096368910X557236

39. Xiong X., Li Y., Liu L., Qi K., Zhang C., Chen Y., Fang J. Arsenic trioxide induces cell cycle arrest and affects Trk receptor expression in human neuroblastoma SK-N-SH cells. Biol Res 2018; 51 (1): 18. DOI: 10.1186/s40659-018-0167-6

40. Xiong X., Zeng M., Peng X., Feng C., Li C., Weng W., Li Y., et al. Serum brain-derived neurotrophic factor (BDNF) as predictors of childhood neuroblastoma relapse. BMC Cancer 2023; 23 (1): 670. DOI: 10.1186/s12885-023-11159-9

41. Alberts B. Molecular biology of the cell. Garland Science; 2017.

42. Chow T.T., Zhao Y., Mak S.S., Shay J.W., Wright W.E. Early and late steps in telomere overhang processing in normal human cells: the position of the final RNA primer drives telomere shortening. Genes Dev 2012; 26 (11): 1167–78. DOI: 10.1101/gad.187211.112

43. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Dis 2022; 12 (1): 31–46. DOI: 10.1158/2159-8290.CD-21-1059

44. Djos A., Thombare K., Vaid R., Gaarder J., Umapathy G., Reinsbach S.E., et al. Telomere Maintenance Mechanisms in a Cohort of High-Risk Neuroblastoma Tumors and Its Relation to Genomic Variants in the TERT and ATRX Genes. Cancers (Basel) 2023; 15 (24): 5732. DOI: 10.3390/cancers15245732

45. Hiyama E., Hiyama K., Yokoyama T., Matsuura Y., Piatyszek M.A., Shay J.W. Correlating telomerase activity levels with human neuroblastoma outcomes. Nat Med 1995; 1 (3): 249–55. DOI: 10.1038/nm0395-249

46. Valentijn L.J., Koster J., Zwijnenburg D.A., Hasselt N.E., van Sluis P., Volckmann R. et al. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat Genet 2015; 47 (12): 1411–4. DOI: 10.1038/ng.3438

47. Peifer M., Hertwig F., Roels F., Dreidax D., Gartlgruber M., Menon R., et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 2015; 526 (7575): 700–4. DOI: 10.1038/nature14980

48. Ackermann S., Cartolano M., Hero B., Welte A., Kahlert Y., Roderwieser A., et al. A mechanistic classification of clinical phenotypes in neuroblastoma. Science 2018; 362 (6419): 1165–70. DOI: 10.1126/science.aat6768

49. Samy M., Gattolliat C.H., Pendino F., Hillion J., Nguyen E., Bombard S., et al. Loss of the malignant phenotype of human neuroblastoma cells by a catalytically inactive dominant-negative hTERT mutant. Mol Cancer Ther 2012; 11 (11): 2384–93. DOI: 10.1158/1535-7163.MCT-12-0281

50. Spontaneous regression and differentiation in neuroblastoma lacking telomerase. Werr L. Plenary session I: Genetic defects and dependencies in neuroblastoma. May 15, 2023.

51. Lopes-Bastos B., Nabais J., Ferreira T., El Maï M., Bird M., Targen S., et al. Absence of Telomerase Leads to Immune Response and Tumor Regression in Zebrafish Melanoma. bioRxiv 2023; 24: 534079. DOI: 10.1101/2023.03.24.534079

52. Yu E.Y., Zahid S.S., Aloe S., Falck-Pedersen E., Zhou X.K., Cheung N.-K.V., Lue N.F. Reciprocal impacts of telomerase activity and ADRN/MES differentiation state in neuroblastoma tumor biology. Commun Biol 2021; 4 (1): 1315. DOI: 10.1038/s42003-021-02821-8

53. van Groningen T., Akogul N., Westerhout E.M., Chan A., Hasselt N.E., Zwijnenburg D.A., et al. A NOTCH feed-forward loop drives reprogramming from adrenergic to mesenchymal state in neuroblastoma. Nat Commun 2019; 10 (1): 1530. DOI: 10.1038/s41467-019-09470-w

54. van Steensel B., de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature 1997; 385 (6618): 740–3. DOI: 10.1038/385740a0

55. Nera B., Huang H.S., Lai T., Xu L. Elevated levels of TRF2 induce telomeric ultrafine anaphase bridges and rapid telomere deletions. Nat Commun 2015; 6: 10132. DOI: 10.1038/ncomms10132

56. Dupin E., Calloni G.W., Coelho-Aguiar J.M., Le Douarin N.M. The issue of the multipotency of the neural crest cells. Dev Biol 2018; 444 Suppl 1: S47–59. DOI: 10.1016/j.ydbio.2018.03.024

57. Bronner-Fraser M., Fraser S.E. Application of new technologies to studies of neural crest migration and differentiation. Am J Med Genet Suppl 1988; 4: 23–39. DOI: 10.1002/ajmg.1320310509

58. Graham A. The neural crest. Curr Biol 2003; 13 (10): R381–4. DOI: 10.1016/s0960-9822(03)00315-4

59. Arneth B. Tumor Microenvironment. Medicina (Kaunas) 2019; 56 (1): 15. DOI: 10.3390/medicina56010015

60. Quinn C.H., Beierle A.M., Beierle E.A. Artificial Tumor Microenvironments in Neuroblastoma. Cancers 2021; 13: 1629. DOI: 10.3390/cancers13071629

61. Kwiatkowski J.L., Rutkowski J.L., Yamashiro D.J., Tennekoon G.I., Brodeur G.M. Schwann cell-conditioned medium promotes neuroblastoma survival and differentiation. Cancer Res 1998; 58 (20): 4602–6.

62. Pajtler K.W., Mahlow E., Odersky A., Lindner S., Stephan H., Bendix I., et al. Neuroblastoma in dialog with its stroma: NTRK1 is a regulator of cellular cross-talk with Schwann cells. Oncotarget 2014; 5 (22): 11180–92. DOI: 10.18632/oncotarget.2611

63. Weiss T., Taschner-Mandl S., Janker L., Bileck A., Rifatbegovic F., Kromp F., et al. Schwann cell plasticity regulates neuroblastic tumor cell differentiation via epidermal growth factor-like protein 8. Nat Commun 2021; 12 (1): 1624. DOI: 10.1038/s41467-021-21859-0

64. Jessen K.R., Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol 2016; 594 (13): 3521–31. DOI: 10.1113/JP270874

65. Clements M.P., Byrne E., Camarillo Guerrero L.F., Cattin A.-L., Zakka L., Ashraf A., et al. The Wound Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-like Cells to Drive Peripheral Nerve Regeneration. Neuron 2017; 96 (1): 98–114.e7. DOI: 10.1016/j.neuron.2017.09.008

66. Shimada H., Ambros I.M., Dehner L.P., Hata J., Joshi V.V., Roald B., et al. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer 1999; 86 (2): 364–72.

67. Hashimoto O., Yoshida M., Koma Y., Yanai T., Hasegawa D., Kosaka Y., et al. Collaboration of cancer-associated fibroblasts and tumour-associated macrophages for neuroblastoma development. J Pathol 2016; 240 (2): 211–23. DOI: 10.1002/path.4769

68. Mina M., Boldrini R., Citti A., Romania P., D’Alicandro V., De Ioris M., et al. Tumor-infiltrating T lymphocytes improve clinical outcome of therapy-resistant neuroblastoma. Oncoimmunology 2015; 4: e1019981. doi: 10.1080/2162402X.2015.1019981

69. Wienke J., Dierselhuis M.P., Tytgat G.A.M., Künkele A., Nierkens S., Molenaar J.J. The immune landscape of neuroblastoma: Challenges and opportunities for novel therapeutic strategies in pediatric oncology. Eur J Cancer 2021; 144: 123–50. DOI: 10.1016/j.ejca.2020.11.014

70. Layer J.P., Kronmu¨ller M.T., Quast T., Boorn-Konijnenberg D.V., Effern M., Hinze D., et al. Amplification of N-Myc is associated with a T-cell-poor microenvironment in metastatic neuroblastoma restraining interferon pathway activity and chemokine expression. Oncoimmunology 2017; 6: e1320626. DOI: 10.1080/2162402X.2017.1320626

71. Antunes N.L., Khakoo Y., Matthay K.K., Seeger R.C., Stram D.O., Gerstner E., et al. Antineuronal antibodies in patients with neuroblastoma and paraneoplastic opsoclonus-myoclonus. J Pediatr Hematol Oncol 2000; 22 (4): 315–20. DOI: 10.1097/00043426-200007000-00007

72. Pranzatelli M.R., Travelstead A.L., Tate E.D., et al. Band T-cell markers in opsoclonus-myoclonus syndrome: immunophenotyping of CSF lymphocytes. Neurology 2004; 62 (9): 1526–32. DOI: 10.1212/wnl.62.9.1526

73. Zar T., Tschernatsch M., Hero B., Lang B., Preissner K.T., Blaes F. NK Cell-mediated Neuroblastoma Cell Lysis is Enhanced by IgG From Patients With Pediatric Opsoclonus-Myoclonus Syndrome. J Pediatr Hematol Oncol 2021; 43 (2): e176–9. DOI: 10.1097/MPH.0000000000001953

74. Cao L., Liu Q., Ma Y., Wang S. Identification of immune-related signature with prognosis in children with stage 4 and 4S neuroblastoma. Clin Transl Oncol 2023. DOI: 10.1007/s12094-023-03320-4

75. Spel L., Nieuwenhuis J., Haarsma R., Stickel E., Bleijerveld O.B., Altelaar M., et al. Nedd4-Binding protein 1 and TNFAIP3-interacting protein 1 control MHC-1 display in neuroblastoma. Canc Res 2018; 78: 6621e31. DOI: 10.1158/00085472. CAN-18-0545

76. Prigione I., Corrias M.V., Airoldi I., Raffaghello L., Morandi F., Bocca P., et al. Immunogenicity of human neuroblastoma. Ann N Y Acad Sci 2004; 1028: 69e80. DOI: 10.1196/annals.1322.008

77. Grobner S.N., Worst B.C., Weischenfeldt J., Buchhalter I., Kleinheinz K., Rudneva V.A., et al. The landscape of genomic alterations across childhood cancers. Nature 2018; 555: 321e7. DOI: 10.1038/nature25480

78. Carlson L.-M., Pahlman S., De Geer A., Kogner P., Levitskaya J. Differentiation induced by physiological and pharmacological stimuli leads to increased antigenicity of human neuroblastoma cells. Cell Res 2008; 18: 398e411. DOI: 10.1038/cr.2008.27

79. Fetahu I.S., Taschner-Mandl S. Neuroblastoma and the epigenome. Cancer Metastasis Rev 2021; 40 (1): 173–89. DOI: 10.1007/s10555-020-09946-y

80. Li Z., Takenobu H., Setyawati A.N., et al. EZH2 regulates neuroblastoma cell differentiation via NTRK1 promoter epigenetic modifications. Oncogene 2018; 3 7(20): 2714–27. DOI: 10.1038/s41388-018-0133-3

81. Chase A., Cross N.C. Aberrations of EZH2 in cancer. Clin Cancer Res 2011; 17 (9): 2613–8. DOI: 10.1158/1078-0432.CCR-10-2156

82. Martinez-Garcia E., Licht J.D. Deregulation of H3K27 methylation in cancer. Nat Genet 2010; 42 (2): 100–1. DOI: 10.1038/ng0210-100

83. Lee S.T., Li Z., Wu Z., et al. Context-specific regulation of NF-kB target gene expression by EZH2 in breast cancers. Mol Cell 2011; 43 (5): 798–810. DOI: 10.1016/j.molcel.2011.08.011

84. Xu K., Wu Z.J., Groner A.C., et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 2012; 338 (6113): 1465–9. DOI: 10.1126/science.1227604

85. Kim E., Kim M., Woo D.H., Shin Y., Shin J., Chang N., et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stemlike cells. Cancer Cell 2013; 23: 839–52. DOI: 10.1016/j.ccr.2013.04.008

86. Corvetta D., Chayka O., Gherardi S., et al. Physical interaction between MYCN oncogene and polycomb repressive complex 2 (PRC2) in neuroblastoma: functional and therapeutic implications. J Biol Chem 2013; 288 (12): 8332–41. DOI: 10.1074/jbc.M113.454280

87. Yang L., Zha Y., Ding J., Ye B., Liu M., Yan C., et al. Histone demethylase KDM6B has an anti-tumorigenic function in neuroblastoma by promoting differentiation. Oncogenesis 2019; 8 (1): 3. DOI: 10.1038/s41389-018-0112-0

88. Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011; 21 (3): 381–95. DOI: 10.1038/cr.2011.22

89. Dawson M.A., Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 2012; 150 (1): 12–27. DOI: 10.1016/j.cell.2012.06.013

90. Oehme I., Deubzer H.E., Wegener D., Pickert D., Linke J.-P., Hero B., et al. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res 2009; 15 (1): 91–9. DOI: 10.1158/1078-0432.CCR-08-0684

91. Oehme I., Linke J.P., Böck B.C., Milde T., Lodrini M., Hartenstein B., et al. Histone deacetylase 10 promotes autophagy-mediated cell survival. Proc Natl Acad Sci U S A 2013; 110 (28): E2592–601. DOI: 10.1073/pnas.1300113110

92. Rettig I., Koeneke E., Trippel F., Mueller W.С., Burhenne J., Kopp-Schneider A., et al. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation. Cell Death Dis 2015; 6 (2): e1657. DOI: 10.1038/cddis.2015.24

93. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16 (1): 6–21. DOI: 10.1101/gad.947102

94. Baylin S.B., Jones P.A. Epigenetic Determinants of Cancer. Cold Spring Harb Perspect Biol 2016; 8 (9): a019505. DOI: 10.1101/cshperspect.a019505

95. Decock A., Ongenaert M., Vandesompele J., Speleman F. Neuroblastoma epigenetics: from candidate gene approaches to genome-wide screenings. Epigenetics 2011; 6 (8): 962–70. DOI: 10.4161/epi.6.8.16516

96. Ostler K.R., Yang Q., Looney T.J., Zhang L., Vasanthakumar A., Tian Y., et al. Truncated DNMT3B isoform DNMT3B7 suppresses growth, induces differentiation, and alters DNA methylation in human neuroblastoma. Cancer Res. 2012; 72 (18): 4714–23. DOI: 10.1158/0008-5472.CAN-12-0886

97. Bui C.B., Le H.K., Vu D.M., Dinh Truong K.-D., Manh Nguyen N., Anh Nguyen Ho M., Quang Truong D., et al. ARID1A-SIN3A drives retinoic acid-induced neuroblastoma differentiation by transcriptional repression of TERT. Mol Carcinog 2019; 58 (11): 1998–2007. DOI: 10.1002/mc.23091

98. Lovén J., Zinin N., Wahlström T., Müller I., Brodin P., Fredlund E., et al. MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci U S A 2010; 107 (4): 1553–8. DOI: 10.1073/pnas.0913517107

99. Dzieran J., Rodriguez Garcia A., Westermark U.K., Henley A.B., Eyre Sánchez E., Träger C., et al. MYCN-amplified neuroblastoma maintains an aggressive and undifferentiated phenotype by deregulation of estrogen and NGF signaling. Proc Natl Acad Sci U S A 2018; 115 (6): E1229–38. DOI: 10.1073/pnas.1710901115

100. Meyer J.S. Biochemical effects of corticosteroids on neural tissues. Physiol Rev 1985; 65 (4): 946–1020. DOI: 10.1152/physrev.1985.65.4.946

101. Kildisiute G., Kholosy W.M., Young M.D., Roberts K., Elmentaite R., van Hooff S.R., et al. Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell. Sci Adv 2021; 7 (6): eabd3311. DOI: 10.1126/sciadv.abd3311. Published correction appears in Sci Adv 2022; 8 (20): eabq6127. DOI: 10.1126/sciadv.abq6127

102. Raif A., Marshall G.M., Bell J.L., Koach J., Tan O., D'andreti C., et al. The estrogen-responsive B box protein (EBBP) restores retinoid sensitivity in retinoid-resistant cancer cells via effects on histone acetylation. Cancer Lett 2009; 277 (1): 82–90. DOI: 10.1016/j.canlet.2008.11.030

103. Sainero-Alcolado L., Mushtaq M., Liaño-Pons J., Rodriguez-Garcia A., Yuan Y., Liu T., et al. Expression and activation of nuclear hormone receptors result in neuronal differentiation and favorable prognosis in neuroblastoma. J Exp Clin Cancer Res 2022; 41 (1): 226. DOI: 10.1186/s13046-022-02399-x

104. Shakya R., Amonruttanapun P., Limboonreung T., Chongthammakun S. 17b-estradiol mitigates the inhibition of SH-SY5Y cell differentiation through WNT1 expression. Cells Dev 2023; 176: 203881. DOI: 10.1016/j.cdev.2023.203881

105. Cai D.X., Mafra M., Schmidt R.E., Scheithauer B.W., Park T.S., Perry A. Medulloblastomas with extensive posttherapy neuronal maturation. Report of two cases. J Neurosurg 2000; 93 (2): 330–4. DOI: 10.3171/jns.2000.93.2.0330

106. Wu X., Zhou Y., Li L., Liang P., Zhai X. Post-treatment maturation of medulloblastoma in children: two cases and a literature review. J Int Med Res 2018; 46 (11): 4781–90. DOI: 10.1177/0300060518788251

107. Kubota K.C., Itoh T., Yamada Y., Yamaguchi S., Ishida Y., Nakasu Y., et al. Melanocytic medulloblastoma with ganglioneurocytomatous differentiation: a case report. Neuropathology 2009; 29 (1): 72–7. DOI: 10.1111/j.1440-1789.2008.00913.x

108. Mullarkey M.P., Nehme G., Mohiuddin S., Ballester L.Y., Bhattacharjee M.B., Trivedi D., et al. Posttreatment Maturation of Medulloblastoma into Gangliocytoma: Report of 2 Cases. Pediatr Neurosurg 2020; 55 (4): 222–31. DOI: 10.1159/000509520

109. Valvi S., Ziegler D.S. Ganglioglioma Arising From Desmoplastic Medulloblastoma: A Case Report and Review of Literature. Pediatrics 2017; 139 (3): e20161403. DOI: 10.1542/peds.2016-1403

110. Chelliah D., Mensah Sarfo-Poku C., Stea B.D., Gardetto J., Zumwalt J. Medulloblastoma with extensive nodularity undergoing post-therapeutic maturation to a gangliocytoma: a case report and literature review. Pediatr Neurosurg 2010; 46 (5): 381–4. DOI: 10.1159/000322896

111. Warzok R., Jänisch W. The neuroblastoma of the cerebellum. Zentralbl Allg Pathol 1983; 128 (1–2): 21–30. [In German].

112. de Chadarévian J.P., Montes J.L., O'Gorman A.M., Freeman C.R. Maturation of cerebellar neuroblastoma into ganglioneuroma with melanosis. A histologic, immunocytochemical, and ultrastructural study. Cancer 1987; 59 (1): 69–76. DOI: 10.1002/1097-0142(19870101)59:1<69::aid-cncr2820590117>3.0.co;2-8

113. Geyer J.R., Schofield D., Berger M., Milstein J. Differentiation of a primitive neuroectodermal tumor into a benign ganglioglioma. J Neuroоncol 1992; 14: 237–41. DOI: 10.1007/BF00172599

114. Kudo M., Shimizu M., Akutsu Y., Imaya H., Chen M.N., Miura M. Ganglioglial differentiation in medulloblastoma. Acta Pathol Jpn 1990; 40 (1): 50–6. DOI: 10.1111/j.1440-1827.1990.tb01528.x

115. Suresh T.N., Santosh V., Yasha T.C., Anandh B., Mohanty A., Indiradevi B., et al. Medulloblastoma with extensive nodularity: a variant occurring in the very young-clinicopathological and immunohistochemical study of four cases. Childs Nerv Syst 2004; 20 (1): 55–60. DOI: 10.1007/s00381-003-0855-5

116. Schüller U., Schober F., Kretzschmar H.A., Herms J. Bcl-2 expression inversely correlates with tumour cell differentiation in medulloblastoma. Neuropathol Appl Neurobiol 2004; 30 (5): 513–21. DOI: 10.1111/j.1365-2990.2004.00553.x

117. Bernier P.J., Parent A. Bcl-2 protein as a marker of neuronal immaturity in postnatal primate brain. J Neurosci 1998; 18 (7): 2486–97. DOI: 10.1523/JNEUROSCI.18-07-02486.1998

118. Kaloni D., Diepstraten S.T., Strasser A., Kelly G.L. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28 (1–2): 20–38. DOI: 10.1007/s10495-022-01780-7

119. Zhang K.Z., Westberg J.A., Hölttä E., Andersson L.C. BCL2 regulates neural differentiation. Proc Natl Acad Sci U S A 1996; 93 (9): 4504–8. DOI: 10.1073/pnas.93.9.4504

120. Armandari I., Zomerman W.W., Plasschaert S.L.A., et al. CREB signaling activity correlates with differentiation and survival in medulloblastoma. Sci Rep 2021; 11 (1): 16077. DOI: 10.1038/s41598-021-95381-0

121. Ohta T., Watanabe T., Katayama Y., Kurihara J., Yoshino A., Nishimoto H., Kishimoto H. TrkA expression is associated with an elevated level of apoptosis in classic medulloblastomas. Neuropathology 2006; 26 (3): 170–7. DOI: 10.1111/j.1440-1789.2006.00678.x

122. Eberhart C.G., Kaufman W.E., Tihan T., Burger P.C. Apoptosis, neuronal maturation, and neurotrophin expression within medulloblastoma nodules. J Neuropathol Exp Neurol 2001; 60 (5): 462–9. DOI: 10.1093/jnen/60.5.462

123. Katsetos C.D., Del Valle L., Legido A., de Chadarévian J.P., Perentes E., Mörk S.J. On the neuronal/neuroblastic nature of medulloblastomas: a tribute to Pio del Rio Hortega and Moises Polak. Acta Neuropathol 2003; 105 (1): 1–13. DOI: 10.1007/s00401-002-0618-5

124. Chen Y., Tseng S.H., Lai H.S., Chen W.J. Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery 2004; 136 (1): 57–66. DOI: 10.1016/j.surg.2004.01.017

125. Wang Q., Li H., Wang X.W., Wu D.C., Chen X.Y., Liu J. Resveratrol promotes differentiation and induces Fas-independent apoptosis of human medulloblastoma cells. Neurosci Lett 2003; 351 (2): 83–6. DOI: 10.1016/j.neulet.2003.07.002

126. Ko Y.C., Chang C.L., Chien H.F., Wu C.H., Lin L.I. Resveratrol enhances the expression of death receptor Fas/CD95 and induces differentiation and apoptosis in anaplastic large-cell lymphoma cells. Cancer Lett 2011; 309 (1): 46–53. DOI: 10.1016/j.canlet.2011.05.014

127. Li Y.T., Tian X.T., Wu M.L., Zheng X., Kong Q.-Y., Cheng X.-X., et al. Resveratrol Suppresses the Growth and Enhances Retinoic Acid Sensitivity of Anaplastic Thyroid Cancer Cells. Int J Mol Sci 2018; 19 (4): 1030. DOI: 10.3390/ijms19041030

128. Zhang P., Li H., Wu M.L., Chen X.-Y., Kong Q.-Y., Wang X.-W., et al. c-Myc downregulation: a critical molecular event in resveratrol-induced cell cycle arrest and apoptosis of human medulloblastoma cells. J Neurooncol 2006; 80 (2): 123–31. DOI: 10.1007/s11060-006-9172-7

129. Miloso M., Bertelli A.A., Nicolini G., Tredici G. Resveratrol-induced activation of the mitogen-activated protein kinases, ERK1 and ERK2, in human neuroblastoma SH-SY5Y cells. Neurosci Lett 1999; 264 (1–3): 141–4. DOI: 10.1016/s0304-3940(99)00194-9

130. Serra J.M., Gutiérrez A., Alemany R., Navarro M., Ros T., Saus C., et al. Inhibition of c-Myc down-regulation by sustained extracellular signal-regulated kinase activation prevents the antimetabolite methotrexateand gemcitabine-induced differentiation in non-small-cell lung cancer cells. Mol Pharmacol 2008; 73 (6): 1679–87. DOI: 10.1124/mol.107.043372

131. Valderrama X., Rapin Verge V.M., Misra V. Zhangfei induces the expression of the nerve growth factor receptor, trkA, in medulloblastoma cells and causes their differentiation or apoptosis. J Neurooncol 2009; 91 (1): 7–17. DOI: 10.1007/s11060-008-9682-6

132. Bodnarchuk T.W., Napper S., Rapin N., Misra V. Mechanism for the induction of cell death in ONS-76 medulloblastoma cells by Zhangfei/CREB-ZF. J Neurooncol 2012; 109 (3): 485–501. DOI: 10.1007/s11060-012-0927-z

133. Schüller U., Heine V.M., Mao J., Kho A.T., Dillon A.K., Han Y.-G., et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 2008; 14 (2): 123–34. DOI: 10.1016/j.ccr.2008.07.005

134. Okonechnikov K., Joshi P., Sepp M., Leiss K., Sarropoulos I., Murat F., et al. Mapping pediatric brain tumors to their origins in the developing cerebellum. Neuro Oncol 2023; 25 (10): 1895–909. DOI: 10.1093/neuonc/noad124. Published correction appears in Neuro Oncol 2023; 25 (11): 2107–8. DOI: 10.1093/neuonc/noad167

135. Komuro H., Yacubova E. Recent advances in cerebellar granule cell migration. Cell Mol Life Sci 2003; 60 (6): 1084–98. DOI: 10.1007/s00018-003-2248-z

136. Wechsler-Reya R.J., Scott M.P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 1999; 22 (1): 103–14. DOI: 10.1016/s0896-6273(00)80682-0

137. Gold M.P., Ong W., Masteller A.M., Ghasemi D.R., Galindo J.A., Park N.R., et al. Developmental basis of SHH medulloblastoma heterogeneity. Nat Commun 2024; 15 (1): 270. DOI: 10.1038/s41467-023-44300-0

138. Riemondy K.A., Venkataraman S., Willard N., Nellan A., Sanford B., Griesinger A.M., et al. Neoplastic and immune single-cell transcriptomics define subgroup-specific intra-tumoral heterogeneity of childhood medulloblastoma. Neuro Oncol 2022; 24 (2): 273–86. DOI: 10.1093/neuonc/noab135

139. Virgintino D., Ambrosini M., D'Errico P., et al. Regional distribution and cell type-specific expression of the mouse F3 axonal glycoprotein: a developmental study. J Comp Neurol 1999; 413 (3): 357–9861(19991025)413:3<357::aidcne1>3.0.co;2-s 72. DOI: 10.1002/(sici)1096-

140. Hovestadt V., Smith K.S., Bihannic L., Filbin M.G., Shaw M.L., Baumgartner A., et al. Resolving medulloblastoma cellular architecture by single-cell genomics. Nature 2019; 572 (7767): 74–9. DOI: 10.1038/s41586-019-1434-6

141. Slika H., Alimonti P., Raj D., Caraway C., Alomari S., Jackson E.M., Tyler B., et al. The Neurodevelopmental and Molecular Landscape of Medulloblastoma Subgroups: Current Targets and the Potential for Combined Therapies. Cancers (Basel) 2023; 15 (15): 3889. DOI: 10.3390/cancers15153889

142. Northcott P.A., Buchhalter I., Morrissy A.S., Hovestadt V., Weischenfeldt J., Ehrenberger T., et al. The whole-genome landscape of medulloblastoma subtypes. Nature 2017; 547 (7663): 311–7. DOI: 10.1038/nature22973

143. Sheng H., Li H., Zeng H., Zhang B., Lu Y., Liu X., et al. Heterogeneity and tumoral origin of medulloblastoma in the single-cell era. Oncogene 2024; 43 (12): 839–50. DOI: 10.1038/s41388-024-02967-9

144. Vo B.T., Li C., Morgan M.A., Theurillat I., Finkelstein D., Wright S., et al. Inactivation of Ezh2 Upregulates Gfi1 and Drives Aggressive MycDriven Group 3 Medulloblastoma. Cell Rep 2017; 18 (12): 2907–17. DOI: 10.1016/j.celrep.2017.02.073

145. Cheng Y., Liao S., Xu G., Hu J., Guo D., Du F., et al. NeuroD1 Dictates Tumor Cell Differentiation in Medulloblastoma. Cell Rep 2020; 31 (12): 107782. DOI: 10.1016/j.celrep.2020.107782

146. Gorini F., Miceli M., de Antonellis P., Amente S., Zollo M., Ferrucci V. Epigenetics and immune cells in medulloblastoma. Front Genet 2023; 14: 1135404. DOI: 10.3389/fgene.2023.1135404

147. Vitale C., Bottino C., Castriconi R. Monocyte and Macrophage in Neuroblastoma: Blocking Their Pro-Tumoral Functions and Strengthening Their Crosstalk with Natural Killer Cells. Cells 2023; 12 (6): 885. DOI: 10.3390/cells12060885

148. Qadeer Z.A., Weiss W.A. A SHHecret target of relapsed medulloblastoma: Astrocytes. J Exp Med 2021; 218 (9): e20211141. DOI: 10.1084/jem.20211141

149. Sturm D., Orr B.A., Toprak U.H., Hovestadt V., Jones D.T.W., Capper D., et al. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell 2016; 164 (5): 1060–72. DOI: 10.1016/j.cell.2016.01.015

150. Lafay-Cousin L., Hader W., Wei X.C., Nordal R., Strother D., Hawkins C., Chan J.A. Post-chemotherapy maturation in supratentorial primitive neuroectodermal tumors. Brain Pathol 2014; 24 (2): 166–72. DOI: 10.1111/bpa.12089

151. Driever P.H., Wagner S., Hofstädter F., Wolff J.E. Valproic acid induces differentiation of a supratentorial primitive neuroectodermal tumor. Pediatr Hematol Oncol 2004; 21 (8): 743–51. DOI: 10.1080/08880010490514985

152. Alizadeh S.D., Jalalifar M.R., Ghodsi Z., Sadeghi-Naini M., Malekzadeh H., Rahimi G., et al. Reprogramming of astrocytes to neuronal-like cells in spinal cord injury: a systematic review. Spinal Cord 2024; 62 (4): 133–42. DOI: 10.1038/s41393-024-00969-8

153. Antonelli M., Korshunov A., Mastronuzzi A., Diomedi Camassei F., Carai A., Colafati G.S., et al. Long-term survival in a case of ETANTR with histological features of neuronal maturation after therapy. Virchows Arch 2015; 466 (5): 603–7. DOI: 10.1007/s00428-015-1736-5

154. Levine A., Hukin J., Dunham C. Pontine Embr yonal Tumor with Multilayered Rosettes: An Autopsy Case Exhibiting Extensive Posttreatment Glial and Neuronal Maturation. Pediatr Dev Pathol 2020; 23 (4): 326–31. DOI: 10.1177/1093526620912645

155. Gualano F.M., Hassoun P., Carter C.L., Hanson D. Embryonal tumor with multilayered rosettes: Post-treatment maturation and implications for future therapy. Cancer Rep (Hoboken) 2023; 6 (5): e1812. DOI: 10.1002/cnr2.1812

156. Bidgoli A., McLendon R.E., Johnston J.M. Histologic maturation of cerebral neuroblastoma following conventional chemotherapy. Pediatr Blood Cancer 2021; 68 (7): e29034. DOI: 10.1002/pbc.29034

157. Nozza P., Casciana M.L., Rossi A., Cama A., Milanaccio C., Raso A., et al. Post-chemotherapy maturation of a pineoblastoma. Acta Neuropathol 2010; 119 (5): 651–3. DOI: 10.1007/s00401-010-0668-z

158. Horbinski C., Dillon D., Pittman T. Low-grade recurrence of a congenital high-grade supratentorial tumor with astrocytic features in the absence of adjuvant therapy. Neuropathology 2011; 31 (3): 286–91. DOI: 10.1111/j.1440-1789.2010.01156.x

159. Hamilton P., Lawrence P., Jaggon J., Greaves V., ReeceMills M., Hazrati L.-N., Eisenring C.V. Embryonal tumour with multi-layered rosettes a case based review of the literature. Interdisciplinary Neurosurg 2021; 25: 101245. DOI: 10.1016/j.inat.2021.101245

160. Korshunov A., Ryzhova M., Jones D.T., Northcott P.A., van Sluis P., Volckmann R., et al. LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathol 2012; 124 (6): 875–81. DOI: 10.1007/s00401-012-1068-3

161. Lambo S., von Hoff K., Korshunov A., Pfister S.M., Kool M. ETMR: a tumor entity in its infancy. Acta Neuropathol 2020; 140 (3): 249–66. DOI: 10.1007/s00401-020-02182-2

162. Jessa S., Blanchet-Cohen A., Krug B., Vladoiu M., Coutelier M., Faury D., et al. Stalled developmental programs at the root of pediatric brain tumors. Nat Genet 2019; 51 (12): 1702–13. DOI: 10.1038/s41588-019-0531-7

163. Blaney S.M., Helman L.J., Adamson P.C. Pizzo and Poplack’s Pediatric Oncology. LWW. 2020.

164. Sobel R.A., Trice J.E., Nielsen S.L., Ellis W.G. Pineoblastoma with ganglionic and glial differentiation: report of two cases. Acta Neuropathol 1981; 55 (3): 243–6. DOI:10.1007/BF00691324

165. Tamrazi B., Nelson M., Blüml S. Pineal Region Masses in Pediatric Patients. Neuroimaging Clin N Am 2017; 27 (1): 85–97. DOI: 10.1016/j.nic.2016.08.002

166. Guerreiro Stucklin A.S., Ryall S., Fukuoka K., Zapotocky M., Lassaletta A., Li C., et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 2019; 10 (1): 4343. DOI: 10.1038/s41467-019-12187-5

167. Janesick A., Wu S.C., Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72 (8): 1559–76. DOI: 10.1007/s00018-014-1815-9

168. de Thé H. Differentiation therapy revisited. Nat Rev Cancer. 2018; 18 (2): 117–27. DOI: 10.1038/nrc.2017.103

169. Smith V., Foster J. High-Risk Neuroblastoma Treatment Review. Children (Basel) 2018; 5 (9): 114. DOI: 10.3390/children5090114

170. Mezquita B., Mezquita C. Two Opposing Faces of Retinoic Acid: Induction of Stemness or Induction of Differentiation Depending on Cell-Type. Biomolecules 2019; 9 (10): 567. DOI: 10.3390/biom9100567

171. Westermark U.K., Wilhelm M., Frenzel A., Henriksson M.A. The MYCN oncogene and differentiation in neuroblastoma. Semin Cancer Biol 2011; 21 (4): 256–66. DOI: 10.1016/j.semcancer.2011.08.001

172. Parrella P., Caballero O.L., Sidransky D., Merbs S.L. Detection of c-myc amplification in uveal melanoma by fluorescent in situ hybridization. Invest Ophthalmol Vis Sci 2001; 42 (8): 1679–84.

173. Yarchoan M., Hopkins A., Jaffee E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med 2017; 377 (25): 2500–1. DOI: 10.1056/NEJMc1713444

174. Casey D.L., Cheung N.V. Immunotherapy of Pediatric Solid Tumors: Treatments at a Crossroads, with an Emphasis on Antibodies. Cancer Immunol Res 2020; 8 (2): 161–6. DOI: 10.1158/2326-6066.CIR-19-0692

Pediatric Hematology/Oncology and Immunopathology. 2024; 23: 176-197

Potential mechanisms of neurogenic tumor maturation

Zverev I. A., Druy A. E.

https://doi.org/10.24287/1726-1708-2024-23-3-176-197

Abstract

In the past years, a significant progress has been achieved in the development of techniques to study morphology and molecular processes within tissues, single cells, and even subcellular structures. This has led to qualitatively new insights into the causes of certain previously unexplained clinical phenomena in oncology, including the rare and paradoxical ability of malignant tumors to become benign. In this review, we critically analyze the existing hypotheses regarding the mechanisms underlying neurogenic tumor maturation, taking into consideration recent data on their origins and biological properties. We also evaluate the potential implications of this knowledge for clinical practice.

References

1. Papac R.J. Spontaneous regression of cancer. Cancer Treat Rev 1996; 22 (6): 395–423. DOI: 10.1016/S0305-7372(96)90023-7

2. Zeineldin M., Patel A.G., Dyer M.A. Neuroblastoma: When differentiation goes awry. Neuron 2022; 110 (18): 2916–28. DOI: 10.1016/j.neuron.2022.07.012

3. Cheung N.V., Zhang J., Lu C., Parker M., Bahrami A., Tickoo S.K., et al. Association of Age at Diagnosis and Genetic Mutations in Patients With Neuroblastoma. JAMA 2012; 307 (10): 1062–71. DOI: 10.1001/jama.2012.228

4. Lavarino C., Cheung N.K., Garcia I., Domenech G., de Torres C., Alaminos M., et al. Specific gene expression profiles and chromosomal abnormalities are associated with infant disseminated neuroblastoma. BMC Cancer 2009; 9: 44.

5. Wu Y., Zhang J. Study on differentially expressed genes between stage M and stage MS neuroblastoma. Front Oncol 2023; 12: 1083570. DOI: 10.3389/fonc.2022.1083570

6. Brodeur G.M. Spontaneous regression of neuroblastoma. Cell Tissue Res 2018; 372 (2): 277–86. DOI: 10.1007/s00441-017-2761-2

7. Kocak H., Ackermann S., Hero B., Kahlert Y., Oberthuer A., Juraeva D., et al. Hox-C9 activates the intrinsic pathway of apoptosis and is associated with spontaneous regression in neuroblastoma. Cell Death Dis 2013; 4 (4): e586.

8. Meng X., Li H., Fang E., Feng J., Zhao X. Comparison of stage 4 and stage 4s neuroblastoma identifes autophagy-related gene and LncRNA Signatures Associated With Prognosis. Front Oncol 2020; 19 (10): 1411.

9. Jin Z., Lu Y., Wu Y., Che J., Dong X. Development of differentiation modulators and targeted agents for treating neuroblastoma. Eur J Med Chem 2020; 207: 112818. DOI: 10.1016/j.ejmech.2020.112818

10. MacKenzie D.J. A Classification of the Tumours of the Glioma Group on a Histogenetic Basis With a Correlated Study of Prognosis. Can Med Assoc J 1926; 16 (7): 872.

11. Dong R., Yang R., Zhan Y., Lai H.-D., Ye C.-J., Yao X.-Y., et al. Single-Cell Characterization of Malignant Phenotypes and Developmental Trajectories of Adrenal Neuroblastoma. Cancer Cell 2020; 38 (5): 716–33.e6. DOI: 10.1016/j.ccell.2020.08.014

12. Jansky S., Sharma A.K., Körber V., Quintero A., Toprak U.H., Wecht E.M., et al. Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nat Genet 2021; 53 (5): 683–93. DOI: 10.1038/s41588-021-00806-1

13. Ponzoni M., Bachetti T., Corrias M.V., Brignole C., Pastorino F., Calarco E., et al. Recent advances in the developmental origin of neuroblastoma: an overview. J Exp Clin Cancer Res 2022; 41 (1): 92. DOI: 10.1186/s13046-022-02281-w

14. Sriha J., Louis-Brennetot C., Pierre-Eugène C., Baulande S., Raynal V., Kramdi A., et al. BET and CDK Inhibition Reveal Differences in the Proliferation Control of Sympathetic Ganglion Neuroblasts and Adrenal Chromaffin Cells. Cancers (Basel) 2022; 14 (11): 2755. DOI: 10.3390/cancers14112755

15. Thiele C. Neuroblastoma Cell Lines. J Human Cell Culture 1998; 1: 21–53.

16. van Groningen T., Koster J., Valentijn L.J., Zwijnenburg D.A., Akogul N., Hasselt N.E., et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet 2017; 49 (8): 1261–6. DOI: 10.1038/ng.3899

17. Boeva V., Louis-Brennetot C., Peltier A., Durand S., Pierre-Eugène C., Raynal V., et al. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries. Nat Genet 2017; 49 (9): 1408–13. DOI: 10.1038/ng.3921

18. Wolpaw A.J., Grossmann L.D., Dessau J.L., Dong M.M., Aaron B.J., Brafford P.A., et al. Epigenetic state determines inflammatory sensing in neuroblastoma. Proc Natl Acad Sci U S A 2022; 119 (6): e2102358119. DOI: 10.1073/pnas.2102358119

19. Sengupta S., Das S., Crespo A.C., Cornel A.M., Patel A.G., Mahadevan N.R., et al. Mesenchymal and adrenergic cell lineage states in neuroblastoma possess distinct immunogenic phenotypes. Nat Cancer 2022; 3: 1228–46.2022. DOI: 10.1038/s43018-022-00427-5

20. Zhu K., Xia Y., Tian X., He Y., Zhou J., Han R., et al. Characterization and therapeutic perspectives of differentiation-inducing therapy in malignant tumors. Front Genet 2023; 14: 1271381. DOI: 10.3389/fgene.2023.1271381

21. Zimmerman M.W., Durbin A.D., He S., Oppel F., Shi H., Tao T., et al. Retinoic acid rewires the adrenergic core regulatory circuitry of childhood neuroblastoma. Sci Adv 2021; 7 (43): eabe0834. DOI: 10.1126/sciadv.abe0834

22. van Groningen T., Niklasson C.U., Chan A., Akogul N., Westerhout E.M., von Stedingk K., et al. An immature subset of neuroblastoma cells synthesizes retinoic acid and depends on this metabolite. bioRxiv. 2021. DOI: 10.1101/2021.05.18.444639

23. Ross R.A., Spengler B.A., Biedler J.L. Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst 1983; 71 (4): 741–7.

24. Estus S., Zaks W.J., Freeman R.S., Gruda M., Bravo R., Johnson E.M. Jr. Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. J Cell Biol 1994; 127 (6 Pt 1): 1717–27. DOI: 10.1083/jcb.127.6.1717

25. Kogner P., Barbany G., Dominici C., Castello M.A., Raschella G., Persson H. Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res 1993; 53: 2044–50.

26. Nakaga w ar a A., Arima Nakagawara M., Scavarda N.J., Azar C.G., Cantor A.B., Brodeur G.M. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 1993; 328 (12): 847–54. DOI: 10.1056/NEJM199303253281205

27. Brodeur G.M., Nakagawara A., Yamashiro D.J., Ikegaki N., Liu X.G., Azar C.G., et al. Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol 1997; 31 (1–2): 49–55. DOI: 10.1023/a:1005729329526

28. Nakagawara A., Azar C.G., Scavarda N.J., Brodeur G.M. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 1994; 14 (1): 759–67. DOI: 10.1128/mcb.14.1.759-767.1994

29. Otsuka K., Sasada M., Iyoda T., Nohara Y., Sakai S., Asayama T. et al. Combining peptide TNIIIA2 with all-trans retinoic acid accelerates N-Myc protein degradation and neuronal differentiation in MYCN-amplified neuroblastoma cells. Am J Cancer Res 2019; 9 (2): 434–48.

30. Nosrat C.A., MacCallum D.K., Mistretta C.M. Distinctive spatiotemporal expression patterns for neurotrophins develop in gustatory papillae and lingual tissues in embryonic tongue organ cultures. Cell Tissue Res 2001; 303 (1): 35–45. DOI: 10.1007/s004410000271

31. Huang E.J., Reichardt L.F. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001; 24: 677–736. DOI: 10.1146/annurev.neuro.24.1.677

32. Bekinschtein P., Cammarota M., Katche C., Slipczuk L., Rossato J.I., Goldin A., et al. BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci U S A 2008; 105 (7): 2711–6. DOI: 10.1073/pnas.0711863105

33. D'Angelo B., Benedetti E., Di Loreto S., Cristiano L., Laurenti G., Cerù M.P., Cimini A., et al. Signal transduction pathways involved in PPARb/d-induced neuronal differentiation. J Cell Physiol 2011; 226 (8): 2170–80. DOI: 10.1002/jcp.22552

34. Ohnishi T., Sakamoto K., Asami-Odaka A., et al. Generation of a novel artificial TrkB agonist, BM17d99, using T7 phage-displayed random peptide libraries. Biochem Biophys Res Commun 2017; 483 (1): 101–6. DOI: 10.1016/j.bbrc.2016.12.186

35. Li T., Yu Y., Song Y., Li X., Lan D., Zhang P., et al. Activation of BDNF/TrkB pathway promotes prostate cancer progression via induction of epithelial-mesenchymal transition and anoikis resistance. FASEB J 2020; 34 (7): 9087–101. DOI: 10.1096/fj.201802159RRR

36. Yuan Y., Ye H.Q., Ren Q.C. Proliferative role of BDNF/TrkB signaling is associated with anoikis resistance in cervical cancer. Oncol Rep 2018; 40 (2): 621–34. DOI: 10.3892/or.2018.6515

37. Colucci-D'Amato L., Speranza L., Volpicelli F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci 2020; 21 (20): 7777. DOI: 10.3390/ijms21207777

38. Lim J.Y., Park S.I., Kim S.M., Jun J.A., Oh J.H., Ryu C.H., et al. Neural differentiation of brain-derived neurotrophic factor-expressing human umbilical cord blood-derived mesenchymal stem cells in culture via TrkB-mediated ERK and b-catenin phosphorylation and following transplantation into the developing brain. Cell Transplant 2011; 20 (11–12): 1855–66. DOI: 10.3727/096368910X557236

39. Xiong X., Li Y., Liu L., Qi K., Zhang C., Chen Y., Fang J. Arsenic trioxide induces cell cycle arrest and affects Trk receptor expression in human neuroblastoma SK-N-SH cells. Biol Res 2018; 51 (1): 18. DOI: 10.1186/s40659-018-0167-6

40. Xiong X., Zeng M., Peng X., Feng C., Li C., Weng W., Li Y., et al. Serum brain-derived neurotrophic factor (BDNF) as predictors of childhood neuroblastoma relapse. BMC Cancer 2023; 23 (1): 670. DOI: 10.1186/s12885-023-11159-9

41. Alberts B. Molecular biology of the cell. Garland Science; 2017.

42. Chow T.T., Zhao Y., Mak S.S., Shay J.W., Wright W.E. Early and late steps in telomere overhang processing in normal human cells: the position of the final RNA primer drives telomere shortening. Genes Dev 2012; 26 (11): 1167–78. DOI: 10.1101/gad.187211.112

43. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Dis 2022; 12 (1): 31–46. DOI: 10.1158/2159-8290.CD-21-1059

44. Djos A., Thombare K., Vaid R., Gaarder J., Umapathy G., Reinsbach S.E., et al. Telomere Maintenance Mechanisms in a Cohort of High-Risk Neuroblastoma Tumors and Its Relation to Genomic Variants in the TERT and ATRX Genes. Cancers (Basel) 2023; 15 (24): 5732. DOI: 10.3390/cancers15245732

45. Hiyama E., Hiyama K., Yokoyama T., Matsuura Y., Piatyszek M.A., Shay J.W. Correlating telomerase activity levels with human neuroblastoma outcomes. Nat Med 1995; 1 (3): 249–55. DOI: 10.1038/nm0395-249

46. Valentijn L.J., Koster J., Zwijnenburg D.A., Hasselt N.E., van Sluis P., Volckmann R. et al. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat Genet 2015; 47 (12): 1411–4. DOI: 10.1038/ng.3438

47. Peifer M., Hertwig F., Roels F., Dreidax D., Gartlgruber M., Menon R., et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 2015; 526 (7575): 700–4. DOI: 10.1038/nature14980

48. Ackermann S., Cartolano M., Hero B., Welte A., Kahlert Y., Roderwieser A., et al. A mechanistic classification of clinical phenotypes in neuroblastoma. Science 2018; 362 (6419): 1165–70. DOI: 10.1126/science.aat6768

49. Samy M., Gattolliat C.H., Pendino F., Hillion J., Nguyen E., Bombard S., et al. Loss of the malignant phenotype of human neuroblastoma cells by a catalytically inactive dominant-negative hTERT mutant. Mol Cancer Ther 2012; 11 (11): 2384–93. DOI: 10.1158/1535-7163.MCT-12-0281

50. Spontaneous regression and differentiation in neuroblastoma lacking telomerase. Werr L. Plenary session I: Genetic defects and dependencies in neuroblastoma. May 15, 2023.

51. Lopes-Bastos B., Nabais J., Ferreira T., El Maï M., Bird M., Targen S., et al. Absence of Telomerase Leads to Immune Response and Tumor Regression in Zebrafish Melanoma. bioRxiv 2023; 24: 534079. DOI: 10.1101/2023.03.24.534079

52. Yu E.Y., Zahid S.S., Aloe S., Falck-Pedersen E., Zhou X.K., Cheung N.-K.V., Lue N.F. Reciprocal impacts of telomerase activity and ADRN/MES differentiation state in neuroblastoma tumor biology. Commun Biol 2021; 4 (1): 1315. DOI: 10.1038/s42003-021-02821-8

53. van Groningen T., Akogul N., Westerhout E.M., Chan A., Hasselt N.E., Zwijnenburg D.A., et al. A NOTCH feed-forward loop drives reprogramming from adrenergic to mesenchymal state in neuroblastoma. Nat Commun 2019; 10 (1): 1530. DOI: 10.1038/s41467-019-09470-w

54. van Steensel B., de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature 1997; 385 (6618): 740–3. DOI: 10.1038/385740a0

55. Nera B., Huang H.S., Lai T., Xu L. Elevated levels of TRF2 induce telomeric ultrafine anaphase bridges and rapid telomere deletions. Nat Commun 2015; 6: 10132. DOI: 10.1038/ncomms10132

56. Dupin E., Calloni G.W., Coelho-Aguiar J.M., Le Douarin N.M. The issue of the multipotency of the neural crest cells. Dev Biol 2018; 444 Suppl 1: S47–59. DOI: 10.1016/j.ydbio.2018.03.024

57. Bronner-Fraser M., Fraser S.E. Application of new technologies to studies of neural crest migration and differentiation. Am J Med Genet Suppl 1988; 4: 23–39. DOI: 10.1002/ajmg.1320310509

58. Graham A. The neural crest. Curr Biol 2003; 13 (10): R381–4. DOI: 10.1016/s0960-9822(03)00315-4

59. Arneth B. Tumor Microenvironment. Medicina (Kaunas) 2019; 56 (1): 15. DOI: 10.3390/medicina56010015

60. Quinn C.H., Beierle A.M., Beierle E.A. Artificial Tumor Microenvironments in Neuroblastoma. Cancers 2021; 13: 1629. DOI: 10.3390/cancers13071629

61. Kwiatkowski J.L., Rutkowski J.L., Yamashiro D.J., Tennekoon G.I., Brodeur G.M. Schwann cell-conditioned medium promotes neuroblastoma survival and differentiation. Cancer Res 1998; 58 (20): 4602–6.

62. Pajtler K.W., Mahlow E., Odersky A., Lindner S., Stephan H., Bendix I., et al. Neuroblastoma in dialog with its stroma: NTRK1 is a regulator of cellular cross-talk with Schwann cells. Oncotarget 2014; 5 (22): 11180–92. DOI: 10.18632/oncotarget.2611

63. Weiss T., Taschner-Mandl S., Janker L., Bileck A., Rifatbegovic F., Kromp F., et al. Schwann cell plasticity regulates neuroblastic tumor cell differentiation via epidermal growth factor-like protein 8. Nat Commun 2021; 12 (1): 1624. DOI: 10.1038/s41467-021-21859-0

64. Jessen K.R., Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol 2016; 594 (13): 3521–31. DOI: 10.1113/JP270874

65. Clements M.P., Byrne E., Camarillo Guerrero L.F., Cattin A.-L., Zakka L., Ashraf A., et al. The Wound Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-like Cells to Drive Peripheral Nerve Regeneration. Neuron 2017; 96 (1): 98–114.e7. DOI: 10.1016/j.neuron.2017.09.008

66. Shimada H., Ambros I.M., Dehner L.P., Hata J., Joshi V.V., Roald B., et al. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer 1999; 86 (2): 364–72.

67. Hashimoto O., Yoshida M., Koma Y., Yanai T., Hasegawa D., Kosaka Y., et al. Collaboration of cancer-associated fibroblasts and tumour-associated macrophages for neuroblastoma development. J Pathol 2016; 240 (2): 211–23. DOI: 10.1002/path.4769

68. Mina M., Boldrini R., Citti A., Romania P., D’Alicandro V., De Ioris M., et al. Tumor-infiltrating T lymphocytes improve clinical outcome of therapy-resistant neuroblastoma. Oncoimmunology 2015; 4: e1019981. doi: 10.1080/2162402X.2015.1019981

69. Wienke J., Dierselhuis M.P., Tytgat G.A.M., Künkele A., Nierkens S., Molenaar J.J. The immune landscape of neuroblastoma: Challenges and opportunities for novel therapeutic strategies in pediatric oncology. Eur J Cancer 2021; 144: 123–50. DOI: 10.1016/j.ejca.2020.11.014

70. Layer J.P., Kronmu¨ller M.T., Quast T., Boorn-Konijnenberg D.V., Effern M., Hinze D., et al. Amplification of N-Myc is associated with a T-cell-poor microenvironment in metastatic neuroblastoma restraining interferon pathway activity and chemokine expression. Oncoimmunology 2017; 6: e1320626. DOI: 10.1080/2162402X.2017.1320626

71. Antunes N.L., Khakoo Y., Matthay K.K., Seeger R.C., Stram D.O., Gerstner E., et al. Antineuronal antibodies in patients with neuroblastoma and paraneoplastic opsoclonus-myoclonus. J Pediatr Hematol Oncol 2000; 22 (4): 315–20. DOI: 10.1097/00043426-200007000-00007

72. Pranzatelli M.R., Travelstead A.L., Tate E.D., et al. Band T-cell markers in opsoclonus-myoclonus syndrome: immunophenotyping of CSF lymphocytes. Neurology 2004; 62 (9): 1526–32. DOI: 10.1212/wnl.62.9.1526

73. Zar T., Tschernatsch M., Hero B., Lang B., Preissner K.T., Blaes F. NK Cell-mediated Neuroblastoma Cell Lysis is Enhanced by IgG From Patients With Pediatric Opsoclonus-Myoclonus Syndrome. J Pediatr Hematol Oncol 2021; 43 (2): e176–9. DOI: 10.1097/MPH.0000000000001953

74. Cao L., Liu Q., Ma Y., Wang S. Identification of immune-related signature with prognosis in children with stage 4 and 4S neuroblastoma. Clin Transl Oncol 2023. DOI: 10.1007/s12094-023-03320-4

75. Spel L., Nieuwenhuis J., Haarsma R., Stickel E., Bleijerveld O.B., Altelaar M., et al. Nedd4-Binding protein 1 and TNFAIP3-interacting protein 1 control MHC-1 display in neuroblastoma. Canc Res 2018; 78: 6621e31. DOI: 10.1158/00085472. CAN-18-0545

76. Prigione I., Corrias M.V., Airoldi I., Raffaghello L., Morandi F., Bocca P., et al. Immunogenicity of human neuroblastoma. Ann N Y Acad Sci 2004; 1028: 69e80. DOI: 10.1196/annals.1322.008

77. Grobner S.N., Worst B.C., Weischenfeldt J., Buchhalter I., Kleinheinz K., Rudneva V.A., et al. The landscape of genomic alterations across childhood cancers. Nature 2018; 555: 321e7. DOI: 10.1038/nature25480

78. Carlson L.-M., Pahlman S., De Geer A., Kogner P., Levitskaya J. Differentiation induced by physiological and pharmacological stimuli leads to increased antigenicity of human neuroblastoma cells. Cell Res 2008; 18: 398e411. DOI: 10.1038/cr.2008.27

79. Fetahu I.S., Taschner-Mandl S. Neuroblastoma and the epigenome. Cancer Metastasis Rev 2021; 40 (1): 173–89. DOI: 10.1007/s10555-020-09946-y

80. Li Z., Takenobu H., Setyawati A.N., et al. EZH2 regulates neuroblastoma cell differentiation via NTRK1 promoter epigenetic modifications. Oncogene 2018; 3 7(20): 2714–27. DOI: 10.1038/s41388-018-0133-3

81. Chase A., Cross N.C. Aberrations of EZH2 in cancer. Clin Cancer Res 2011; 17 (9): 2613–8. DOI: 10.1158/1078-0432.CCR-10-2156

82. Martinez-Garcia E., Licht J.D. Deregulation of H3K27 methylation in cancer. Nat Genet 2010; 42 (2): 100–1. DOI: 10.1038/ng0210-100

83. Lee S.T., Li Z., Wu Z., et al. Context-specific regulation of NF-kB target gene expression by EZH2 in breast cancers. Mol Cell 2011; 43 (5): 798–810. DOI: 10.1016/j.molcel.2011.08.011

84. Xu K., Wu Z.J., Groner A.C., et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 2012; 338 (6113): 1465–9. DOI: 10.1126/science.1227604

85. Kim E., Kim M., Woo D.H., Shin Y., Shin J., Chang N., et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stemlike cells. Cancer Cell 2013; 23: 839–52. DOI: 10.1016/j.ccr.2013.04.008

86. Corvetta D., Chayka O., Gherardi S., et al. Physical interaction between MYCN oncogene and polycomb repressive complex 2 (PRC2) in neuroblastoma: functional and therapeutic implications. J Biol Chem 2013; 288 (12): 8332–41. DOI: 10.1074/jbc.M113.454280

87. Yang L., Zha Y., Ding J., Ye B., Liu M., Yan C., et al. Histone demethylase KDM6B has an anti-tumorigenic function in neuroblastoma by promoting differentiation. Oncogenesis 2019; 8 (1): 3. DOI: 10.1038/s41389-018-0112-0

88. Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011; 21 (3): 381–95. DOI: 10.1038/cr.2011.22

89. Dawson M.A., Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 2012; 150 (1): 12–27. DOI: 10.1016/j.cell.2012.06.013

90. Oehme I., Deubzer H.E., Wegener D., Pickert D., Linke J.-P., Hero B., et al. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res 2009; 15 (1): 91–9. DOI: 10.1158/1078-0432.CCR-08-0684

91. Oehme I., Linke J.P., Böck B.C., Milde T., Lodrini M., Hartenstein B., et al. Histone deacetylase 10 promotes autophagy-mediated cell survival. Proc Natl Acad Sci U S A 2013; 110 (28): E2592–601. DOI: 10.1073/pnas.1300113110

92. Rettig I., Koeneke E., Trippel F., Mueller W.S., Burhenne J., Kopp-Schneider A., et al. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation. Cell Death Dis 2015; 6 (2): e1657. DOI: 10.1038/cddis.2015.24

93. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16 (1): 6–21. DOI: 10.1101/gad.947102

94. Baylin S.B., Jones P.A. Epigenetic Determinants of Cancer. Cold Spring Harb Perspect Biol 2016; 8 (9): a019505. DOI: 10.1101/cshperspect.a019505

95. Decock A., Ongenaert M., Vandesompele J., Speleman F. Neuroblastoma epigenetics: from candidate gene approaches to genome-wide screenings. Epigenetics 2011; 6 (8): 962–70. DOI: 10.4161/epi.6.8.16516

96. Ostler K.R., Yang Q., Looney T.J., Zhang L., Vasanthakumar A., Tian Y., et al. Truncated DNMT3B isoform DNMT3B7 suppresses growth, induces differentiation, and alters DNA methylation in human neuroblastoma. Cancer Res. 2012; 72 (18): 4714–23. DOI: 10.1158/0008-5472.CAN-12-0886

97. Bui C.B., Le H.K., Vu D.M., Dinh Truong K.-D., Manh Nguyen N., Anh Nguyen Ho M., Quang Truong D., et al. ARID1A-SIN3A drives retinoic acid-induced neuroblastoma differentiation by transcriptional repression of TERT. Mol Carcinog 2019; 58 (11): 1998–2007. DOI: 10.1002/mc.23091

98. Lovén J., Zinin N., Wahlström T., Müller I., Brodin P., Fredlund E., et al. MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci U S A 2010; 107 (4): 1553–8. DOI: 10.1073/pnas.0913517107

99. Dzieran J., Rodriguez Garcia A., Westermark U.K., Henley A.B., Eyre Sánchez E., Träger C., et al. MYCN-amplified neuroblastoma maintains an aggressive and undifferentiated phenotype by deregulation of estrogen and NGF signaling. Proc Natl Acad Sci U S A 2018; 115 (6): E1229–38. DOI: 10.1073/pnas.1710901115

100. Meyer J.S. Biochemical effects of corticosteroids on neural tissues. Physiol Rev 1985; 65 (4): 946–1020. DOI: 10.1152/physrev.1985.65.4.946

101. Kildisiute G., Kholosy W.M., Young M.D., Roberts K., Elmentaite R., van Hooff S.R., et al. Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell. Sci Adv 2021; 7 (6): eabd3311. DOI: 10.1126/sciadv.abd3311. Published correction appears in Sci Adv 2022; 8 (20): eabq6127. DOI: 10.1126/sciadv.abq6127

102. Raif A., Marshall G.M., Bell J.L., Koach J., Tan O., D'andreti C., et al. The estrogen-responsive B box protein (EBBP) restores retinoid sensitivity in retinoid-resistant cancer cells via effects on histone acetylation. Cancer Lett 2009; 277 (1): 82–90. DOI: 10.1016/j.canlet.2008.11.030

103. Sainero-Alcolado L., Mushtaq M., Liaño-Pons J., Rodriguez-Garcia A., Yuan Y., Liu T., et al. Expression and activation of nuclear hormone receptors result in neuronal differentiation and favorable prognosis in neuroblastoma. J Exp Clin Cancer Res 2022; 41 (1): 226. DOI: 10.1186/s13046-022-02399-x

104. Shakya R., Amonruttanapun P., Limboonreung T., Chongthammakun S. 17b-estradiol mitigates the inhibition of SH-SY5Y cell differentiation through WNT1 expression. Cells Dev 2023; 176: 203881. DOI: 10.1016/j.cdev.2023.203881

105. Cai D.X., Mafra M., Schmidt R.E., Scheithauer B.W., Park T.S., Perry A. Medulloblastomas with extensive posttherapy neuronal maturation. Report of two cases. J Neurosurg 2000; 93 (2): 330–4. DOI: 10.3171/jns.2000.93.2.0330

106. Wu X., Zhou Y., Li L., Liang P., Zhai X. Post-treatment maturation of medulloblastoma in children: two cases and a literature review. J Int Med Res 2018; 46 (11): 4781–90. DOI: 10.1177/0300060518788251

107. Kubota K.C., Itoh T., Yamada Y., Yamaguchi S., Ishida Y., Nakasu Y., et al. Melanocytic medulloblastoma with ganglioneurocytomatous differentiation: a case report. Neuropathology 2009; 29 (1): 72–7. DOI: 10.1111/j.1440-1789.2008.00913.x

108. Mullarkey M.P., Nehme G., Mohiuddin S., Ballester L.Y., Bhattacharjee M.B., Trivedi D., et al. Posttreatment Maturation of Medulloblastoma into Gangliocytoma: Report of 2 Cases. Pediatr Neurosurg 2020; 55 (4): 222–31. DOI: 10.1159/000509520

109. Valvi S., Ziegler D.S. Ganglioglioma Arising From Desmoplastic Medulloblastoma: A Case Report and Review of Literature. Pediatrics 2017; 139 (3): e20161403. DOI: 10.1542/peds.2016-1403

110. Chelliah D., Mensah Sarfo-Poku C., Stea B.D., Gardetto J., Zumwalt J. Medulloblastoma with extensive nodularity undergoing post-therapeutic maturation to a gangliocytoma: a case report and literature review. Pediatr Neurosurg 2010; 46 (5): 381–4. DOI: 10.1159/000322896

111. Warzok R., Jänisch W. The neuroblastoma of the cerebellum. Zentralbl Allg Pathol 1983; 128 (1–2): 21–30. [In German].

112. de Chadarévian J.P., Montes J.L., O'Gorman A.M., Freeman C.R. Maturation of cerebellar neuroblastoma into ganglioneuroma with melanosis. A histologic, immunocytochemical, and ultrastructural study. Cancer 1987; 59 (1): 69–76. DOI: 10.1002/1097-0142(19870101)59:1<69::aid-cncr2820590117>3.0.co;2-8

113. Geyer J.R., Schofield D., Berger M., Milstein J. Differentiation of a primitive neuroectodermal tumor into a benign ganglioglioma. J Neurooncol 1992; 14: 237–41. DOI: 10.1007/BF00172599

114. Kudo M., Shimizu M., Akutsu Y., Imaya H., Chen M.N., Miura M. Ganglioglial differentiation in medulloblastoma. Acta Pathol Jpn 1990; 40 (1): 50–6. DOI: 10.1111/j.1440-1827.1990.tb01528.x

115. Suresh T.N., Santosh V., Yasha T.C., Anandh B., Mohanty A., Indiradevi B., et al. Medulloblastoma with extensive nodularity: a variant occurring in the very young-clinicopathological and immunohistochemical study of four cases. Childs Nerv Syst 2004; 20 (1): 55–60. DOI: 10.1007/s00381-003-0855-5

116. Schüller U., Schober F., Kretzschmar H.A., Herms J. Bcl-2 expression inversely correlates with tumour cell differentiation in medulloblastoma. Neuropathol Appl Neurobiol 2004; 30 (5): 513–21. DOI: 10.1111/j.1365-2990.2004.00553.x

117. Bernier P.J., Parent A. Bcl-2 protein as a marker of neuronal immaturity in postnatal primate brain. J Neurosci 1998; 18 (7): 2486–97. DOI: 10.1523/JNEUROSCI.18-07-02486.1998

118. Kaloni D., Diepstraten S.T., Strasser A., Kelly G.L. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28 (1–2): 20–38. DOI: 10.1007/s10495-022-01780-7

119. Zhang K.Z., Westberg J.A., Hölttä E., Andersson L.C. BCL2 regulates neural differentiation. Proc Natl Acad Sci U S A 1996; 93 (9): 4504–8. DOI: 10.1073/pnas.93.9.4504

120. Armandari I., Zomerman W.W., Plasschaert S.L.A., et al. CREB signaling activity correlates with differentiation and survival in medulloblastoma. Sci Rep 2021; 11 (1): 16077. DOI: 10.1038/s41598-021-95381-0

121. Ohta T., Watanabe T., Katayama Y., Kurihara J., Yoshino A., Nishimoto H., Kishimoto H. TrkA expression is associated with an elevated level of apoptosis in classic medulloblastomas. Neuropathology 2006; 26 (3): 170–7. DOI: 10.1111/j.1440-1789.2006.00678.x

122. Eberhart C.G., Kaufman W.E., Tihan T., Burger P.C. Apoptosis, neuronal maturation, and neurotrophin expression within medulloblastoma nodules. J Neuropathol Exp Neurol 2001; 60 (5): 462–9. DOI: 10.1093/jnen/60.5.462

123. Katsetos C.D., Del Valle L., Legido A., de Chadarévian J.P., Perentes E., Mörk S.J. On the neuronal/neuroblastic nature of medulloblastomas: a tribute to Pio del Rio Hortega and Moises Polak. Acta Neuropathol 2003; 105 (1): 1–13. DOI: 10.1007/s00401-002-0618-5

124. Chen Y., Tseng S.H., Lai H.S., Chen W.J. Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery 2004; 136 (1): 57–66. DOI: 10.1016/j.surg.2004.01.017

125. Wang Q., Li H., Wang X.W., Wu D.C., Chen X.Y., Liu J. Resveratrol promotes differentiation and induces Fas-independent apoptosis of human medulloblastoma cells. Neurosci Lett 2003; 351 (2): 83–6. DOI: 10.1016/j.neulet.2003.07.002

126. Ko Y.C., Chang C.L., Chien H.F., Wu C.H., Lin L.I. Resveratrol enhances the expression of death receptor Fas/CD95 and induces differentiation and apoptosis in anaplastic large-cell lymphoma cells. Cancer Lett 2011; 309 (1): 46–53. DOI: 10.1016/j.canlet.2011.05.014

127. Li Y.T., Tian X.T., Wu M.L., Zheng X., Kong Q.-Y., Cheng X.-X., et al. Resveratrol Suppresses the Growth and Enhances Retinoic Acid Sensitivity of Anaplastic Thyroid Cancer Cells. Int J Mol Sci 2018; 19 (4): 1030. DOI: 10.3390/ijms19041030

128. Zhang P., Li H., Wu M.L., Chen X.-Y., Kong Q.-Y., Wang X.-W., et al. c-Myc downregulation: a critical molecular event in resveratrol-induced cell cycle arrest and apoptosis of human medulloblastoma cells. J Neurooncol 2006; 80 (2): 123–31. DOI: 10.1007/s11060-006-9172-7

129. Miloso M., Bertelli A.A., Nicolini G., Tredici G. Resveratrol-induced activation of the mitogen-activated protein kinases, ERK1 and ERK2, in human neuroblastoma SH-SY5Y cells. Neurosci Lett 1999; 264 (1–3): 141–4. DOI: 10.1016/s0304-3940(99)00194-9

130. Serra J.M., Gutiérrez A., Alemany R., Navarro M., Ros T., Saus C., et al. Inhibition of c-Myc down-regulation by sustained extracellular signal-regulated kinase activation prevents the antimetabolite methotrexateand gemcitabine-induced differentiation in non-small-cell lung cancer cells. Mol Pharmacol 2008; 73 (6): 1679–87. DOI: 10.1124/mol.107.043372

131. Valderrama X., Rapin Verge V.M., Misra V. Zhangfei induces the expression of the nerve growth factor receptor, trkA, in medulloblastoma cells and causes their differentiation or apoptosis. J Neurooncol 2009; 91 (1): 7–17. DOI: 10.1007/s11060-008-9682-6

132. Bodnarchuk T.W., Napper S., Rapin N., Misra V. Mechanism for the induction of cell death in ONS-76 medulloblastoma cells by Zhangfei/CREB-ZF. J Neurooncol 2012; 109 (3): 485–501. DOI: 10.1007/s11060-012-0927-z

133. Schüller U., Heine V.M., Mao J., Kho A.T., Dillon A.K., Han Y.-G., et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 2008; 14 (2): 123–34. DOI: 10.1016/j.ccr.2008.07.005

134. Okonechnikov K., Joshi P., Sepp M., Leiss K., Sarropoulos I., Murat F., et al. Mapping pediatric brain tumors to their origins in the developing cerebellum. Neuro Oncol 2023; 25 (10): 1895–909. DOI: 10.1093/neuonc/noad124. Published correction appears in Neuro Oncol 2023; 25 (11): 2107–8. DOI: 10.1093/neuonc/noad167

135. Komuro H., Yacubova E. Recent advances in cerebellar granule cell migration. Cell Mol Life Sci 2003; 60 (6): 1084–98. DOI: 10.1007/s00018-003-2248-z

136. Wechsler-Reya R.J., Scott M.P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 1999; 22 (1): 103–14. DOI: 10.1016/s0896-6273(00)80682-0

137. Gold M.P., Ong W., Masteller A.M., Ghasemi D.R., Galindo J.A., Park N.R., et al. Developmental basis of SHH medulloblastoma heterogeneity. Nat Commun 2024; 15 (1): 270. DOI: 10.1038/s41467-023-44300-0

138. Riemondy K.A., Venkataraman S., Willard N., Nellan A., Sanford B., Griesinger A.M., et al. Neoplastic and immune single-cell transcriptomics define subgroup-specific intra-tumoral heterogeneity of childhood medulloblastoma. Neuro Oncol 2022; 24 (2): 273–86. DOI: 10.1093/neuonc/noab135

139. Virgintino D., Ambrosini M., D'Errico P., et al. Regional distribution and cell type-specific expression of the mouse F3 axonal glycoprotein: a developmental study. J Comp Neurol 1999; 413 (3): 357–9861(19991025)413:3<357::aidcne1>3.0.co;2-s 72. DOI: 10.1002/(sici)1096-

140. Hovestadt V., Smith K.S., Bihannic L., Filbin M.G., Shaw M.L., Baumgartner A., et al. Resolving medulloblastoma cellular architecture by single-cell genomics. Nature 2019; 572 (7767): 74–9. DOI: 10.1038/s41586-019-1434-6

141. Slika H., Alimonti P., Raj D., Caraway C., Alomari S., Jackson E.M., Tyler B., et al. The Neurodevelopmental and Molecular Landscape of Medulloblastoma Subgroups: Current Targets and the Potential for Combined Therapies. Cancers (Basel) 2023; 15 (15): 3889. DOI: 10.3390/cancers15153889

142. Northcott P.A., Buchhalter I., Morrissy A.S., Hovestadt V., Weischenfeldt J., Ehrenberger T., et al. The whole-genome landscape of medulloblastoma subtypes. Nature 2017; 547 (7663): 311–7. DOI: 10.1038/nature22973

143. Sheng H., Li H., Zeng H., Zhang B., Lu Y., Liu X., et al. Heterogeneity and tumoral origin of medulloblastoma in the single-cell era. Oncogene 2024; 43 (12): 839–50. DOI: 10.1038/s41388-024-02967-9

144. Vo B.T., Li C., Morgan M.A., Theurillat I., Finkelstein D., Wright S., et al. Inactivation of Ezh2 Upregulates Gfi1 and Drives Aggressive MycDriven Group 3 Medulloblastoma. Cell Rep 2017; 18 (12): 2907–17. DOI: 10.1016/j.celrep.2017.02.073

145. Cheng Y., Liao S., Xu G., Hu J., Guo D., Du F., et al. NeuroD1 Dictates Tumor Cell Differentiation in Medulloblastoma. Cell Rep 2020; 31 (12): 107782. DOI: 10.1016/j.celrep.2020.107782

146. Gorini F., Miceli M., de Antonellis P., Amente S., Zollo M., Ferrucci V. Epigenetics and immune cells in medulloblastoma. Front Genet 2023; 14: 1135404. DOI: 10.3389/fgene.2023.1135404

147. Vitale C., Bottino C., Castriconi R. Monocyte and Macrophage in Neuroblastoma: Blocking Their Pro-Tumoral Functions and Strengthening Their Crosstalk with Natural Killer Cells. Cells 2023; 12 (6): 885. DOI: 10.3390/cells12060885

148. Qadeer Z.A., Weiss W.A. A SHHecret target of relapsed medulloblastoma: Astrocytes. J Exp Med 2021; 218 (9): e20211141. DOI: 10.1084/jem.20211141

149. Sturm D., Orr B.A., Toprak U.H., Hovestadt V., Jones D.T.W., Capper D., et al. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell 2016; 164 (5): 1060–72. DOI: 10.1016/j.cell.2016.01.015

150. Lafay-Cousin L., Hader W., Wei X.C., Nordal R., Strother D., Hawkins C., Chan J.A. Post-chemotherapy maturation in supratentorial primitive neuroectodermal tumors. Brain Pathol 2014; 24 (2): 166–72. DOI: 10.1111/bpa.12089

151. Driever P.H., Wagner S., Hofstädter F., Wolff J.E. Valproic acid induces differentiation of a supratentorial primitive neuroectodermal tumor. Pediatr Hematol Oncol 2004; 21 (8): 743–51. DOI: 10.1080/08880010490514985

152. Alizadeh S.D., Jalalifar M.R., Ghodsi Z., Sadeghi-Naini M., Malekzadeh H., Rahimi G., et al. Reprogramming of astrocytes to neuronal-like cells in spinal cord injury: a systematic review. Spinal Cord 2024; 62 (4): 133–42. DOI: 10.1038/s41393-024-00969-8

153. Antonelli M., Korshunov A., Mastronuzzi A., Diomedi Camassei F., Carai A., Colafati G.S., et al. Long-term survival in a case of ETANTR with histological features of neuronal maturation after therapy. Virchows Arch 2015; 466 (5): 603–7. DOI: 10.1007/s00428-015-1736-5

154. Levine A., Hukin J., Dunham C. Pontine Embr yonal Tumor with Multilayered Rosettes: An Autopsy Case Exhibiting Extensive Posttreatment Glial and Neuronal Maturation. Pediatr Dev Pathol 2020; 23 (4): 326–31. DOI: 10.1177/1093526620912645

155. Gualano F.M., Hassoun P., Carter C.L., Hanson D. Embryonal tumor with multilayered rosettes: Post-treatment maturation and implications for future therapy. Cancer Rep (Hoboken) 2023; 6 (5): e1812. DOI: 10.1002/cnr2.1812

156. Bidgoli A., McLendon R.E., Johnston J.M. Histologic maturation of cerebral neuroblastoma following conventional chemotherapy. Pediatr Blood Cancer 2021; 68 (7): e29034. DOI: 10.1002/pbc.29034

157. Nozza P., Casciana M.L., Rossi A., Cama A., Milanaccio C., Raso A., et al. Post-chemotherapy maturation of a pineoblastoma. Acta Neuropathol 2010; 119 (5): 651–3. DOI: 10.1007/s00401-010-0668-z

158. Horbinski C., Dillon D., Pittman T. Low-grade recurrence of a congenital high-grade supratentorial tumor with astrocytic features in the absence of adjuvant therapy. Neuropathology 2011; 31 (3): 286–91. DOI: 10.1111/j.1440-1789.2010.01156.x

159. Hamilton P., Lawrence P., Jaggon J., Greaves V., ReeceMills M., Hazrati L.-N., Eisenring C.V. Embryonal tumour with multi-layered rosettes a case based review of the literature. Interdisciplinary Neurosurg 2021; 25: 101245. DOI: 10.1016/j.inat.2021.101245

160. Korshunov A., Ryzhova M., Jones D.T., Northcott P.A., van Sluis P., Volckmann R., et al. LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathol 2012; 124 (6): 875–81. DOI: 10.1007/s00401-012-1068-3

161. Lambo S., von Hoff K., Korshunov A., Pfister S.M., Kool M. ETMR: a tumor entity in its infancy. Acta Neuropathol 2020; 140 (3): 249–66. DOI: 10.1007/s00401-020-02182-2

162. Jessa S., Blanchet-Cohen A., Krug B., Vladoiu M., Coutelier M., Faury D., et al. Stalled developmental programs at the root of pediatric brain tumors. Nat Genet 2019; 51 (12): 1702–13. DOI: 10.1038/s41588-019-0531-7

163. Blaney S.M., Helman L.J., Adamson P.C. Pizzo and Poplack’s Pediatric Oncology. LWW. 2020.

164. Sobel R.A., Trice J.E., Nielsen S.L., Ellis W.G. Pineoblastoma with ganglionic and glial differentiation: report of two cases. Acta Neuropathol 1981; 55 (3): 243–6. DOI:10.1007/BF00691324

165. Tamrazi B., Nelson M., Blüml S. Pineal Region Masses in Pediatric Patients. Neuroimaging Clin N Am 2017; 27 (1): 85–97. DOI: 10.1016/j.nic.2016.08.002

166. Guerreiro Stucklin A.S., Ryall S., Fukuoka K., Zapotocky M., Lassaletta A., Li C., et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 2019; 10 (1): 4343. DOI: 10.1038/s41467-019-12187-5

167. Janesick A., Wu S.C., Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72 (8): 1559–76. DOI: 10.1007/s00018-014-1815-9

168. de Thé H. Differentiation therapy revisited. Nat Rev Cancer. 2018; 18 (2): 117–27. DOI: 10.1038/nrc.2017.103

169. Smith V., Foster J. High-Risk Neuroblastoma Treatment Review. Children (Basel) 2018; 5 (9): 114. DOI: 10.3390/children5090114

170. Mezquita B., Mezquita C. Two Opposing Faces of Retinoic Acid: Induction of Stemness or Induction of Differentiation Depending on Cell-Type. Biomolecules 2019; 9 (10): 567. DOI: 10.3390/biom9100567

171. Westermark U.K., Wilhelm M., Frenzel A., Henriksson M.A. The MYCN oncogene and differentiation in neuroblastoma. Semin Cancer Biol 2011; 21 (4): 256–66. DOI: 10.1016/j.semcancer.2011.08.001

172. Parrella P., Caballero O.L., Sidransky D., Merbs S.L. Detection of c-myc amplification in uveal melanoma by fluorescent in situ hybridization. Invest Ophthalmol Vis Sci 2001; 42 (8): 1679–84.

173. Yarchoan M., Hopkins A., Jaffee E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med 2017; 377 (25): 2500–1. DOI: 10.1056/NEJMc1713444

174. Casey D.L., Cheung N.V. Immunotherapy of Pediatric Solid Tumors: Treatments at a Crossroads, with an Emphasis on Antibodies. Cancer Immunol Res 2020; 8 (2): 161–6. DOI: 10.1158/2326-6066.CIR-19-0692