Журналов:     Статей:        

Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2024; 23: 78-89

Оценка изменений состава тела у детей после трансплантации гемопоэтических стволовых клеток с использованием метода разведения дейтерия и рентгеноденситометрии: результаты пилотного исследования

Алымова Ю. А., Вашура А. Ю., Ефимова A. И., Руднев С. Г., Сенявин В. М.

https://doi.org/10.24287/1726-1708-2024-23-2-78-89

Аннотация

Комплексное изучение нутритивного статуса детей с онкологическими заболеваниями с использованием эталонных методов оценки состава тела представляет интерес для оптимизации режимов нутритивной коррекции в процессе лечения и после его окончания. В статье представлен опыт первой российской апробации метода разведения дейтерия для оценки состава тела у детей в раннем периоде после трансплантации гемопоэтических стволовых клеток (ТГСК). Исследование проводится в рамках проекта МАГАТЭ по применению ядерных методов оценки нутритивного статуса у детей с онкологическими заболеваниями, одобрено независимым этическим комитетом и утверждено решением ученого совета НМИЦ ДГОИ им. Дмитрия Рогачева. С февраля 2021 г. по апрель 2023 г. в исследование были включены 39 пациентов в возрасте от 5 до 17 лет, из которых 4 впоследствии были исключены. Из оставшихся 35 пациентов (25 мальчиков и 10 девочек, медиана возраста 9,7 года) 25 имели диагноз острого лимфобластного лейкоза, 4 – острого миелоидного лейкоза, 3 – апластической анемии, 2 – острого билинейного лейкоза и в 1 случае была установлена лимфома. Обследование проводилось в несколько этапов: за 30–10 сут до ТГСК (этап 1), между –2-ми и +2-ми сутками от ТГСК (этап 2), между 30-ми и 45-ми сутками после ТГСК (этап 3), между 100-ми и 125-ми сутками после ТГСК (этап 4), а также между 280-ми и 380-ми сутками после ТГСК (этап 5). Двое из 35 пациентов прошли все 5 этапов обследования, 21 – 4 этапа, 11 – 3 этапа и 1 – 2 этапа обследования. Все пациенты нуждались в парентеральной нутритивной поддержке, которая проводилась на этапах 2 и 3 (n = 35) и на этапе 4 (n = 7). Начиная с этапа 3 все пациенты получали энтеральную нутритивную поддержку. Процедура обследования включала оценку клинического статуса и лабораторных показателей, биоимпедансный анализ (БИА), антропометрические измерения, оценку фактического питания, объема и качества нутритивной поддержки, а также применение метода разведения дейтерия (МРД) и двухэнергетической рентгеновской абсорбциометрии (ДРА) – только на этапах 1, 4 и 5. МРД был реализован у 8 из 35 пациентов. Число пациентов, для которых состав тела хотя бы на одном этапе был оценен с применением всех 3 рассматриваемых методов (МРД, ДРА и БИА), составило 7 человек, а тех, у кого такие измерения были доступны для двух соседних этапов – 3 человека. Сопоставляли результаты оценки состава тела пациентов на основе МРД, ДРА и БИА. Статистическую значимость индивидуальных изменений и парных оценок состава тела определяли на основе критерия знаковых рангов Вилкоксона для зависимых данных при пороговом уровне значимости p = 0,05. Перед проведением ТГСК 17 из 35 пациентов, согласно классификации значений индекса массы тела Всемирной организации здравоохранения, имели избыточный вес или ожирение, и только 2 из 35 – пониженный вес, что соответствует общим представлениям об адекватном состоянии питания пациентов перед ТГСК. Вместе с тем по данным БИА у 11 из 18 пациентов с нормальным или недостаточным весом наблюдалось повышенное или высокое жироотложение, что может указывать на повышенную вероятность наличия у них катаболических изменений. На этом фоне в раннем периоде после ТГСК (между этапами 1–4) наблюдалось резкое снижение средних значений массы тела и индекса массы тела за счет уменьшения тощей массы (ТМТ) и в меньшей степени жировой массы (ЖМТ), что указывает на прогрессирование катаболических изменений. При сравнении оценок состава тела, полученных с использованием разных методов, наименьшие расхождения наблюдались между результатами МРД и БИА (–1,0 кг для ТМТ). В то же время оценки ТМТ методом ДРА были значимо ниже, чем на основе МРД и БИА (на 2,3 кг и 3,3 кг соответственно), а ЖМТ и %ЖМТ – значимо выше (на 2,6 кг и 3,8 кг, а также на 7,8% и 10,9% соответственно), что может объясняться увеличением гидратации ТМТ. Полученные начальные данные свидетельствуют о согласованности МРД, ДРА и БИА при оценке изменений ТМТ, ЖМТ и %ЖМТ на групповом, но не индивидуальном уровне. Для уточнения этих результатов и сравнения клинической значимости рассмотренных методов оценки состава тела у детей с онкологическими заболеваниями на этапе ТГСК необходимо увеличение размера выборки.

Список литературы

1. Murphy A.J., White M., Davies P.S.V. The validity of simple methods to detect poor nutritional status in paediatric oncology patients. Br J Nutr 2009; 101 (9): 1388–92. DOI: 10.1017/S0007114508076241

2. Orgel E., Sposto R., Malvar J., Seibel N.L., Ladas E., Gaynon P.S., Freyer D.R. Impact on survival and toxicity by duration of weight extremes during treatment for pediatric acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol 2014; 32 (13): 1331–7. DOI: 10.1200/JCO.2013.52.6962

3. Brinksma A., Sanderman R., Roodbol P.F., Sulkers E., Burgerhof J.G., de Bont E.S., Tissing W.J.E. Malnutrition is associated with worse health-related quality of life in children with cancer. Support Care Cancer 2015; 23 (10): 3043–52. DOI: 10.1007/s00520-015-2674-0

4. Алымова Ю.А., Вашура А.Ю. Адекватная оценка нутритивного статуса в детской онкологии и гематологии – первый этап нутритивного сопровождения. Трудный пациент 2019; 17 (8–9): 54–9. DOI: 10.24411/2074-19952019-10065 [Alymova Yu.A., Vashura A.Yu. Adequate assessment of nutritional status in pediatric oncology and hematology – the first stage of nutritional support. Trudnyj pacient 2019; 17 (8–9): 54–9. (In Russ.)].

5. Armstrong G.T., Stovall M., Robison L.L. Long-term effects of radiation exposure among adult survivors of childhood cancer: results from the childhood cancer survivor study. Radiat Res 2010; 174 (6): 840–50. DOI: 10.1667/RR1903.1

6. Fuemmeler B.F., Pendzich M.K., Clark K., Lovelady C., Rosoff P., Blatt J., Demark-Wahnefried W. Diet, physical activity, and body composition changes during the fi st year of treatment for childhood acute leukemia and lymphoma. J Pediatr Hematol Oncol 2013; 35 (6): 437–43. DOI: 10.1097/ MPH.0b013e318279cd3e

7. Вашура А.Ю., Рябова А.А., Касаткин В.Н., Карелин А.Ф., Румянцев А.Г. Результаты оценки моторной функции и нутритивного статуса у детей с опухолями ЦНС, находящихся в ремиссии. Вестник восстановительной медицины 2017; 6 (82): 68–74.

8. Duarte R.F., Labopin M., Bader P., Basak G.W., Bonini C., Chabannon C., et al. Indications for haematopoietic stem cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2019. Bone Marrow Transplant 2019; 54 (10): 1525–52. DOI: 10.1038/s41409-019-0516-2

9. Масчан М.А., Скоробогатова Е.В., Шелихова Л.Н., Балашов Д.Н., Благонравова О.Л., Долгополов И.С., и др. Трансплантация гемопоэтических стволовых клеток у детей в России: краткий обзор активности в 2015– 2018 гг. Вопросы гематологии/ онкологии и иммунопатологии в педиатрии 2020; 19 (2): 22–9. DOI: 10.24287/1726-1708-2020-19-222-29

10. Urbain P., Birlinger J., Lambert C., Finke J., Bertz H., Biesalski H.K. Longitudinal follow-up of nutritional status and its influencing factors in adults undergoing allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2013; 48 (3): 446–51. DOI: 10.1038/bmt.2012. 158

11. Inaba H., Yang J., Kaste S.C., Hartford C.M., Motosue M.S., Chemaitilly W., et al. Longitudinal changes in body mass and composition in survivors of childhood hematologic malignancies after allogeneic hematopoietic stem-cell transplantation. J Clin Oncol 2012; 30 (32): 3991–7. DOI: 10.1200/JCO.2011.40.0457

12. Kyle U.G., Chalandon Y., Miralbell R., Karsegard V.L., Hans D., Trombetti A., et al. Longitudinal follow-up of body composition in hematopoietic stem cell transplant patients. Bone Marrow Transplant 2005; 35 (12): 1171– 7. DOI: 10.1038/sj.bmt.1704996

13. Joffe L., Ladas E.J. Nutrition during childhood cancer treatment: current understanding and a path for future research. Lancet Child Adolesc Health 2020; 4 (6): 465–75. DOI: 10.1016/S2352-4642(19)30407-9

14. Kyle U.G., Bosaeus I., De Lorenzo A.D., Deurenberg P., Elia M., Manuel Gómez J., et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr 2004; 23 (6): 1430–53. DOI: 10.1016/j.clnu.2004.09.012

15. Цейтлин Г.Я., Вашура А.Ю., Коновалова М.В., Балашов Д.Н., Масчан М.А., Бельмер С.В. Значение биоимпедансного анализа и антропометрии для прогнозирования осложнений у детей с онкологическими и неонкологическими заболеваниями после трансплантации гемопоэтических стволовых клеток. Онкогематология 2013; 3 (8): 50–6.

16. Баранов А.А., Намазова-Баранова Л.С., Беляева И.А., Скворцова В.А., Турти Т.В., Тарзян Э.О. Оценка нутритивного статуса недоношенных детей методом воздушной плетизмографии: первое российское проспективное наблюдение. Вестник РАМН 2013; 68 (4): 10–6. DOI: 10.15690/vramn.v68i4.605

17. Brouwer C.A.J., Gietema J.A., Kamps W.A., de Vries E.G.E., Postma A. Changes in body composition after childhood cancer treatment: impact on future health status – a review. Crit Rev Oncol Hematol 2007; 63 (1): 32–46. DOI: 10.1016/j.critrevonc.2007.01.007

18. Murphy-Alford A., Prasad M., Slone J., Stein K., Mosby T.T. Perspective: creating the evidence base for nutritional support in childhood cancer in lowand middle-income countries: priorities for body composition research. Adv Nutr 2020; 11 (2): 216–23. DOI: 10.1093/advances/ nmz095

19. Davies P.S.W. Stable isotopes: their use and safety in human nutrition studies. Eur J Clin Nutr 2020; 74 (3): 362–5. DOI: 10.1038/s41430-0200580-0

20. Kourkumelis N., Grujic V.R., Grabez M., Vidic A., Siksna I., Lazda I., et al. New bioelectrical impedance analysis equations for children and adolescents based on the deuterium dilution technique. Clin Nutr ESPEN 2021; 44: 402–9. DOI: 10.1016/j.clnesp.2021.05.001

21. Näsänen-Gilmore P., Kumwenda C., Nurhonen M., Hallamaa L., Mangani C., Ashom P., et al. Body composition among Malawian young adolescents: cross-validating predictive equations for bioelectric impedance analysis using deuterium dilution method. PLoS One 2023; 18 (4): e0284158. DOI: 10.1371/journal. pone.0284158

22. Marra N., Sammarco R., De Lorenzo A., Iellamo F., Siervo M., Pietrobelli A., et al. Assessment of body composition in health and disease using bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA): a critical overview. Contrast Media Mol Imaging 2019; 2019: 3548284. DOI: 10.1155/2019/3548284

23. Messina M., Albano D., Gitto S., Tofanelli L., Bazzocchi A., Ulivieri F.M., et al. Body composition with dual energy X-ray absorptiometry: from basics to new tools. Quant Imaging Med Surg 2020; 10 (8): 1687–98. DOI: 10.21037/qims.2020.03.02

24. Wosje K.S., Knipstein B.L., Kalkwarf H.J. Measurement error of DXA: interpretation of fat and lean mass changes in obese and nonobese children. J Clin Densitom 2006; 9 (3): 335–40. DOI: 10.1016/j.jocd.2006.03.016

25. Toombs R.J., Ducher G., Shepherd J.A., De Sousa M.J. The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity (Silver Spring) 2012; 20 (1): 30–9. DOI: 10.1038/oby.2011.211

26. Bosy-Westphal A., Müller M.J. Measuring the impact of weight cycling on body composition: a methodological challenge. Curr Opin Clin Nutr Metab Care 2014; 17 (5): 396–400. DOI: 10.1097/MCO.0000000000000092

27. Kuriyan R., Thomas T., Ashok S., Jayakumar J., Kurpad A.V. A 4-compartment model based validation of air displacement plethysmography, dual energy X-ray absorptiometry, skinfold technique and bio-electrical impedance for measuring body fat in Indian adults. Indian J Med Res 2014; 139 (5): 700–7.

28. Chaves L.G.C.M., Gonçalves T.J.M., Bitencourt A.G.V., Rstom R.A., Pereira T.R., Velludo S.F. Assessment of body composition by wholebody densitometry: what radiologists should know. Radiol Bras 2022; 55 (5): 305–11. DOI: 10.1590/01003984.2021.0155-en

29. International Atomic Energy Agency. 2023. Applying nuclear nutrition techniques to improve outcomes for childhood cancer in low and middle income countries. [Electronic resource] URL: https://www.iaea.org/projects/crp/e43033 (accessed 23.04.2024).

30. Lohman T.G. Estimating body composition in children and the elderly. In: Lohman T.G. (ed.) Advances in Body Composition Assessment, Current Issues in Exercise Science, Monograph 3. Champaign, IL: Human Kinetics; 1992. Pp. 65–77.

31. Houtkooper L.B. Assessment of body composition in youths and relationship to sport. Int J Sport Nutr 1996; 6 (2): 146–64. DOI: 10.1123/ijsn.6.2.146

32. Carter J.E.L., Heath B.H. Somatotyping: development and applications. Cambridge: Cambridge University Press; 1990. 517 p.

33. World Health Organisation. 2023. Growth reference data for 5–19 years. [Electronic resource] URL: https://www.who.int/tools/growth-reference-data-for-5to19-years (accessed 23.04.2024).

34. Nikolaev D.V., Rudnev S.G., Starunova O.A., Eryukova T.A., Kolesnikov V.A., Ponomareva E.G., et al. Percentile curves for body fatness and cut-offs to define malnutrition in Russians. J Phys: Conf Ser 2013; 434 (1): 012063. DOI: 10.1088/17426596/434/1/012063

35. Feng Y., Pan L.-Y., Chang P.P., Zhang B.H., Hong L. Changes in body composition in children with acute graft-versus-host disease within the first 100 days after hematopoietic stem cell transplantation. Eur J Clin Nutr 2018; 72 (8): 1167–75. DOI: 10.1038/s41430-017-0057-y

36. Yan M., Pan J., Huang J., Liu C., Xia X., Zhu T., et al. Weight loss in children undergoing allogeneic hematopoietic stem cell transplantation within the fi st 100 days: its infl factors and impact on clinical outcomes. Front Nutr 2023; 9: 974389. DOI: 10.3389/fnut.2022.974389

37. Skaarud K.J., Veierød M.B., Lergenmuller S., Bye A., Iversen P.O., Tjønnfjord G.E. Body weight, body composition and survival after 1 year: follow-up of a nutritional intervention trial in allo-HSCT recipients. Bone Marrow Transplant 2019; 54 (12): 2102–9. DOI: 10.1038/s41409019-0638-6

38. International Atomic Energy Agency. Introduction to body composition assessment using the deuterium dilution technique with analysis of saliva samples by Fourier transform infrared spectrometry. IAEA Human Health Series, No. 12. Vienna: International Atomic Energy Agency; 2010. 96 p.

Pediatric Hematology/Oncology and Immunopathology. 2024; 23: 78-89

Evaluation of body composition changes in children after hematopoietic stem cell transplantation using the deuterium dilution method and double-energy X-ray absorptiometry: results from a pilot study

Alymova Yu. A., Vashura A. Yu., Efimova A. I., Rudnev S. G., Senyavin V. M.

https://doi.org/10.24287/1726-1708-2024-23-2-78-89

Abstract

A comprehensive investigation of nutritional status of children with oncological diseases using reference methods of body composition analysis is of interest for optimizing nutritional support during and after cancer treatment. In this paper, we report the first clinical use of the deuterium dilution method for body composition assessment in children in the early period after hematopoietic stem cell transplantation (HSCT) in Russia. Our study is carried out as a part of the IAEA project on applying nuclear methods for the evaluation of nutritional status in childhood cancer. It was approved by the Independent Ethics Committee and the Scientific Council of the Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology. From February 2021 to April 2023, the study enrolled 39 patients aged 5 to 17 years, 4 of whom were subsequently excluded. Out of the remaining 35 patients (25 boys and 10 girls with the median age of 9.7 years), 25 were diagnosed with acute lymphoblastic leukemia, 4 with acute myeloid leukemia, 3 with aplastic anemia, 2 with acute bilineal leukemia, and 1 with lymphoma. The children were assessed at the following time points: between day –30 and day –10 of HSCT (time point 1); between day –2 and day +2 of HSCT (time point 2); between day +30 and day +45 after HSCT (time point 3), between day +100 and day +125 after HSCT (time point 4), and between day +280 and day +380 after HSCT (time point 5). Two patients were assessed at all 5 time points, 21 patients – at 4 time points, 11 patients – at 3 time points, and 1 patient – at two time points. All the patients required parenteral nutrition between time points 2 and 3 (n = 35). Out of these, 7 patients also received parenteral nutrition support from time point 3 to 4. All the patients were given enteral nutrition support starting from time point 3. Evaluations at each time point included clinical status assessment, laboratory testing, a bioimpedance analysis (BIA), anthropometric measurements, the assessment of oral intake as well as the amount and quality of nutritional support. Measurements using the deuterium dilution method (DDM) and a dual-energy X-ray absorptiometry (DXA) were performed only at time points 1, 4, and 5. The DDM was applied in 8 out of 35 patients. Body composition was measured using all three methods (DDM, DXA, and BIA) at least at one time point in 7 patients and at two adjacent time points in 3 patients. The results of body composition assessment using the DDM, DXA and BIA were compared. The statistical significance of individual changes and differences between paired measurements of body composition were evaluated using the Wilcoxon signed-rank test for dependent data with a threshold significance level of p = 0.05. Before HSCT, 17 out of 35 patients were overweight or obese according to the body mass index (BMI) thresholds set by the World Health Organization, and only 2 out of 35 patients were underweight, which corresponds to the common understanding of nutritional status in children before HSCT. Nevertheless, according to BIA findings, 11 out of 18 patients with normal or reduced BMI had an increased or high body fat percentage (%BF), which may be an evidence of a catabolic state. Between time points 1 and 4, there was a sharp decrease in mean body weight and BMI due to a reduction in fat-free mass (FFM) and, to a lesser extent, in fat mass (FM), indicating the progression of catabolic changes. A comparison of body composition estimates obtained by the DDM, DXA, and BIA revealed the smallest differences between the DDM and BIA measurements (–1.0 kg difference for FFM). However, the estimates of FFM obtained by DXA were significantly lower than those obtained by the DDM and BIA (by

2.3 kg and 3.3 kg, respectively), while FM and %BF estimated by DXA were significantly higher than those estimated by the DDM and BIA (by 2.6 kg and 3.8 kg, and by 7.8% and 10.9%, respectively) which could be explained by an increase in FFM hydration. Our preliminary data demonstrate good agreement between the DDM, DXA and BIA in assessing FFM, FM and %BF changes at a group level, but not at an individual level. A larger sample size is needed to clarify the obtained results and to compare the clinical significance of these methods of body composition assessment in children with cancer during and after HSCT.

References

1. Murphy A.J., White M., Davies P.S.V. The validity of simple methods to detect poor nutritional status in paediatric oncology patients. Br J Nutr 2009; 101 (9): 1388–92. DOI: 10.1017/S0007114508076241

2. Orgel E., Sposto R., Malvar J., Seibel N.L., Ladas E., Gaynon P.S., Freyer D.R. Impact on survival and toxicity by duration of weight extremes during treatment for pediatric acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol 2014; 32 (13): 1331–7. DOI: 10.1200/JCO.2013.52.6962

3. Brinksma A., Sanderman R., Roodbol P.F., Sulkers E., Burgerhof J.G., de Bont E.S., Tissing W.J.E. Malnutrition is associated with worse health-related quality of life in children with cancer. Support Care Cancer 2015; 23 (10): 3043–52. DOI: 10.1007/s00520-015-2674-0

4. Alymova Yu.A., Vashura A.Yu. Adekvatnaya otsenka nutritivnogo statusa v detskoi onkologii i gematologii – pervyi etap nutritivnogo soprovozhdeniya. Trudnyi patsient 2019; 17 (8–9): 54–9. DOI: 10.24411/2074-19952019-10065 [Alymova Yu.A., Vashura A.Yu. Adequate assessment of nutritional status in pediatric oncology and hematology – the first stage of nutritional support. Trudnyj pacient 2019; 17 (8–9): 54–9. (In Russ.)].

5. Armstrong G.T., Stovall M., Robison L.L. Long-term effects of radiation exposure among adult survivors of childhood cancer: results from the childhood cancer survivor study. Radiat Res 2010; 174 (6): 840–50. DOI: 10.1667/RR1903.1

6. Fuemmeler B.F., Pendzich M.K., Clark K., Lovelady C., Rosoff P., Blatt J., Demark-Wahnefried W. Diet, physical activity, and body composition changes during the fi st year of treatment for childhood acute leukemia and lymphoma. J Pediatr Hematol Oncol 2013; 35 (6): 437–43. DOI: 10.1097/ MPH.0b013e318279cd3e

7. Vashura A.Yu., Ryabova A.A., Kasatkin V.N., Karelin A.F., Rumyantsev A.G. Rezul'taty otsenki motornoi funktsii i nutritivnogo statusa u detei s opukholyami TsNS, nakhodyashchikhsya v remissii. Vestnik vosstanovitel'noi meditsiny 2017; 6 (82): 68–74.

8. Duarte R.F., Labopin M., Bader P., Basak G.W., Bonini C., Chabannon C., et al. Indications for haematopoietic stem cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2019. Bone Marrow Transplant 2019; 54 (10): 1525–52. DOI: 10.1038/s41409-019-0516-2

9. Maschan M.A., Skorobogatova E.V., Shelikhova L.N., Balashov D.N., Blagonravova O.L., Dolgopolov I.S., i dr. Transplantatsiya gemopoeticheskikh stvolovykh kletok u detei v Rossii: kratkii obzor aktivnosti v 2015– 2018 gg. Voprosy gematologii/ onkologii i immunopatologii v pediatrii 2020; 19 (2): 22–9. DOI: 10.24287/1726-1708-2020-19-222-29

10. Urbain P., Birlinger J., Lambert C., Finke J., Bertz H., Biesalski H.K. Longitudinal follow-up of nutritional status and its influencing factors in adults undergoing allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2013; 48 (3): 446–51. DOI: 10.1038/bmt.2012. 158

11. Inaba H., Yang J., Kaste S.C., Hartford C.M., Motosue M.S., Chemaitilly W., et al. Longitudinal changes in body mass and composition in survivors of childhood hematologic malignancies after allogeneic hematopoietic stem-cell transplantation. J Clin Oncol 2012; 30 (32): 3991–7. DOI: 10.1200/JCO.2011.40.0457

12. Kyle U.G., Chalandon Y., Miralbell R., Karsegard V.L., Hans D., Trombetti A., et al. Longitudinal follow-up of body composition in hematopoietic stem cell transplant patients. Bone Marrow Transplant 2005; 35 (12): 1171– 7. DOI: 10.1038/sj.bmt.1704996

13. Joffe L., Ladas E.J. Nutrition during childhood cancer treatment: current understanding and a path for future research. Lancet Child Adolesc Health 2020; 4 (6): 465–75. DOI: 10.1016/S2352-4642(19)30407-9

14. Kyle U.G., Bosaeus I., De Lorenzo A.D., Deurenberg P., Elia M., Manuel Gómez J., et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr 2004; 23 (6): 1430–53. DOI: 10.1016/j.clnu.2004.09.012

15. Tseitlin G.Ya., Vashura A.Yu., Konovalova M.V., Balashov D.N., Maschan M.A., Bel'mer S.V. Znachenie bioimpedansnogo analiza i antropometrii dlya prognozirovaniya oslozhnenii u detei s onkologicheskimi i neonkologicheskimi zabolevaniyami posle transplantatsii gemopoeticheskikh stvolovykh kletok. Onkogematologiya 2013; 3 (8): 50–6.

16. Baranov A.A., Namazova-Baranova L.S., Belyaeva I.A., Skvortsova V.A., Turti T.V., Tarzyan E.O. Otsenka nutritivnogo statusa nedonoshennykh detei metodom vozdushnoi pletizmografii: pervoe rossiiskoe prospektivnoe nablyudenie. Vestnik RAMN 2013; 68 (4): 10–6. DOI: 10.15690/vramn.v68i4.605

17. Brouwer C.A.J., Gietema J.A., Kamps W.A., de Vries E.G.E., Postma A. Changes in body composition after childhood cancer treatment: impact on future health status – a review. Crit Rev Oncol Hematol 2007; 63 (1): 32–46. DOI: 10.1016/j.critrevonc.2007.01.007

18. Murphy-Alford A., Prasad M., Slone J., Stein K., Mosby T.T. Perspective: creating the evidence base for nutritional support in childhood cancer in lowand middle-income countries: priorities for body composition research. Adv Nutr 2020; 11 (2): 216–23. DOI: 10.1093/advances/ nmz095

19. Davies P.S.W. Stable isotopes: their use and safety in human nutrition studies. Eur J Clin Nutr 2020; 74 (3): 362–5. DOI: 10.1038/s41430-0200580-0

20. Kourkumelis N., Grujic V.R., Grabez M., Vidic A., Siksna I., Lazda I., et al. New bioelectrical impedance analysis equations for children and adolescents based on the deuterium dilution technique. Clin Nutr ESPEN 2021; 44: 402–9. DOI: 10.1016/j.clnesp.2021.05.001

21. Näsänen-Gilmore P., Kumwenda C., Nurhonen M., Hallamaa L., Mangani C., Ashom P., et al. Body composition among Malawian young adolescents: cross-validating predictive equations for bioelectric impedance analysis using deuterium dilution method. PLoS One 2023; 18 (4): e0284158. DOI: 10.1371/journal. pone.0284158

22. Marra N., Sammarco R., De Lorenzo A., Iellamo F., Siervo M., Pietrobelli A., et al. Assessment of body composition in health and disease using bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA): a critical overview. Contrast Media Mol Imaging 2019; 2019: 3548284. DOI: 10.1155/2019/3548284

23. Messina M., Albano D., Gitto S., Tofanelli L., Bazzocchi A., Ulivieri F.M., et al. Body composition with dual energy X-ray absorptiometry: from basics to new tools. Quant Imaging Med Surg 2020; 10 (8): 1687–98. DOI: 10.21037/qims.2020.03.02

24. Wosje K.S., Knipstein B.L., Kalkwarf H.J. Measurement error of DXA: interpretation of fat and lean mass changes in obese and nonobese children. J Clin Densitom 2006; 9 (3): 335–40. DOI: 10.1016/j.jocd.2006.03.016

25. Toombs R.J., Ducher G., Shepherd J.A., De Sousa M.J. The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity (Silver Spring) 2012; 20 (1): 30–9. DOI: 10.1038/oby.2011.211

26. Bosy-Westphal A., Müller M.J. Measuring the impact of weight cycling on body composition: a methodological challenge. Curr Opin Clin Nutr Metab Care 2014; 17 (5): 396–400. DOI: 10.1097/MCO.0000000000000092

27. Kuriyan R., Thomas T., Ashok S., Jayakumar J., Kurpad A.V. A 4-compartment model based validation of air displacement plethysmography, dual energy X-ray absorptiometry, skinfold technique and bio-electrical impedance for measuring body fat in Indian adults. Indian J Med Res 2014; 139 (5): 700–7.

28. Chaves L.G.C.M., Gonçalves T.J.M., Bitencourt A.G.V., Rstom R.A., Pereira T.R., Velludo S.F. Assessment of body composition by wholebody densitometry: what radiologists should know. Radiol Bras 2022; 55 (5): 305–11. DOI: 10.1590/01003984.2021.0155-en

29. International Atomic Energy Agency. 2023. Applying nuclear nutrition techniques to improve outcomes for childhood cancer in low and middle income countries. [Electronic resource] URL: https://www.iaea.org/projects/crp/e43033 (accessed 23.04.2024).

30. Lohman T.G. Estimating body composition in children and the elderly. In: Lohman T.G. (ed.) Advances in Body Composition Assessment, Current Issues in Exercise Science, Monograph 3. Champaign, IL: Human Kinetics; 1992. Pp. 65–77.

31. Houtkooper L.B. Assessment of body composition in youths and relationship to sport. Int J Sport Nutr 1996; 6 (2): 146–64. DOI: 10.1123/ijsn.6.2.146

32. Carter J.E.L., Heath B.H. Somatotyping: development and applications. Cambridge: Cambridge University Press; 1990. 517 p.

33. World Health Organisation. 2023. Growth reference data for 5–19 years. [Electronic resource] URL: https://www.who.int/tools/growth-reference-data-for-5to19-years (accessed 23.04.2024).

34. Nikolaev D.V., Rudnev S.G., Starunova O.A., Eryukova T.A., Kolesnikov V.A., Ponomareva E.G., et al. Percentile curves for body fatness and cut-offs to define malnutrition in Russians. J Phys: Conf Ser 2013; 434 (1): 012063. DOI: 10.1088/17426596/434/1/012063

35. Feng Y., Pan L.-Y., Chang P.P., Zhang B.H., Hong L. Changes in body composition in children with acute graft-versus-host disease within the first 100 days after hematopoietic stem cell transplantation. Eur J Clin Nutr 2018; 72 (8): 1167–75. DOI: 10.1038/s41430-017-0057-y

36. Yan M., Pan J., Huang J., Liu C., Xia X., Zhu T., et al. Weight loss in children undergoing allogeneic hematopoietic stem cell transplantation within the fi st 100 days: its infl factors and impact on clinical outcomes. Front Nutr 2023; 9: 974389. DOI: 10.3389/fnut.2022.974389

37. Skaarud K.J., Veierød M.B., Lergenmuller S., Bye A., Iversen P.O., Tjønnfjord G.E. Body weight, body composition and survival after 1 year: follow-up of a nutritional intervention trial in allo-HSCT recipients. Bone Marrow Transplant 2019; 54 (12): 2102–9. DOI: 10.1038/s41409019-0638-6

38. International Atomic Energy Agency. Introduction to body composition assessment using the deuterium dilution technique with analysis of saliva samples by Fourier transform infrared spectrometry. IAEA Human Health Series, No. 12. Vienna: International Atomic Energy Agency; 2010. 96 p.