Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2021; 20: 84-96
Несфероцитарная гемолитическая анемия, вызванная дефицитом пируваткиназы эритроцитов: анализ генных нарушений пациентов детского возраста в Российской Федерации
Черняк Е. А., Соколова Н. Е., Семиглазова К. В., Лаврентьева И. Н., Донюш Е. К., Плаксина О. И., Борисова М. В., Данилюк Н. А., Митрофанова Е. С., Батурская И. П., Ревина Н. Г., Бурлуцкая Т. И., Раков М. А., Евстратов А. В., Целоусова О. М., Лебедев В. В., Чаплыгина Н. В., Корякина И. В., Осмульская Н. С., Афанасьева Е. И., Никонова О. Е., Соколова Л. И., Цыденешеева Е. Х., Юнусова И. М., Зауралов Е. О., Осипова И. В., Асланян К. С., Сипачёва Е. В., Болдырева О. П., Казарян Г. Р., Башарова Е. В., Манн С. Г., Курникова М. А., Райкина Е. В., Сметанина Н. С.
https://doi.org/10.24287/1726-1708-2021-20-2-84-96Аннотация
В статье представлен ретроспективный анализ группы пациентов с дефицитом пируваткиназы эритроцитов (n = 41; медиана возраста – 5 лет 1 месяц: от 4 месяцев до 26 лет 6 месяцев), проходивших обследование в НМИЦ ДГОИ им. Дмитрия Рогачева по поводу неуточненной наследственной гемолитической анемии в период с 2013 по 2020 г. Данное исследование одобрено локальным этическим комитетом и утверждено решением ученого совета НМИЦ ДГОИ им. Дмитрия Рогачева. Всем пациентам диагноз был подтвержден молекулярно-генетическим исследованием, выполненным методом высокопроизводительного секвенирования ДНК (NGS). Гомозиготные мутации в гене PKLR были обнаружены у 10 (24,39%) пациентов, компаунд-гетерозиготные мутации – у 31 (75,61%). Среди них 77,78% составили миссенс-мутации. Распределение по полу (мужской:женский) составило 1:1,73. Хотя бы однократно трансфузия эритроцитной взвеси потребовалась 40 (97,56%) пациентам. Минимальный возраст на момент дебюта трансфузионной зависимости – 1 сутки жизни, максимальный – 4 года. Заменное переливание крови было выполнено 13 детям, тяжелая нормоцитарная гиперрегенераторная анемия с проведением заместительной терапии эритроцитной взвесью в первые месяцы жизни отмечена у 12 пациентов: на 1-м месяце – у 9, на 2-м месяце – у 8, на 3-м месяце – у 6, на 5-м месяце – у 2 детей, на 1-м году жизни – у 1 ребенка, а у 2 детей трансфузии были выполнены однократно на фоне инфекционных эпизодов в 3 и 4 года. Спленэктомия в связи с высокой трансфузионной зависимостью выполнена 10 пациентам: трансфузионная независимость достигнута у 5 детей, у 5 – увеличение интервала между гемотрансфузиями. Медиана возраста проведения оперативного вмешательства составила 7 лет 4 месяца (от 1 года до 14 лет). Всего у 41 пациента было описано 36 генотипов: c.1529G>A – у 3 детей, c.1137_1139del/c.1456C>T – у 2, c.1079G>A/c.1529G>A – у 2, c.1130T>C/c.1456C>T – у 2, остальные генотипы встречались однократно. С наибольшей частотой встречались 2 мутации: c.1456C>T (16,67%) и c.1529G>A (16,67%). У 19 (46,34%) пациентов зафиксированы ранее не описанные мутации.
Список литературы
1. Zanella A., Fermo E., Bianchi P., Valentini G. Red cell pyruvate kinase defciency: molecular and clinical aspects. Br J Haematol 2005; 130 (1): 11–25. DOI:10.1111/j.1365-2141.2005.05527.x
2. Quintana-Bustamante O., FañanasBaquero S., Orman I., Torres R., Duchateau P., Poirot L., et al. Gene editing of PKLR gene in human hematopoietic progenitors through 5' and 3' UTR modif ed TALEN mRNA. PLoS One 2019; 14 (10): e0223775. DOI: 10.1371/journal.pone.0223775
3. Bianchi P., Fermo E., Glader B., Kanno H., Agarwal A., Barcellini W., et al.; with the endorsement of EuroBloodNet, the European Reference Network in Rare Hematological Diseases. Addressing the diagnostic gaps in pyruvate kinase defiiency: Consensus recommendations on the diagnosis of pyruvate kinase defiiency. Am J Hematol 2019; 94 (1): 149–61. DOI:10.1002/ajh.25325
4. Valentine W.N., Tanaka K.R., Miwa S. A specifi erythrocyte glycolytic enzyme defect (pyruvate kinase) in three subjects with congenital non-spherocytic hemolytic anemia. Trans Assoc Am Physicians 1961; 74: 100–10.
5. Neubauer B., Lakomek M., Winkler H., Parke M., Hoffrbert S., Schröter W. Point mutations in the L-type pyruvate kinase gene of two children with hemolytic anemia caused by pyruvate kinase defiiency. Blood 1991; 77 (9): 1871–5.
6. Kanno H., Fujii H., Hirono A., Miwa S. cDNA cloning of human R-type pyruvate kinase and identifiation of a single amino acid substitution (Thr384----Met) affcting enzymatic stability in a pyruvate kinase variant (PK Tokyo) associated with hereditary hemolytic anemia. Proc Natl Acad Sci U S A 1991; 88 (18):8218–21.
7. Grace R.F., Cohen J., Egan S., Wells T., Witherspoon B., Ryan A., et al. The burden of disease in pyruvate kinase defciency: Patients' perception of the impact on health-related quality of life.Eur J Haematol 2018; 101 (6): 758–65. PMID: 29935049. DOI: 10.1111/ejh.13128
8. Nathan D.G., Oski F.A., Miller D.R. Lifespan and organ sequestration of the red cells in pyruvate kinase defiiency. N Engl J Med 1968; 278 (2): 73–81. DOI: 10.1056/NEJM196801112780203
9. [Электронный ресурс] Доступно по:https://databases.lovd.nl/shared/genes.PKLR. Ссылка активна на 15.04.2021.
10. Bianchi P., Fermo E., Lezon-Geyda K., van Beers E.J., Morton H.D., Barcellini W., et al. Genotype-phenotype correlation and molecular heterogeneity in pyruvate kinase defiiency. Am J Hematol 2020; 95 (5): 472–82. DOI: 10.1002/ajh.25753
11. Grace R.F., Glader B. Red Blood Cell Enzyme Disorders. Pediatr Clin North Am 2018; 65 (3): 579–95. PMID: 29803284.DOI: 10.1016/j.pcl.2018.02.005
12. Bianchi P., Fermo E. Molecular heterogeneity of pyruvate kinase defiiency. Haematologica 2020; 105 (9): 2218–28. DOI:10.3324/haematol.2019.241141
13. [Электронный ресурс] Доступно по:http://www.hgmd.cf.ac.uk/ac/gene.php?gene=PKLR. Ссылка активна на 15.04.2021.
14. Canu G., De Bonis M., Minucci A., Capoluongo E. Red blood cell PK defciency: An update of PK-LR gene mutation database. Blood Cells Mol Dis 2016; 57:100–9. DOI: 10.1016/j.bcmd.2015.12.009
15. Grace R.F., Zanella A., Neufeld E.J., Morton D.H., Eber S., Yaish H., Glader B. Erythrocyte pyruvate kinase defiiency: 2015 status report. Am J Hematol 2015; 90 (9): 825–30. PMID: 26087744. DOI:10.1002/ajh.24088
16. Montllor L., Mañú-Pereira M.D., Llaudet-Planas E., Gómez Ramírez P., Sevilla Navarro J., Vives-Corrons J.L. Red cell pyruvate kinase defiiency in Spain: A study of 15 cases. Med Clin (Barc) 2017; 148 (1): 23–7. PMID: 27871768. DOI:10.1016/j.medcli.2016.10.004
17. Svidnicki M.C.C.M., Santos A., Fernandez J.A.A., Yokoyama A.P.H., Magalhães I.Q., Pinheiro V.R.P., et al. Novel mutations associated with pyruvate kinase defiiency in Brazil. Rev Bras Hematol Hemoter 2018; 40 (1): 5–11. PMID: 29519373. DOI: 10.1016/j.bjhh.2017.08.007
18. Christensen R.D., Yaish H.M., Nussenzveig R.H., Agarwal A.M. Siblings with severe pyruvate kinase defiiency and a complex genotype. Am J Med Genet A 2016; 170 (9): 2449–52. PMID: 27354418. DOI: 10.1002/ajmg.a.37828
19. Zanella A., Fermo E., Bianchi P., Chiarelli L.R., Valentini G. Pyruvate kinase deficiency: the genotype-phenotype association. Blood Rev 2007; 21 (4): 217–31. Epub 2007 Mar 13. PMID: 17360088. DOI: 10.1016/j.blre.2007.01.001
20. Grace R.F., Mark Layton D., Barcellini W. How we manage patients with pyruvate kinase defiiency. Br J Haematol 2019; 184 (5): 721–34. DOI: 10.1111/bjh.15758
21. Chartier M.E., Hart L., Paganelli M., Ahmed N., Bilodeau M., Alvarez F. Successful Liver Transplants for Liver Failure Associated With Pyruvate Kinase Defciency. Pediatrics 2018; 141 (Suppl 5): S385–9. PMID: 29610156. DOI: 10.1542/peds.2016-3896
22. Pissard S., Max-Audit I., Skopinski L., Vasson A., Vivien P., Bimet C., et al. Pyruvate kinase defiiency in France: a 3-year study reveals 27 new mutations. Br J Haematol 2006; 133 (6): 683–9. PMID: 16704447. DOI: 10.1111/j.1365-2141.2006.06076.x
23. Demina A., Varughese K.I., Barbot J., Forman L., Beutler E. Six previously undescribed pyruvate kinase mutations causing enzyme defiiency. Blood 1998; 92 (2): 647–52. PMID: 9657767.
24. Baronciani L., Beutler E. Analysis of pyruvate kinase-defiiency mutations that produce nonspherocytic hemolytic anemia. Proc Natl Acad Sci U S A 1993; 90 (9): 4324–7. DOI: 10.1073/pnas.90.9.4324
25. Lenzner C., Nürnberg P., Thiele B.J., Reis A., Brabec V., Sakalova A., Jacobasch G. Mutations in the pyruvate kinase L gene in patients with hereditary hemolytic anemia. Blood 1994; 83 (10): 2817–22. PMID: 8180378.
26. Baronciani L., Bianchi P., Zanella A.Hematologically important mutations: red cell pyruvate kinase (2nd update). Blood Cells Mol Dis 1998; 24 (3): 273–9. PMID: 10087985. DOI: 10.1006/bcmd.1998.0193
27. Kedar P., Hamada T., Warang P., Nadkarni A., Shimizu K., Fujji H., et al. Spectrum of novel mutations in the human PKLR gene in pyruvate kinase-defiient Indian patients with heterogeneous clinical phenotypes. Clin Genet 2009; 75 (2): 157–62. Epub 2008 Aug 28. PMID: 18759866. DOI:10.1111/j.1399-0004.2008.01079.x
28. Valentini G., Chiarelli L.R., Fortin R., Dolzan M., Galizzi A., Abraham D.J., et al. Structure and function of human erythrocyte pyruvate kinase. Molecular basis of nonspherocytic hemolytic anemia. J Biol Chem 2002; 277 (26): 23807–14. Epub 2002 Apr 17. PMID: 11960989. DOI:10.1074/jbc.M202107200
29. Baronciani L., Beutler E. Molecular study of pyruvate kinase defiient patients with hereditary nonspherocytic hemolytic anemia. J Clin Invest 1995; 95 (4): 1702–9. PMID: 7706479; PMCID: PMC295683.DOI: 10.1172/JCI117846
30. Sedano I.B., Röthlisberger B., Délèze G., Ottiger C., Panchard M.A., Spahr A., et al. PK Aarau: fist homozygous nonsense mutation causing pyruvate kinase defciency. Br J Haematol 2004; 127 (3): 364–6. PMID: 15491302. DOI: 10.1111/j.1365-2141.2004.05209.x
31. Lenzner C., Nürnberg P., Jacobasch G., Gerth C., Thiele B.J. Molecular analysis of 29 pyruvate kinase-defiient patients from central Europe with hereditary hemolytic anemia. Blood 1997; 89 (5):1793–9. PMID: 9057665.
32. Rajith B., George Priya Doss C. Path to facilitate the prediction of functional amino acid substitutions in red blood cell disorders--a computational approach. PLoS One 2011; 6 (9): e24607. Epub 2011 Sep 13. PMID: 21931771; PMCID:PMC3172254. DOI: 10.1371/journal.pone.0024607
33. Zarza R., Alvarez R., Pujades A., Nomdedeu B., Carrera A., Estella J., et al. Molecular characterization of the PK-LR gene in pyruvate kinase defiient Spanish patients. Red Cell Pathology Group of the Spanish Society of Haematology (AEHH). Br J Haematol 1998; 103 (2): 377–82. PMID: 9827908.DOI: 10.1046/j.1365-2141.1998.01013.x
Pediatric Hematology/Oncology and Immunopathology. 2021; 20: 84-96
Non-spherocytic hemolytic anemia caused by erythrocyte pyruvate kinase defiiency: the analysis of genetic defects in pediatric patients, living in Russian Federation
Cherniak E. A., Sokolova N. E., Semiglazova K. V., Lavrentyeva I. N., Donush E. K., Plaksina O. I., Borisova M. V., Danilyuk N. A., Mitrofanova E. S., Baturskaya I. P., Revina N. G., Burlutskaya T. I., Rakov M. A., Evstratov A. V., Tselousova O. M., Lebedev V. V., Chaplygina N. V., Koryakina I. V., Osmulskaya N. S., Afanasyeva E. I., Nikonova O. E., Sokolova L. I., Tsedenisheeva E. Kh., Yunusova I. M., Zauralov E. O., Osipova I. V., Aslanyan K. S., Sipacheva E. V., Boldyreva O. P., Kazaryan G. R., Basharova E. V., Mann S. G., Kurnikova M. A., Raikina E. V., Smetanina N. S.
https://doi.org/10.24287/1726-1708-2021-20-2-84-96Abstract
The article presents retrospective data analysis of a cohort of patients with PKD (n = 41 patients, aged 4 months – 26,5 years, median of age – 5 years 1 month) who were examined at the Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology for unspecifid hereditary hemolytic anemia during the period 2013–2020. The study was approved by the Independent Ethics Committee of the Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology. In all patients, the diagnosis was confimed by Next Generation sequencing (NGS). The homozygous mutations in the PKLR gene were found in 10 patients (24.39%), compound heterozygous mutations in 31 patients (75.61%), 77.78% of them were missense mutations. Gender distribution (male:female) was 1:1.73. At least once transfusion of erythrocyte suspension was required to 40 (97.56%) patients. The minimum age at the time of the debut of transfusion dependence was the fist day of life, the maximum was 4 years. Exchange blood transfusion was performed in 13 children, severe normocytic hyperregenerative anemia with transfusion of red blood cells in the fist days of life was noted in 12 children, at the 1st month of life – in 9 children, at the 2nd month of life – in 8 children, at the 3rd month – in 6 children, at the 5th month – in 2 children, at the 1st year – in 1 child, and 2 children underwent single transfusions on the background of infectious episodes at 3 and 4 years respectively. Splenectomy due to high transfusion dependence was performed in 10 patients: transfusion independence was achieved in 5 patients, in 5 – an increase in the interval between blood transfusions. Median of surgical intervention (9 patients): 7 years 4 months, minimum age – 1 year 4 months, maximum – 14 years 4 months. In total, 36 genotypes were described in 41 patients, among them were: c.1529G>A in 3 patients, c.1137_1139del / c.1456C>T – in 2 patients, c.1079G>A/c.1529G>A in 2 patients, c.1130T>C/c.1456C>T in 2 patients, other genotypes occurred once. Two mutations were the most frequent: c.1456C>T (16.67%) and c.1529G>A (16.67%). 19 (46,34%) of patients had previously not described mutations.
References
1. Zanella A., Fermo E., Bianchi P., Valentini G. Red cell pyruvate kinase defciency: molecular and clinical aspects. Br J Haematol 2005; 130 (1): 11–25. DOI:10.1111/j.1365-2141.2005.05527.x
2. Quintana-Bustamante O., FañanasBaquero S., Orman I., Torres R., Duchateau P., Poirot L., et al. Gene editing of PKLR gene in human hematopoietic progenitors through 5' and 3' UTR modif ed TALEN mRNA. PLoS One 2019; 14 (10): e0223775. DOI: 10.1371/journal.pone.0223775
3. Bianchi P., Fermo E., Glader B., Kanno H., Agarwal A., Barcellini W., et al.; with the endorsement of EuroBloodNet, the European Reference Network in Rare Hematological Diseases. Addressing the diagnostic gaps in pyruvate kinase defiiency: Consensus recommendations on the diagnosis of pyruvate kinase defiiency. Am J Hematol 2019; 94 (1): 149–61. DOI:10.1002/ajh.25325
4. Valentine W.N., Tanaka K.R., Miwa S. A specifi erythrocyte glycolytic enzyme defect (pyruvate kinase) in three subjects with congenital non-spherocytic hemolytic anemia. Trans Assoc Am Physicians 1961; 74: 100–10.
5. Neubauer B., Lakomek M., Winkler H., Parke M., Hoffrbert S., Schröter W. Point mutations in the L-type pyruvate kinase gene of two children with hemolytic anemia caused by pyruvate kinase defiiency. Blood 1991; 77 (9): 1871–5.
6. Kanno H., Fujii H., Hirono A., Miwa S. cDNA cloning of human R-type pyruvate kinase and identifiation of a single amino acid substitution (Thr384----Met) affcting enzymatic stability in a pyruvate kinase variant (PK Tokyo) associated with hereditary hemolytic anemia. Proc Natl Acad Sci U S A 1991; 88 (18):8218–21.
7. Grace R.F., Cohen J., Egan S., Wells T., Witherspoon B., Ryan A., et al. The burden of disease in pyruvate kinase defciency: Patients' perception of the impact on health-related quality of life.Eur J Haematol 2018; 101 (6): 758–65. PMID: 29935049. DOI: 10.1111/ejh.13128
8. Nathan D.G., Oski F.A., Miller D.R. Lifespan and organ sequestration of the red cells in pyruvate kinase defiiency. N Engl J Med 1968; 278 (2): 73–81. DOI: 10.1056/NEJM196801112780203
9. [Elektronnyi resurs] Dostupno po:https://databases.lovd.nl/shared/genes.PKLR. Ssylka aktivna na 15.04.2021.
10. Bianchi P., Fermo E., Lezon-Geyda K., van Beers E.J., Morton H.D., Barcellini W., et al. Genotype-phenotype correlation and molecular heterogeneity in pyruvate kinase defiiency. Am J Hematol 2020; 95 (5): 472–82. DOI: 10.1002/ajh.25753
11. Grace R.F., Glader B. Red Blood Cell Enzyme Disorders. Pediatr Clin North Am 2018; 65 (3): 579–95. PMID: 29803284.DOI: 10.1016/j.pcl.2018.02.005
12. Bianchi P., Fermo E. Molecular heterogeneity of pyruvate kinase defiiency. Haematologica 2020; 105 (9): 2218–28. DOI:10.3324/haematol.2019.241141
13. [Elektronnyi resurs] Dostupno po:http://www.hgmd.cf.ac.uk/ac/gene.php?gene=PKLR. Ssylka aktivna na 15.04.2021.
14. Canu G., De Bonis M., Minucci A., Capoluongo E. Red blood cell PK defciency: An update of PK-LR gene mutation database. Blood Cells Mol Dis 2016; 57:100–9. DOI: 10.1016/j.bcmd.2015.12.009
15. Grace R.F., Zanella A., Neufeld E.J., Morton D.H., Eber S., Yaish H., Glader B. Erythrocyte pyruvate kinase defiiency: 2015 status report. Am J Hematol 2015; 90 (9): 825–30. PMID: 26087744. DOI:10.1002/ajh.24088
16. Montllor L., Mañú-Pereira M.D., Llaudet-Planas E., Gómez Ramírez P., Sevilla Navarro J., Vives-Corrons J.L. Red cell pyruvate kinase defiiency in Spain: A study of 15 cases. Med Clin (Barc) 2017; 148 (1): 23–7. PMID: 27871768. DOI:10.1016/j.medcli.2016.10.004
17. Svidnicki M.C.C.M., Santos A., Fernandez J.A.A., Yokoyama A.P.H., Magalhães I.Q., Pinheiro V.R.P., et al. Novel mutations associated with pyruvate kinase defiiency in Brazil. Rev Bras Hematol Hemoter 2018; 40 (1): 5–11. PMID: 29519373. DOI: 10.1016/j.bjhh.2017.08.007
18. Christensen R.D., Yaish H.M., Nussenzveig R.H., Agarwal A.M. Siblings with severe pyruvate kinase defiiency and a complex genotype. Am J Med Genet A 2016; 170 (9): 2449–52. PMID: 27354418. DOI: 10.1002/ajmg.a.37828
19. Zanella A., Fermo E., Bianchi P., Chiarelli L.R., Valentini G. Pyruvate kinase deficiency: the genotype-phenotype association. Blood Rev 2007; 21 (4): 217–31. Epub 2007 Mar 13. PMID: 17360088. DOI: 10.1016/j.blre.2007.01.001
20. Grace R.F., Mark Layton D., Barcellini W. How we manage patients with pyruvate kinase defiiency. Br J Haematol 2019; 184 (5): 721–34. DOI: 10.1111/bjh.15758
21. Chartier M.E., Hart L., Paganelli M., Ahmed N., Bilodeau M., Alvarez F. Successful Liver Transplants for Liver Failure Associated With Pyruvate Kinase Defciency. Pediatrics 2018; 141 (Suppl 5): S385–9. PMID: 29610156. DOI: 10.1542/peds.2016-3896
22. Pissard S., Max-Audit I., Skopinski L., Vasson A., Vivien P., Bimet C., et al. Pyruvate kinase defiiency in France: a 3-year study reveals 27 new mutations. Br J Haematol 2006; 133 (6): 683–9. PMID: 16704447. DOI: 10.1111/j.1365-2141.2006.06076.x
23. Demina A., Varughese K.I., Barbot J., Forman L., Beutler E. Six previously undescribed pyruvate kinase mutations causing enzyme defiiency. Blood 1998; 92 (2): 647–52. PMID: 9657767.
24. Baronciani L., Beutler E. Analysis of pyruvate kinase-defiiency mutations that produce nonspherocytic hemolytic anemia. Proc Natl Acad Sci U S A 1993; 90 (9): 4324–7. DOI: 10.1073/pnas.90.9.4324
25. Lenzner C., Nürnberg P., Thiele B.J., Reis A., Brabec V., Sakalova A., Jacobasch G. Mutations in the pyruvate kinase L gene in patients with hereditary hemolytic anemia. Blood 1994; 83 (10): 2817–22. PMID: 8180378.
26. Baronciani L., Bianchi P., Zanella A.Hematologically important mutations: red cell pyruvate kinase (2nd update). Blood Cells Mol Dis 1998; 24 (3): 273–9. PMID: 10087985. DOI: 10.1006/bcmd.1998.0193
27. Kedar P., Hamada T., Warang P., Nadkarni A., Shimizu K., Fujji H., et al. Spectrum of novel mutations in the human PKLR gene in pyruvate kinase-defiient Indian patients with heterogeneous clinical phenotypes. Clin Genet 2009; 75 (2): 157–62. Epub 2008 Aug 28. PMID: 18759866. DOI:10.1111/j.1399-0004.2008.01079.x
28. Valentini G., Chiarelli L.R., Fortin R., Dolzan M., Galizzi A., Abraham D.J., et al. Structure and function of human erythrocyte pyruvate kinase. Molecular basis of nonspherocytic hemolytic anemia. J Biol Chem 2002; 277 (26): 23807–14. Epub 2002 Apr 17. PMID: 11960989. DOI:10.1074/jbc.M202107200
29. Baronciani L., Beutler E. Molecular study of pyruvate kinase defiient patients with hereditary nonspherocytic hemolytic anemia. J Clin Invest 1995; 95 (4): 1702–9. PMID: 7706479; PMCID: PMC295683.DOI: 10.1172/JCI117846
30. Sedano I.B., Röthlisberger B., Délèze G., Ottiger C., Panchard M.A., Spahr A., et al. PK Aarau: fist homozygous nonsense mutation causing pyruvate kinase defciency. Br J Haematol 2004; 127 (3): 364–6. PMID: 15491302. DOI: 10.1111/j.1365-2141.2004.05209.x
31. Lenzner C., Nürnberg P., Jacobasch G., Gerth C., Thiele B.J. Molecular analysis of 29 pyruvate kinase-defiient patients from central Europe with hereditary hemolytic anemia. Blood 1997; 89 (5):1793–9. PMID: 9057665.
32. Rajith B., George Priya Doss C. Path to facilitate the prediction of functional amino acid substitutions in red blood cell disorders--a computational approach. PLoS One 2011; 6 (9): e24607. Epub 2011 Sep 13. PMID: 21931771; PMCID:PMC3172254. DOI: 10.1371/journal.pone.0024607
33. Zarza R., Alvarez R., Pujades A., Nomdedeu B., Carrera A., Estella J., et al. Molecular characterization of the PK-LR gene in pyruvate kinase defiient Spanish patients. Red Cell Pathology Group of the Spanish Society of Haematology (AEHH). Br J Haematol 1998; 103 (2): 377–82. PMID: 9827908.DOI: 10.1046/j.1365-2141.1998.01013.x
События
-
Журнал «Успехи наук о животных» присоединился к Elpub! >>>
18 июл 2025 | 12:37 -
Журнал «Наука. Инновации. Технологии» принят в DOAJ >>>
17 июл 2025 | 12:17 -
К платформе Elpub присоединился журнал « Библиотечный мир» >>>
15 июл 2025 | 12:17 -
Журнал «Концепт: Философия, религия, культура» принят в Scopus >>>
9 июл 2025 | 13:25 -
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52