Журналов:     Статей:        

Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020; 19: 85-93

Гранулематозное поражение кожи как проявление первичного иммунодефицитного состояния у детей

Селезнева О. С., Щербина А. Ю.

https://doi.org/10.24287/1726-1708-2020-19-4suppl-85-93

Аннотация

Первичные иммунодефицитные состояния (ПИДС) представляют собой генетически гетерогенную группу заболеваний из более 400 нозологий. Традиционно ПИДС проявляются повышенной восприимчивостью к различного рода инфекционным заболеваниям. Тем не менее в последнее десятилетие все большее значение приобретают неинфекционные осложнения, связанные с дисрегуляцией и аутоиммунными расстройствами. У пациентов с ПИДС часто встречаются кожные проявления, они являются одним из признаков, позволяющих заподозрить диагноз иммунодефицита в раннем детстве. При этом одним из наименее изученных кожных проявлений ПИДС является гранулематозный дерматит. Данный обзор посвящен обобщению данных исследований патогенеза, методов диагностики и терапии гранулематозного дерматита у пациентов с различными ПИДС.
Список литературы

1. Иммунология детского возраста. Практическое руководство по детским болезням. Под ред. Щербины А.Ю., Пашанова Е.Д. М.: Медпрактика-М; 2006.

2. Picard C., Bobby Gaspar H., Al-Herz W., et al. International Union of Immunological Societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol 2018; 38 (1): 96–128.

3. Bousfiha A., Jeddane L., Picard C., et al. Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. J Clin Immunol 2020; 40 (1): 66–81.

4. Tangye S.G., Al-Herz W., Bousfiha A., et al. Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee [published correction appears in J Clin Immunol 2020; 40 (1): 24– 64.

5. Bousfiha A., Jeddane L., Picard C., et al. The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. J Clin Immunol 2018; 38 (1): 129–43. DOI:10.1007/s10875-017-0465-8

6. Sharma D., Jindal A.K., Rawat A., Singh S. Approach to a Child with Primary Immunodeficiency Made Simple. Indian Dermatol Online J 2017; 8 (6): 391–405.

7. Kuzmenko N.B., Shcherbina A.Y. Classification of primary immunodeficiencies as a reflection of modern ideas about their pathogenesis and therapeutic approaches. Russian Journal of Pediatric Hematology and Oncology. 2017; 4 (3): 51–7. (In Russ.).

8. Продуктивное воспаление. Руководство для врачей. Под ред. Повзун С.А. С.-Пб.: спецЛит; 2018. 359 с.

9. Elbaz T., Esmat G. Hepatic and intestinal schistosomiasis: review. J Adv Res 2013; 4: 445–52.

10. Wilson M.S., Mentink-Kane M.M., Pesce J.T., Ramalingam T.R., Thompson R., Wynn T.A. Immunopathology of schistosomiasis. Immunol Cell Biol 2007; 85: 148–54.

11. Martín-Callizo C., Marcoval J., Penín R.M. Granulomatous Reactions to Red Tattoo Pigments: A Description of 5 Cases. Actas Dermosifiliogr 2015; 106 (7): 588–90.

12. Molina-Ruiz A.M., Requena L. Foreign body granulomas. Dermatol Clin 2015; 33 (3): 497–523.

13. Piette E.W., Rosenbach M. Granuloma annulare: pathogenesis, disease associations and triggers, and therapeutic options. J Am Acad Dermatol 2016; 75 (3): 467–79.

14. Mangold A.R., Cumsky H.J.L., Costello C.M., et al. Clinical and histopathologic features of paraneoplastic granuloma annulare in association with solid organ malignancies: A case-control study. J Am Acad Dermatol 2018; 79 (5): 913–20.e1.

15. Wanat K.A., Elenitsas R., Kim E.J., Rosenbach M. Granuloma annulare associated with cutaneous marginal zone lymphoma: a case linking a hematologic malignancy with granulomatous dermatitis. Am J Dermatopathol 2012; 34 (8): 844–6.

16. Valeyre D., Prasse A., Nunes H., et al. Sarcoidosis. Lancet 2014; 383: 1155–67.

17. Caso F., Galozzi P., Costa L., Sfriso P., Cantarini L., Punzi L. Autoinflammatory granulomatous diseases: from Blau syndrome and early-onset sarcoidosis to NOD2-mediated disease and Crohn's disease. RMD Open 2015; 1 (1): e000097.

18. Lo Schiavo A., Ruocco E., Gambardella A., O’Leary R.E., Gee S. Granulomatous dysimmune reactions (sarcoidosis, granuloma annulare, and others) on differently injured skin areas. Clin Dermatol 2014; 32 (5): 646–53.

19. Chua-Aguilera C.J., Möller B., Yawalkar N. Skin manifestations of rheumatoid arthritis, juvenile idiopathic arthritis, and spondyloarthritides. Clin Rev Allergy Immunol 2017; 53 (3): 371–93.

20. Fischer A., Provot J., Jais J.P., et al.; members of the CEREDIH French PID study group. Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. J Allergy Clin Immunol 2017; 140 (5): 1388–93.e8.

21. Schuetz C., Huck K., Gudowius S., et al. An immunodeficiency disease with RAG mutations and granulomas. N Engl J Med 2008; 358: 2030–38

22. ESID Registry – Working Definitions for Clinical Diagnosis of PID https://esid.org/content/download/13053/372959/file/ESIDRegistry_ClinicalCriteria2014.pdf (accessed December 15, 2019)

23. Asai J. What is new in the histogenesis of granulomatous skin diseases? J Dermatol 2017; 44 (3): 297–303.

24. Terziroli Beretta-Piccoli B., Mainetti C., Peeters M. et al. Cutaneous Granulomatosis: a Comprehensive Review. Clinic Rev Allerg Immunol 2018; 54: 131–46.

25. Wilson J.L., Mayr H.K., Weichhart T. Metabolic Programming of Macrophages: Implications in the Pathogenesis of Granulomatous Disease. Front Immunol 2019; 10: 2265.

26. Girgis N.M., Gundra U.M., Ward L.N., et al. Ly6C(high) monocytes become alternatively activated macrophages in schistosome granulomas with help from CD4+ cells. PLoS Pathog 2014; 10: e1004080.

27. Silva D.A.A.D., Silva M.V.D., Barros C.C.O., et al. TNF-a blockade impairs in vitro tuberculous granuloma formation and down modulate Th1, Th17 and Treg cytokines. PLoS One 2018; 13 (3): e0194430.

28. Boros D.L. New perspectives on ancient granulomas. Front Immunol 2013; 4: 345. DOI: 10.3389/fimmu.2013.00345

29. Li X., Körner H., Liu X. Susceptibility to Intracellular Infections: Contributions of TNF to Immune Defense. Front Microbiol 2020; 11: 1643.

30. Timmermans W.M., van Laar J.A., van Hagen P.M., van Zelm M.C. Immunopathogenesis of granulomas in chronic autoinflammatory diseases. Clin Transl Immunol 2016; 5 (12): e118.

31. Huang Z., Luo Q., Guo Y., et al. Mycobacterium tuberculosis- induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro. PLoS ONE 2015; 10: e0129744.

32. Essandoh K., Li Y., Huo J., Fan G.C. MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of

33. Inflammatory Response. Shock 2016; 46 (2): 122–31.

34. Jetten N., Roumans N., Gijbels M.J., et al. Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. PLoS One 2014; 9 (7): e102994.

35. Kumar R., Singh P., Kolloli A., et al. Immunometabolism of Phagocytes During Mycobacterium tuberculosis Infection. Front Mol Biosci 2019; 6: 105.

36. Wojtan P., Mierzejewski M., Osinska I., Domagala-Kulawik J. Macrophage polarization in interstitial lung diseases. Cent Eur J Immunol 2016; 41: 159–64.

37. Mattila J.T., Ojo O.O., Kepka-Lenhart D., et al. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol 2013; 191:

38. –84.

39. Khan A., Singh V.K., Hunter R.L., Jagannath C. Macrophage heterogeneity and plasticity in tuberculosis. J Leukoc Biol 2019; 106 (2): 275–82.

40. Terziroli Beretta-Piccoli B., Mainetti C., Peeters M., et al. Cutaneous Granulomatosis: a Comprehensive Review. Clinic Rev Allerg Immunol 2018; 54: 131–46.

41. Wick MR. Granulomatous & histiocytic dermatitides. Semin Diagn Pathol. 2017;34(3):301-311.

42. Ito T., Connett J.M., Kunkel S.L., Matsukawa A. The linkage of innate and adaptive immune response during granulomatous development. Front Immunol 2015; 4: 10.

43. Norouzi S., Aghamohammadi A., Mamishi S., et al. Bacillus Calmette-Guérin (BCG) complications associated with primary immunodeficiency diseases. J Infect 2012; 64 (6): 543–54.

44. Clay H., Volkman H.E., Ramakrishnan L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 2008; 29: 283–94

45. Ho H.E., Cunningham-Rundles C. Noninfectious Complications of Common Variable Immunodeficiency: Updated Clinical Spectrum, Sequelae, and Insights to Pathogenesis. Front Immunol 2020; 11: 149.

46. Kamphuis L.S., van Zelm M.C., Lam K.H., et al. Perigranuloma localization and abnormal maturation of B cells: emerging key players in sarcoidosis? Am J Respir Crit Care Med 2013; 187: 406–416.

47. Imadojemu S., Rosenbach M. Advances in Inflammatory Granulomatous Skin Diseases. Dermatol Clin 2019; 37 (1): 49–64.

48. Takeda K., Akira S. Toll-Like Receptors. Curr. Protoc. Immunol 2015; 109: 14.12.1–14.12.10. DOI: 10.1002/0471142735.im1412s109

49. Schmitt A., Volz A. Non-infectious granulomatous dermatoses. J Dtsch Dermatol Ges 2019; 17 (5): 518–33.

50. Holl-Ulrich K., Rose C. Nichtinfektiöse granulomatöse Entzündungen: Schwerpunkt Lunge und Haut [Non-infectious granulomatous inflammation: Focus on the lungs and skin]. Pathologe 2016; 37 (2): 172–82.

51. Moghaddas F., Masters S.L. The classification, genetic diagnosis and modelling of monogenic autoinflammatory disorders. Clin Sci (Lond) 2018; 132 (17): 1901–24. DOI: 10.1042/CS20171498

52. de Jesus A.A., Goldbach-Mansky R. Genetically defined autoinflammatory diseases. Oral Dis 2016; 22 (7): 591–604.

53. McDermott M.F., Aksentijevich I., Galon J., et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 1999; 97 (1): 133–44.

54. Gandhi C., Healy C., Wanderer A.A., Hoffman H.M. Familial atypical cold urticaria: description of a new hereditary disease. J Allergy Clin Immunol 2009; 124: 1245–50.

55. Hernández-Ostiz S., Xirotagaros G., Prieto-Torres L., et al. Enfermedades autoinflamatorias en dermatología pediátrica. Parte 2: síndromes histiocítico-macrofágicos y síndromes vasculopáticos. Acta Dermosifiliogr 2017; 108: 620–9.

56. Rose C.D., Martin T.M., Wouters C.H. Blau syndrome revisited. Curr Opin Rheumatol 2011; 23 (5): 411–8.

57. Figueras-Nart I., Mascaró J.M. Jr, Solanich X., Hernández- Rodríguez J. Dermatologic and Dermatopathologic Features of

58. Monogenic Autoinflammatory Diseases. Front Immunol 2019; 10: 2448.

59. Ombrello M.J., Remmers E.F., Sun G., et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N Engl J Med 2012; 366 (4): 330–8.

60. Zhou Q., Lee G.S., Brady J., et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet 2012; 91 (4): 713–20.

61. Novice T., Kariminia A., Del Bel K.L., et al. A Germline Mutation in the C2 Domain of PLCg2 Associated with Gain-of-Function Expands the Phenotype for PLCG2-Related Diseases. J Clin Immunol 2020; 40 (2): 267–76.

62. Parackova Z., Bloomfield M., Vrabcova P. et al. Mutual alteration of NOD2-associated Blau syndrome and IFNgR1 deficiency. J Clin Immunol 2010; 40: 165–78.

63. Aderibigbe O.M., Priel D.L., Lee C.-C.R., et al. Distinct cutaneous manifestations and cold-induced leukocyte activation associated with PLCG2 mutations. JAMA Dermatol 2015; 151: 627–34.

64. Szymanski A.M., Ombrello M.J. Using genes to triangulate the pathophysiology of granulomatous autoinflammatory disease: NOD2, PLCG2 and LACC1. Int Immunol 2018; 30 (5): 205–13.

65. Aderibigbe O.M., Priel D.L., Lee C.C., et al. Distinct Cutaneous Manifestations and Cold-Induced Leukocyte Activation Associated With PLCG2 Mutations. JAMA Dermatol 2015; 151 (6): 627–34.

66. Alizadeha A.A., Hamzeh-Mivehroud M., Haddad E., et al. Characterization of Novel Fragment Antibodies Against TNF-alpha Isolated Using Phage Display Technique. Iran J Pharm Res 2019; 18 (2): 759–71.

67. Sharapova S.O., Migas A., Guryanova I., et al. Late-onset combined immune deficiency associated to skin granuloma due to heterozygous compound mutations in RAG1 gene in a 14 years old male. Hum Immunol 2013; 74 (1): 18–22.

68. Walter J.E., Rucci F., Patrizi L., et al. Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in Rag-dependent immunodeficiency. J Exp Med 2010; 207: 1541–54.

69. Schuetz C., Huck K., Gudowius S., et al. An immunodeficiency disease with RAG mutations and granulomas. N Engl J Med 2008; 358 (19): 2030–8.

70. Delmonte O.M., Villa A., Notarangelo L.D. Immune dysregulation in patients with RAG deficiency and other forms of combined immune deficiency. Blood 2020; 135 (9): 610–9. DOI: 10.1182/blood.2019000923

71. Deripapa E., Balashov D., Rodina Y., et al. Prospective Study of a Cohort of Russian Nijmegen Breakage Syndrome Patients Demonstrating Predictive Value of Low Kappa-Deleting Recombination Excision Circle (KREC) Numbers and Beneficial

72. Effect of Hematopoietic Stem Cell Transplantation (HSCT). Front Immunol 2017; 8: 807. DOI: 10.3389/fimmu.2017.00807

73. Mathieu A.L., Verronese E., Rice G.I., et al. PRKDC mutations associated with immunodeficiency, granuloma, and autoimmune regulator-dependent autoimmunity. J Allergy Clin Immunol 2015; 135 (6): 1578–88.e5. DOI: 10.1016/j.jaci.2015.01.040

74. Lakdawala N., Ferenczi K., Grant-Kels J.M. Granulomatous diseases: Kids are not just little people. Clin Dermatol 2017; 35 (6): 555–65.

75. Deripapa E., Balashov D., Rodina Y., et al. Prospective study of a cohort of Russian Nijmegen break age syndrome patients demonstrating predictive value of low kappa-deleting recombination excision circle (KREC) numbers and beneficial effect of hematopoietic stem cell transplantation (HSCT). Front Immunol 2017; 8: 807.

76. Chiam L.Y.T., Verhagen M.M.M., Haraldsson A., et al. Cutaneous granulomas in ataxia telangiectasia and other primary immunodeficiencies: reflection of inappropriate immune regulation? Dermatol 2011; 223: 13–9.

77. Minto H., Mensah K.A., Reynolds P.R., et al. A novel ATM mutation associated with elevated atypical lymphocyte populations, hyper-IgM, and cutaneous granulomas. Clin Immunol 2019; 200: 55–63. DOI: 10.1016/j.clim.2019.01.002

78. Szczawińska-Popłonyk A., Olejniczak K., Tąpolska-Jóźwiak K., et al. Cutaneous and systemic granulomatosis in ataxia-telangiectasia: a clinico-pathological study. Postepy Dermatol Alergol 2020; 37 (5): 760–5. DOI: 10.5114/ada.2020.100485

79. Petersen H.J., Smith A.M. The role of the innate immune system in granulomatous disorders. Front Immunol 2013; 4: 120. DOI: 10.3389/fimmu.2013.00120

80. Tuijnenburg P., Lango Allen H., Burns S.O., et al. Loss-of-function nuclear factor kappaB subunit 1 (NFKB1) variants are the most common monogenic cause of common variable immunodeficiency in Europeans. J Allergy Clin Immunol 2018; 142: 1285–96. DOI: 10.1016/j.jaci.2018.01.039

81. Lo B.., Zhang K., Lu W., et al. Autoimmune disease. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 2015; 349: 436–40. DOI: 10.1126/science.aaa1663

82. Charbonnier L.M., Janssen E., Chou J., et al. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J Allergy Clin Immunol 2015; 135: 217–27. DOI: 10.1016/j.jaci.2014.10.019

83. Coulter T.I., Chandra A., Bacon C.M., et al. Clinical spectrum and features of activated phosphoinositide 3-kinase delta syndrome: a large patient cohort study. J Allergy Clin Immunol 2017; 139: 597–606.e4. DOI: 10.1016/j.jaci.2016.06.021

84. Sebire N.J., Haselden S., Malone M., et al. Isolated EBV lymphoproliferative disease in a child with Wiskott-Aldrich syndrome manifesting as cutaneous lymphomatoid granulomatosis and responsive to anti-CD20 immunotherapy. J Clin Pathol 2003; 56 (7): 555–7. DOI: 10.1136/jcp.56.7.555

85. Neven B., Pérot P., Bruneau J., еt al. Cutaneous and Visceral Chronic Granulomatous Disease Triggered by a Rubella Virus Vaccine Strain in Children With Primary Immunodeficiencies. Clin Infect Dis 2017; 64 (1): 83–6.

86. Bodemer C., Sauvage V., Mahlaoui N., et al. Live rubella virus vaccine long-term persistence as an antigenic trigger of cutaneous granulomas in patients with primary immunodeficiency. Clin Microbiol Infect 2014; 20 (10): O656–63.

87. Neven B., Pérot P., Bruneau J., et al. Cutaneous and visceral chronic granulomatous disease triggered by a rubella virus vaccine strain in children with primary immunodeficiencies. Clin Infect Dis 2017; 64 (1): 83–6.

88. Buchbinder D., Hauck F., Albert M.H., et al. Rubella Virus-Associated Cutaneous Granulomatous Disease: a Unique Complication in Immune-Deficient Patients, Not Limited to DNA Repair Disorders. J Clin Immunol 2019; 39: 81–9.

89. Perelygina L., Plotkin S., Russo P., et al. Rubella persistence in epidermal keratinocytes and granuloma M2 macrophages in patients with primary immunodeficiencies. J Allergy Clin Immunol 2016; 138 (5): 1436–9.e11.

90. Perelygina L., Chen M.H., Suppiah S., et al. Infectious vaccine-derived rubella viruses emerge, persist, and evolve in cutaneous granulomas of children with primary immunodeficiencies. PLoS Pathog 2019; 15 (10): e1008080.

91. Barkai G., Somech R., Stauber T., et al. Bacille Calmette–Guerin (BCG) complications in children with severe combined immunodeficiency (SCID). Infect Dis (Lond) 2019; 51 (8): 585–92. DOI: 10.1080/23744235.2019.1628354

92. Laberko A., Yukhacheva D., Rodina Y., et al. BCG-Related Inflammatory Syndromes in Severe Combined Immunodeficiency After TCRab+/CD19+ Depleted HSCT. J Clin Immunol 2020; 40 (4): 625–36. DOI: 10.1007/s10875-020-00774-x

93. Franxman T.J., Howe L.E., Baker J.R. Infliximab for treatment of granulomatous disease in patients with common variable immunodeficiency. J Clin Immunol 2014; 34: 820–7. DOI: 10.1007/s10875-014-0079-3

94. Boursiquot J.N., Gérard L., Malphettes M., et al. Granulomatous Disease in CVID: Retrospective Analysis of Clinical Characteristics and Treatment Efficacy in a Cohort of 59 Patients. J Clin Immunol 2013; 33: 84–95. DOI: 10.1007/s10875-012-9778-9

95. Vignesh P., Rawat A., Singh S. An Update on the Use of Immunomodulators in Primary Immunodeficiencies. Clin Rev Allergy Immuno. 2017; 52 (2): 287–303.

96. Lin J.H., Liebhaber M., Roberts R.L., et al. Etanercept treatment of cutaneous granulomas in common variable immunodeficiency. J Allergy Clin Immunol 2006; 117: 878–82.

97. Perelygina L., Hautala T., Seppänen M., et al. Inhibition of rubella virus replication by the broad-spectrum drug nitazoxanide

98. in cell culture and in a patient with a primary immune deficiency. Antiviral Res 2017; 147: 58–66. DOI: 10.1016/j.antiviral.2017.09.019

99. Perelygina L., Buchbinder D., Dorsey M.J., et al. Outcomes for Nitazoxanide Treatment in a Case Series of Patients with Primary Immunodeficiencies and Rubella Virus-Associated Granuloma. J Clin Immunol 2019; 39 (1): 112–7. DOI: 10.1007/s10875-019-0589-0

Pediatric Hematology/Oncology and Immunopathology. 2020; 19: 85-93

Granulomatous skin lesion as a manifestation of primary immunodeficiency in children

Selezneva O. S., Shcherbina A. Yu.

https://doi.org/10.24287/1726-1708-2020-19-4suppl-85-93

Abstract

Primary immunodeficiencies (PID) compile a genetically heterogeneous group of more than 400 disorders. Most patients with PID are shown to be highly susceptible to various types of infectious diseases. However, in the past decade, non-infectious complications associated with immune dysregulation and autoimmunity have been increasingly recognized in PID. Patients with PID often have skin manifestations, that allow to suspect the diagnosis of immunodeficiency in early childhood. One of the least studied skin manifestations of PID is granulomatous dermatitis. This manuscript current research on the pathogenesis, methods of diagnosis and therapy of granulomatous dermatitis in patients with various PID.

References

1. Immunologiya detskogo vozrasta. Prakticheskoe rukovodstvo po detskim boleznyam. Pod red. Shcherbiny A.Yu., Pashanova E.D. M.: Medpraktika-M; 2006.

2. Picard C., Bobby Gaspar H., Al-Herz W., et al. International Union of Immunological Societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol 2018; 38 (1): 96–128.

3. Bousfiha A., Jeddane L., Picard C., et al. Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. J Clin Immunol 2020; 40 (1): 66–81.

4. Tangye S.G., Al-Herz W., Bousfiha A., et al. Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee [published correction appears in J Clin Immunol 2020; 40 (1): 24– 64.

5. Bousfiha A., Jeddane L., Picard C., et al. The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. J Clin Immunol 2018; 38 (1): 129–43. DOI:10.1007/s10875-017-0465-8

6. Sharma D., Jindal A.K., Rawat A., Singh S. Approach to a Child with Primary Immunodeficiency Made Simple. Indian Dermatol Online J 2017; 8 (6): 391–405.

7. Kuzmenko N.B., Shcherbina A.Y. Classification of primary immunodeficiencies as a reflection of modern ideas about their pathogenesis and therapeutic approaches. Russian Journal of Pediatric Hematology and Oncology. 2017; 4 (3): 51–7. (In Russ.).

8. Produktivnoe vospalenie. Rukovodstvo dlya vrachei. Pod red. Povzun S.A. S.-Pb.: spetsLit; 2018. 359 s.

9. Elbaz T., Esmat G. Hepatic and intestinal schistosomiasis: review. J Adv Res 2013; 4: 445–52.

10. Wilson M.S., Mentink-Kane M.M., Pesce J.T., Ramalingam T.R., Thompson R., Wynn T.A. Immunopathology of schistosomiasis. Immunol Cell Biol 2007; 85: 148–54.

11. Martín-Callizo C., Marcoval J., Penín R.M. Granulomatous Reactions to Red Tattoo Pigments: A Description of 5 Cases. Actas Dermosifiliogr 2015; 106 (7): 588–90.

12. Molina-Ruiz A.M., Requena L. Foreign body granulomas. Dermatol Clin 2015; 33 (3): 497–523.

13. Piette E.W., Rosenbach M. Granuloma annulare: pathogenesis, disease associations and triggers, and therapeutic options. J Am Acad Dermatol 2016; 75 (3): 467–79.

14. Mangold A.R., Cumsky H.J.L., Costello C.M., et al. Clinical and histopathologic features of paraneoplastic granuloma annulare in association with solid organ malignancies: A case-control study. J Am Acad Dermatol 2018; 79 (5): 913–20.e1.

15. Wanat K.A., Elenitsas R., Kim E.J., Rosenbach M. Granuloma annulare associated with cutaneous marginal zone lymphoma: a case linking a hematologic malignancy with granulomatous dermatitis. Am J Dermatopathol 2012; 34 (8): 844–6.

16. Valeyre D., Prasse A., Nunes H., et al. Sarcoidosis. Lancet 2014; 383: 1155–67.

17. Caso F., Galozzi P., Costa L., Sfriso P., Cantarini L., Punzi L. Autoinflammatory granulomatous diseases: from Blau syndrome and early-onset sarcoidosis to NOD2-mediated disease and Crohn's disease. RMD Open 2015; 1 (1): e000097.

18. Lo Schiavo A., Ruocco E., Gambardella A., O’Leary R.E., Gee S. Granulomatous dysimmune reactions (sarcoidosis, granuloma annulare, and others) on differently injured skin areas. Clin Dermatol 2014; 32 (5): 646–53.

19. Chua-Aguilera C.J., Möller B., Yawalkar N. Skin manifestations of rheumatoid arthritis, juvenile idiopathic arthritis, and spondyloarthritides. Clin Rev Allergy Immunol 2017; 53 (3): 371–93.

20. Fischer A., Provot J., Jais J.P., et al.; members of the CEREDIH French PID study group. Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. J Allergy Clin Immunol 2017; 140 (5): 1388–93.e8.

21. Schuetz C., Huck K., Gudowius S., et al. An immunodeficiency disease with RAG mutations and granulomas. N Engl J Med 2008; 358: 2030–38

22. ESID Registry – Working Definitions for Clinical Diagnosis of PID https://esid.org/content/download/13053/372959/file/ESIDRegistry_ClinicalCriteria2014.pdf (accessed December 15, 2019)

23. Asai J. What is new in the histogenesis of granulomatous skin diseases? J Dermatol 2017; 44 (3): 297–303.

24. Terziroli Beretta-Piccoli B., Mainetti C., Peeters M. et al. Cutaneous Granulomatosis: a Comprehensive Review. Clinic Rev Allerg Immunol 2018; 54: 131–46.

25. Wilson J.L., Mayr H.K., Weichhart T. Metabolic Programming of Macrophages: Implications in the Pathogenesis of Granulomatous Disease. Front Immunol 2019; 10: 2265.

26. Girgis N.M., Gundra U.M., Ward L.N., et al. Ly6C(high) monocytes become alternatively activated macrophages in schistosome granulomas with help from CD4+ cells. PLoS Pathog 2014; 10: e1004080.

27. Silva D.A.A.D., Silva M.V.D., Barros C.C.O., et al. TNF-a blockade impairs in vitro tuberculous granuloma formation and down modulate Th1, Th17 and Treg cytokines. PLoS One 2018; 13 (3): e0194430.

28. Boros D.L. New perspectives on ancient granulomas. Front Immunol 2013; 4: 345. DOI: 10.3389/fimmu.2013.00345

29. Li X., Körner H., Liu X. Susceptibility to Intracellular Infections: Contributions of TNF to Immune Defense. Front Microbiol 2020; 11: 1643.

30. Timmermans W.M., van Laar J.A., van Hagen P.M., van Zelm M.C. Immunopathogenesis of granulomas in chronic autoinflammatory diseases. Clin Transl Immunol 2016; 5 (12): e118.

31. Huang Z., Luo Q., Guo Y., et al. Mycobacterium tuberculosis- induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro. PLoS ONE 2015; 10: e0129744.

32. Essandoh K., Li Y., Huo J., Fan G.C. MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of

33. Inflammatory Response. Shock 2016; 46 (2): 122–31.

34. Jetten N., Roumans N., Gijbels M.J., et al. Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. PLoS One 2014; 9 (7): e102994.

35. Kumar R., Singh P., Kolloli A., et al. Immunometabolism of Phagocytes During Mycobacterium tuberculosis Infection. Front Mol Biosci 2019; 6: 105.

36. Wojtan P., Mierzejewski M., Osinska I., Domagala-Kulawik J. Macrophage polarization in interstitial lung diseases. Cent Eur J Immunol 2016; 41: 159–64.

37. Mattila J.T., Ojo O.O., Kepka-Lenhart D., et al. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol 2013; 191:

38. –84.

39. Khan A., Singh V.K., Hunter R.L., Jagannath C. Macrophage heterogeneity and plasticity in tuberculosis. J Leukoc Biol 2019; 106 (2): 275–82.

40. Terziroli Beretta-Piccoli B., Mainetti C., Peeters M., et al. Cutaneous Granulomatosis: a Comprehensive Review. Clinic Rev Allerg Immunol 2018; 54: 131–46.

41. Wick MR. Granulomatous & histiocytic dermatitides. Semin Diagn Pathol. 2017;34(3):301-311.

42. Ito T., Connett J.M., Kunkel S.L., Matsukawa A. The linkage of innate and adaptive immune response during granulomatous development. Front Immunol 2015; 4: 10.

43. Norouzi S., Aghamohammadi A., Mamishi S., et al. Bacillus Calmette-Guérin (BCG) complications associated with primary immunodeficiency diseases. J Infect 2012; 64 (6): 543–54.

44. Clay H., Volkman H.E., Ramakrishnan L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 2008; 29: 283–94

45. Ho H.E., Cunningham-Rundles C. Noninfectious Complications of Common Variable Immunodeficiency: Updated Clinical Spectrum, Sequelae, and Insights to Pathogenesis. Front Immunol 2020; 11: 149.

46. Kamphuis L.S., van Zelm M.C., Lam K.H., et al. Perigranuloma localization and abnormal maturation of B cells: emerging key players in sarcoidosis? Am J Respir Crit Care Med 2013; 187: 406–416.

47. Imadojemu S., Rosenbach M. Advances in Inflammatory Granulomatous Skin Diseases. Dermatol Clin 2019; 37 (1): 49–64.

48. Takeda K., Akira S. Toll-Like Receptors. Curr. Protoc. Immunol 2015; 109: 14.12.1–14.12.10. DOI: 10.1002/0471142735.im1412s109

49. Schmitt A., Volz A. Non-infectious granulomatous dermatoses. J Dtsch Dermatol Ges 2019; 17 (5): 518–33.

50. Holl-Ulrich K., Rose C. Nichtinfektiöse granulomatöse Entzündungen: Schwerpunkt Lunge und Haut [Non-infectious granulomatous inflammation: Focus on the lungs and skin]. Pathologe 2016; 37 (2): 172–82.

51. Moghaddas F., Masters S.L. The classification, genetic diagnosis and modelling of monogenic autoinflammatory disorders. Clin Sci (Lond) 2018; 132 (17): 1901–24. DOI: 10.1042/CS20171498

52. de Jesus A.A., Goldbach-Mansky R. Genetically defined autoinflammatory diseases. Oral Dis 2016; 22 (7): 591–604.

53. McDermott M.F., Aksentijevich I., Galon J., et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 1999; 97 (1): 133–44.

54. Gandhi C., Healy C., Wanderer A.A., Hoffman H.M. Familial atypical cold urticaria: description of a new hereditary disease. J Allergy Clin Immunol 2009; 124: 1245–50.

55. Hernández-Ostiz S., Xirotagaros G., Prieto-Torres L., et al. Enfermedades autoinflamatorias en dermatología pediátrica. Parte 2: síndromes histiocítico-macrofágicos y síndromes vasculopáticos. Acta Dermosifiliogr 2017; 108: 620–9.

56. Rose C.D., Martin T.M., Wouters C.H. Blau syndrome revisited. Curr Opin Rheumatol 2011; 23 (5): 411–8.

57. Figueras-Nart I., Mascaró J.M. Jr, Solanich X., Hernández- Rodríguez J. Dermatologic and Dermatopathologic Features of

58. Monogenic Autoinflammatory Diseases. Front Immunol 2019; 10: 2448.

59. Ombrello M.J., Remmers E.F., Sun G., et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N Engl J Med 2012; 366 (4): 330–8.

60. Zhou Q., Lee G.S., Brady J., et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet 2012; 91 (4): 713–20.

61. Novice T., Kariminia A., Del Bel K.L., et al. A Germline Mutation in the C2 Domain of PLCg2 Associated with Gain-of-Function Expands the Phenotype for PLCG2-Related Diseases. J Clin Immunol 2020; 40 (2): 267–76.

62. Parackova Z., Bloomfield M., Vrabcova P. et al. Mutual alteration of NOD2-associated Blau syndrome and IFNgR1 deficiency. J Clin Immunol 2010; 40: 165–78.

63. Aderibigbe O.M., Priel D.L., Lee C.-C.R., et al. Distinct cutaneous manifestations and cold-induced leukocyte activation associated with PLCG2 mutations. JAMA Dermatol 2015; 151: 627–34.

64. Szymanski A.M., Ombrello M.J. Using genes to triangulate the pathophysiology of granulomatous autoinflammatory disease: NOD2, PLCG2 and LACC1. Int Immunol 2018; 30 (5): 205–13.

65. Aderibigbe O.M., Priel D.L., Lee C.C., et al. Distinct Cutaneous Manifestations and Cold-Induced Leukocyte Activation Associated With PLCG2 Mutations. JAMA Dermatol 2015; 151 (6): 627–34.

66. Alizadeha A.A., Hamzeh-Mivehroud M., Haddad E., et al. Characterization of Novel Fragment Antibodies Against TNF-alpha Isolated Using Phage Display Technique. Iran J Pharm Res 2019; 18 (2): 759–71.

67. Sharapova S.O., Migas A., Guryanova I., et al. Late-onset combined immune deficiency associated to skin granuloma due to heterozygous compound mutations in RAG1 gene in a 14 years old male. Hum Immunol 2013; 74 (1): 18–22.

68. Walter J.E., Rucci F., Patrizi L., et al. Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in Rag-dependent immunodeficiency. J Exp Med 2010; 207: 1541–54.

69. Schuetz C., Huck K., Gudowius S., et al. An immunodeficiency disease with RAG mutations and granulomas. N Engl J Med 2008; 358 (19): 2030–8.

70. Delmonte O.M., Villa A., Notarangelo L.D. Immune dysregulation in patients with RAG deficiency and other forms of combined immune deficiency. Blood 2020; 135 (9): 610–9. DOI: 10.1182/blood.2019000923

71. Deripapa E., Balashov D., Rodina Y., et al. Prospective Study of a Cohort of Russian Nijmegen Breakage Syndrome Patients Demonstrating Predictive Value of Low Kappa-Deleting Recombination Excision Circle (KREC) Numbers and Beneficial

72. Effect of Hematopoietic Stem Cell Transplantation (HSCT). Front Immunol 2017; 8: 807. DOI: 10.3389/fimmu.2017.00807

73. Mathieu A.L., Verronese E., Rice G.I., et al. PRKDC mutations associated with immunodeficiency, granuloma, and autoimmune regulator-dependent autoimmunity. J Allergy Clin Immunol 2015; 135 (6): 1578–88.e5. DOI: 10.1016/j.jaci.2015.01.040

74. Lakdawala N., Ferenczi K., Grant-Kels J.M. Granulomatous diseases: Kids are not just little people. Clin Dermatol 2017; 35 (6): 555–65.

75. Deripapa E., Balashov D., Rodina Y., et al. Prospective study of a cohort of Russian Nijmegen break age syndrome patients demonstrating predictive value of low kappa-deleting recombination excision circle (KREC) numbers and beneficial effect of hematopoietic stem cell transplantation (HSCT). Front Immunol 2017; 8: 807.

76. Chiam L.Y.T., Verhagen M.M.M., Haraldsson A., et al. Cutaneous granulomas in ataxia telangiectasia and other primary immunodeficiencies: reflection of inappropriate immune regulation? Dermatol 2011; 223: 13–9.

77. Minto H., Mensah K.A., Reynolds P.R., et al. A novel ATM mutation associated with elevated atypical lymphocyte populations, hyper-IgM, and cutaneous granulomas. Clin Immunol 2019; 200: 55–63. DOI: 10.1016/j.clim.2019.01.002

78. Szczawińska-Popłonyk A., Olejniczak K., Tąpolska-Jóźwiak K., et al. Cutaneous and systemic granulomatosis in ataxia-telangiectasia: a clinico-pathological study. Postepy Dermatol Alergol 2020; 37 (5): 760–5. DOI: 10.5114/ada.2020.100485

79. Petersen H.J., Smith A.M. The role of the innate immune system in granulomatous disorders. Front Immunol 2013; 4: 120. DOI: 10.3389/fimmu.2013.00120

80. Tuijnenburg P., Lango Allen H., Burns S.O., et al. Loss-of-function nuclear factor kappaB subunit 1 (NFKB1) variants are the most common monogenic cause of common variable immunodeficiency in Europeans. J Allergy Clin Immunol 2018; 142: 1285–96. DOI: 10.1016/j.jaci.2018.01.039

81. Lo B.., Zhang K., Lu W., et al. Autoimmune disease. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 2015; 349: 436–40. DOI: 10.1126/science.aaa1663

82. Charbonnier L.M., Janssen E., Chou J., et al. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J Allergy Clin Immunol 2015; 135: 217–27. DOI: 10.1016/j.jaci.2014.10.019

83. Coulter T.I., Chandra A., Bacon C.M., et al. Clinical spectrum and features of activated phosphoinositide 3-kinase delta syndrome: a large patient cohort study. J Allergy Clin Immunol 2017; 139: 597–606.e4. DOI: 10.1016/j.jaci.2016.06.021

84. Sebire N.J., Haselden S., Malone M., et al. Isolated EBV lymphoproliferative disease in a child with Wiskott-Aldrich syndrome manifesting as cutaneous lymphomatoid granulomatosis and responsive to anti-CD20 immunotherapy. J Clin Pathol 2003; 56 (7): 555–7. DOI: 10.1136/jcp.56.7.555

85. Neven B., Pérot P., Bruneau J., et al. Cutaneous and Visceral Chronic Granulomatous Disease Triggered by a Rubella Virus Vaccine Strain in Children With Primary Immunodeficiencies. Clin Infect Dis 2017; 64 (1): 83–6.

86. Bodemer C., Sauvage V., Mahlaoui N., et al. Live rubella virus vaccine long-term persistence as an antigenic trigger of cutaneous granulomas in patients with primary immunodeficiency. Clin Microbiol Infect 2014; 20 (10): O656–63.

87. Neven B., Pérot P., Bruneau J., et al. Cutaneous and visceral chronic granulomatous disease triggered by a rubella virus vaccine strain in children with primary immunodeficiencies. Clin Infect Dis 2017; 64 (1): 83–6.

88. Buchbinder D., Hauck F., Albert M.H., et al. Rubella Virus-Associated Cutaneous Granulomatous Disease: a Unique Complication in Immune-Deficient Patients, Not Limited to DNA Repair Disorders. J Clin Immunol 2019; 39: 81–9.

89. Perelygina L., Plotkin S., Russo P., et al. Rubella persistence in epidermal keratinocytes and granuloma M2 macrophages in patients with primary immunodeficiencies. J Allergy Clin Immunol 2016; 138 (5): 1436–9.e11.

90. Perelygina L., Chen M.H., Suppiah S., et al. Infectious vaccine-derived rubella viruses emerge, persist, and evolve in cutaneous granulomas of children with primary immunodeficiencies. PLoS Pathog 2019; 15 (10): e1008080.

91. Barkai G., Somech R., Stauber T., et al. Bacille Calmette–Guerin (BCG) complications in children with severe combined immunodeficiency (SCID). Infect Dis (Lond) 2019; 51 (8): 585–92. DOI: 10.1080/23744235.2019.1628354

92. Laberko A., Yukhacheva D., Rodina Y., et al. BCG-Related Inflammatory Syndromes in Severe Combined Immunodeficiency After TCRab+/CD19+ Depleted HSCT. J Clin Immunol 2020; 40 (4): 625–36. DOI: 10.1007/s10875-020-00774-x

93. Franxman T.J., Howe L.E., Baker J.R. Infliximab for treatment of granulomatous disease in patients with common variable immunodeficiency. J Clin Immunol 2014; 34: 820–7. DOI: 10.1007/s10875-014-0079-3

94. Boursiquot J.N., Gérard L., Malphettes M., et al. Granulomatous Disease in CVID: Retrospective Analysis of Clinical Characteristics and Treatment Efficacy in a Cohort of 59 Patients. J Clin Immunol 2013; 33: 84–95. DOI: 10.1007/s10875-012-9778-9

95. Vignesh P., Rawat A., Singh S. An Update on the Use of Immunomodulators in Primary Immunodeficiencies. Clin Rev Allergy Immuno. 2017; 52 (2): 287–303.

96. Lin J.H., Liebhaber M., Roberts R.L., et al. Etanercept treatment of cutaneous granulomas in common variable immunodeficiency. J Allergy Clin Immunol 2006; 117: 878–82.

97. Perelygina L., Hautala T., Seppänen M., et al. Inhibition of rubella virus replication by the broad-spectrum drug nitazoxanide

98. in cell culture and in a patient with a primary immune deficiency. Antiviral Res 2017; 147: 58–66. DOI: 10.1016/j.antiviral.2017.09.019

99. Perelygina L., Buchbinder D., Dorsey M.J., et al. Outcomes for Nitazoxanide Treatment in a Case Series of Patients with Primary Immunodeficiencies and Rubella Virus-Associated Granuloma. J Clin Immunol 2019; 39 (1): 112–7. DOI: 10.1007/s10875-019-0589-0