Журналов:     Статей:        

Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020; 19: 62-72

Гематологические проявления Х-сцепленных лимфопролиферативных синдромов 1-го и 2-го типов

Роппельт А. А., Лаберко А. Л., Бурлаков В. И., Кан Н. Ю., Родина Ю. А., Юхачева Д. В., Викторова Е. А., Селезнева О. С., Першин Д. Е., Ведмедская В. А., Райкина Е. В., Варламова Т. В., Киева А. М., Манн С. Г., Поляков А. В., Сермягина И. Г., Петрова У. Н., Калинина И. И., Шелихова Л. Н., Балашов Д. Н., Кондратенко И. В., Масчан А. А., Щербина А. Ю.

https://doi.org/10.24287/1726-1708-2020-19-3-62-72

Аннотация

Х-сцепленный лимфопролиферативный синдром 1-го (ХЛП1) и 2-го (ХЛП2) типов – это первичные иммунодефициты, объединенные в одну группу в связи с аномальным ответом на вирус Эпштейна– Барр. Частым жизнеугрожающим осложнением при обоих заболеваниях является развитие гемофагоцитарного лимфогистиоцитоза (ГЛГ). В основе ХЛП1 и ХЛП2 лежат мутации в генах SH2D1A и XIAP соответственно. Нами приведена характеристика таких гематологических осложнений, как ГЛГ и цитопения, у 12 пациентов с ХЛП1 и 11 больных с ХЛП2. Исследование одобрено независимым этическим комитетом и утверждено решением ученого совета ФГБУ «НМИЦ ДГОИ им. Дмитрия Рогачева» Минздрава России. Проведен анализ пациентов, которые наблюдались или были консультированы в НМИЦ ДГОИ им. Дмитрия Рогачева с 2012 г. и в РДКБ ФГАОУ ВО «РНИМУ им. Н.И. Пирогова» Минздрава России с 2003 г. до февраля 2020 г. Всего в исследование вошли 19 пациентов с ХЛП1 из 13 семей и 16 пациентов с ХЛП2 из 14 семей. Пациентам с гематологическими осложнениями диагноз ХЛП был поставлен на основании критериев ESID и в 19 случаях подтвержден выявлением мутации в гене SH2D1A или XIAP (8 пациентов с ХЛП1 и 11 пациентов с ХЛП2). Исследование внутриклеточной экспрессии соответствующих белков SAP и XIAP проводилось путем внутриклеточной окраски SAP/XIAP в лимфоцитах. Молекулярногенетическое исследование для выявления мутаций в генах SH2D1A и XIAP проводилось методом прямого секвенирования по Сэнгеру на приборе Genetic Analyzer 3130х1 (Applied Biosystems, США) согласно протоколу производителя, методом мультиплексной амплификации лигазносвязанных проб с использованием набора SALSA MLPA Probemix P205 SH2D1A-XIAP-ITK (MRCHolland, Нидерланды) или методом секвенирования нового поколения (NGS) на платформе NextSeq (Illumina) методом парно-концевого чтения. Среди пациентов с гематологическими осложнениями цитопения различной степени выраженности наблюдалась у 4 человек с ХЛП1 и у 2 – с ХЛП2. Ни у одного из пациентов с цитопенией при ХЛП1 не развился ГЛГ, тогда как у всех пациентов с ХЛП2 цитопения предшествовала полноценной форме ГЛГ. ГЛГ развился у 8 пациентов с ХЛП1 и 11 больных с ХЛП2. ГЛГ-ассоциированная смертность до трансплантации гемопоэтических стволовых клеток (ТГСК) составила 75% в группе пациентов с ХЛП1 и 0% в группе больных с ХЛП2. Ремиссия ГЛГ достигнута в 12,5% случаев при ХЛП1 и в 82% – при ХЛП2. В представленной группе пациентов с ХЛП и гематологическими осложнениями ТГСК выполнена только 3 пациентам с ХЛП1, что не позволяет провести статистический анализ, и 9 пациентам с ХЛП2 с общей выживаемостью 74%. ГЛГ – самое частое гематологическое осложнение ХЛП1 и ХЛП2. Фульминантное течение ГЛГ при ХЛП1 оправдывает проведение агрессивной терапии в кратчайшие сроки. Для пациентов с ХЛП2 продемонстрирована ремиссия ГЛГ на фоне моно- или двухкомпонентной иммуносупрессивной терапии, что является важным подспорьем в редукции токсичной терапии и при использовании таргетной терапии. Цитопения при ХЛП2 может быть предшественником ГЛГ, тогда как в основе цитопении при ХЛП1 лежат, вероятно, другие иммунные механизмы. Для пациентов с ХЛП ТГСК является куративной опцией, к которой следует прибегать как можно раньше после постановки диагноза.
Список литературы

1. Роппельт А.А., Юхачева Д.В., Мякова Н.В., Сминова Н.В., Скворцова Ю.В., Варламова Т.В. и др. Х-сцепленный лимфопролиферативный синдром 1 и 2 типов. Вопросы гематологии/онкологии и иммунологии в педиатрии 2016; 15 (1): 17–26.

2. Seemayer T.A., Gross T.G., Egeler R.M., Pirruccello S.J., Davis J.R., Kelly C.M., et al. X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr Res 1995; 38 (4): 471–8. DOI: 10.1203/00006450-199510000-00001

3. Coffey A.J., Brooksbank R.A., Brandau O., Oohashi T., Howell G.R., Bye J.M., et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet 1998; 20 (2): 129–35. DOI: 10.1038/2424

4. Rigaud S., Fondanèche M.C., Lambert N., Pasquier B., Mateo V., Soulas P., et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 2006; 444 (7115): 110–4. DOI: 10.1038/nature05257

5. Booth C., Gilmour K.C., Veys P., Gennery A.R., Slatter M.A., Chapel H., et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood 2011; 117 (1): 53–62. DOI: 10.1182/blood-2010-06-284935

6. Aguilar C., Latour S. X-linked inhibitor of apoptosis protein deficiency: more than an X-linked lymphoproliferative syndrome. J Clin Immunol 2015; 35 (4): 331– 8. DOI: 10.1007/s10875-015-0141-9

7. Al-Samkari H., Berliner N. Hemophagocytic Lymphohistiocytosis. Annu Rev Pathol 2018; 13: 27–49. DOI: 10.1146/annurev-pathol-020117-043625

8. Purtilo D.T., Cassel C., Yang J.P. Letter: fatal infectious mononucleosis in familial lymphohistiocytosis. N Engl J Med 1974; 291 (14): 736. DOI: 10.1056/nejm197410032911415

9. Kesici S., Keskin E.Y., Chiang S., Kasapkara C.S., Sekine T., Akçaboy M., et al. First Report of an SH2D1A Mutation Associated with X-Linked Lymphoproliferative Disease in Turkey. Turk J Hematol 2018; 35 (3): 200–16. DOI: 10.4274/tjh.2017.0445

10. Jin Y., Zhou W., Tian Z., Chen T.X. Variable clinical phenotypes of X-linked lymphoproliferative syndrome in China: Report of five cases with three novel mutations and review of the literature. Hum Immunol 2016; 77 (8): 658–66. DOI: 10.1016/j.humimm.2016.06.005

11. Baranski B., Armstrong G., Truman J.T., Quinnan G.V. Jr, Straus S.E., Young N.S. Epstein-Barr virus in the bone marrow of patients with aplastic anemia. Ann Intern Med 1988; 109 (9): 695–704. DOI: 10.7326/0003-4819-109-9-695

12. Pachlopnik Schmid J., Canioni D., Moshous D., Touzot F., Mahlaoui N., Hauck F., et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood 2011; 117 (5): 1522–9. DOI: 10.1182/blood2010-07-298372

13. Latour S., Aguilar C. XIAP deficiency syndrome in humans. Semin Cell Dev Biol 2015; 39: 115–23. DOI: 10.1016/j.semcdb.2015.01.015

14. [Электронный ресурс]. URL: https:// esid.org/Working-Parties/RegistryWorking-Party/Diagnosis-criteria. (Дата обращения 27.07.2020).

15. Henter J., Horne A., Aricó M., Egeler R.M., Filipovich A.H., Imashuku S., et al. HLH-2004: Diagnostic and Therapeutic Guidelines for Hemophagocytic Lymphohistiocytosis. Pediatr Blood Cancer 2007; 48 (2): 124–31. DOI: 10.1002/pbc.21039

16. Xu X., Tang Y. Dilemmas in diagnosis and management of hemophagocytic lymphohistiocytosis in children. World J Pediatr 2020; 16 (4): 333–40. DOI: 10.1007/s12519-019-00299-3

17. Bergsten E., Horne A., Aricó M., Astigarraga I., Egeler R.M., Filipovich A.H., et al. Confirmed efficacy of etoposide and dexamethasone in HLH treatment: long term results of the cooperative HLH-2004 study. Blood 2017; 130 (25): 2728–38. DOI: 10.1182/blood-2017-06-788349

18. Horne A., Wickström R., Jordan M.B., Yeh E.A., Naqvi A., Henter J., Janka G. How to Treat Involvement of the Central Nervous System in Hemophagocytic Lymphohistiocytosis? Curr Treat Options Neurol 2017; 19 (1): 3. DOI: 10.1007/s11940-017-0439-4

19. Sin J.H., Zangardi M.L. Ruxolitinib for secondary hemophagocytic lymphohistiocytosis: First case report. Hematol Oncol Stem Cell Ther 2017; 12 (3): 166–70. DOI: 10.1016/j.hemonc.2017.07.002

20. Al-Salama Z. Emapalumab: First Global Approval. Drugs 2019; 79 (1): 99–103. DOI: 10.1007/s40265-018-1046-8

21. Overwater E., Smulders Y., Burg M., Lombardi M.P., Meijers-Heijboer H.E., Kuijpers T.W., Houweling A.C. The value of DNA storage and pedigree analysis in rare diseases: a 17-year-old boy with X-linked lymphoproliferative disease (XLP) caused by a de novo SH2D1A mutation. Eur J Pediatr 2014; 173 (12): 1695–8. DOI: 10.1007/s00431-014- 2313-7

22. Veillette A. NK cell regulation by SLAM family receptors and SAP-related adapters. Immunol Rev 2006; 214: 22–34. DOI: 10.1111/j.1600-065X.2006.00453.x

23. Filipovich A., Kejian Zhang K., Snow A., Marsh R.A. X-linked lymphoproliferative syndromes: brothers or distant cousins? Blood 2010; 116 (18): 3398– 408. DOI: 10.1182/blood-2010-03-275909

24. Marsh R.A., Madden L., Kitchen B.J., Mody R., McClimon B., Jordan M.B., et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood 2010; 116 (7): 1079–82. DOI: 10.1182/blood-2010-01-256099

25. Jordan M.B. Emergence of Targeted Therapy for Hemophagocytic Lymphohistiocytosis. Hematologist 2018; 15 (Issue 2).

26. Rumble J.M., Oetjen K.A., Stein P.L., Schwartzberg P.L., Moore B.B., Duckett C.S. Phenotypic differences between mice deficient in XIAP and SAP, two factors targeted in X-linked lymphoproliferative syndrome (XLP). Cell Immunol 2009; 259 (1): 82–9. DOI: 10.1016/j.cellimm.2009.05.017

27. Marsh R.A., Bleesing J.J., Chandrakasan S., Jordan M.B., Davies S.M., Filipovich A.H. Reduced-intensity conditioning hematopoietic cell transplantation is an effective treatment for patients with SLAM-associated protein deficiency/X-linked lymphoproliferative disease type 1. Biol Blood Marrow Transplant 2014; 20 (10): 1641–5. DOI: 10.1016/j.bbmt.2014.06.003

28. Marsh R.A., Rao K., Satwani P., Lehmberg K., Müller I., Li D., et al. Allogeneic hematopoietic cell transplantation for XIAP deficiency: an international survey reveals poor out comes. Blood 2013; 121 (6): 877–83. DOI: 10.1182/blood2012-06-432500

Pediatric Hematology/Oncology and Immunopathology. 2020; 19: 62-72

Haematological complications of X-linked lymphoproliferative syndrome type 1 and 2

Roppelt A. A., Laberko A. L., Burlakov V. I., Kan N. Yu., Rodina Yu. A., Yukhacheva D. V., Viktorova E. A., Selezneva O. S., Pershin D. E., Vedmedskaya V. A., Raykina E. V., Varlamova T. V., Кieva A. M., Mann S. G., Polyakov A. V., Sermyagina I. G., Petrova U. N., Kalinina I. I., Shelikhova L. N., Balashov D. N., Kondratenko I. V., Maschan A. A., Shcherbina A. Yu.

https://doi.org/10.24287/1726-1708-2020-19-3-62-72

Abstract

X-linked lymphoproliferative syndrome type 1 (XLP1) and 2 (XLP2) are primary immunodeficiencies (PID), combined in one group because of shared abnormal response to Epstein–Barr virus (EBV) and caused by mutations in SH2D1A and XIAP genes, respectively. Hemophagocytic lymphohistiocytosis (HLH) is a frequent life-threatening complication of both diseases. We analyzed haematological complications, such as HLH and cytopenia, in 12 patients with XLP1 and 11 – with XLP2. The research was approved by Independent ethic committee and the academic board of Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (Moscow, Russia). Analyzed were patients who were treated or consulted in Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (Moscow, Russia) since 2012 and in Russian Clinical Children's Hospital (Moscow, Russia) since 2003 to February 2020. 19 XLP1 patients from 13 families and 16 XLP2 patients from 14 families were included. For patients with haematological complications XLP diagnosis was based on the ESID criteria and genetically confirmed in 19 cases by detecting mutations in SH2D1A or XIAP gene (8 XLP1 and 11 XLP2 patients). Intracellular expression of corresponding SAP and XIAP proteins was performed by intracellular staining of SAP/XIAP in lymphocytes. Genetic analysis to detect mutations in SH2D1A and XIAP genes was performed by the Sanger sequencing method on Genetic Analyzer 3130х1 (Applied Biosystems, USA) according to the manufacturer protocol, or by the Multiplex Ligation-Dependent Probe Amplification method using SALSA MLPA Probemix P205 SH2D1A-XIAP-ITK (MRC-Holland, the Netherlands), or by the next-generation sequencing (NGS) method on NextSeq (Illumina) platform using a paired end tag (PET) sequencing method. Varying degree of cytopenia was present in 4 patients with XLP1 and 2 – with XLP2. None of XLP1 patients with cytopenia, and all XLP2 patients with cytopenia subsequently developed full HLH. Overall 8 XLP1 and 11 XLP2 patients developed HLH. HLH-associated mortality before hematopoietic stem cell transplantation (HSCT) was 75% in a group of XLP1 patients and 0% – in XLP2. HSCT was performed in 3 XLP1 patients, which was not sufficient for survival analysis and in 9 XLP2 patients, in whom overall survival was 74%. HLH is the most often haematological complication of XLP1 and XLP2. Fulminant HLH in XLP1 requires early and aggressive treatment. In XLP2 patients HLH remission can be reached on mono- or bicomponent immunosuppressive therapy which allows to reduce therapy-associated toxicity. In XLP2 patients cytopenia can precede HLH, while in XLP1 patients cytopenia is probably caused by other mechanisms. HSCT is a curative treatment for XLP1 and 2 which should be considered as soon as the diagnosis is made.
References

1. Roppel't A.A., Yukhacheva D.V., Myakova N.V., Sminova N.V., Skvortsova Yu.V., Varlamova T.V. i dr. Kh-stseplennyi limfoproliferativnyi sindrom 1 i 2 tipov. Voprosy gematologii/onkologii i immunologii v pediatrii 2016; 15 (1): 17–26.

2. Seemayer T.A., Gross T.G., Egeler R.M., Pirruccello S.J., Davis J.R., Kelly C.M., et al. X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr Res 1995; 38 (4): 471–8. DOI: 10.1203/00006450-199510000-00001

3. Coffey A.J., Brooksbank R.A., Brandau O., Oohashi T., Howell G.R., Bye J.M., et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet 1998; 20 (2): 129–35. DOI: 10.1038/2424

4. Rigaud S., Fondanèche M.C., Lambert N., Pasquier B., Mateo V., Soulas P., et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 2006; 444 (7115): 110–4. DOI: 10.1038/nature05257

5. Booth C., Gilmour K.C., Veys P., Gennery A.R., Slatter M.A., Chapel H., et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood 2011; 117 (1): 53–62. DOI: 10.1182/blood-2010-06-284935

6. Aguilar C., Latour S. X-linked inhibitor of apoptosis protein deficiency: more than an X-linked lymphoproliferative syndrome. J Clin Immunol 2015; 35 (4): 331– 8. DOI: 10.1007/s10875-015-0141-9

7. Al-Samkari H., Berliner N. Hemophagocytic Lymphohistiocytosis. Annu Rev Pathol 2018; 13: 27–49. DOI: 10.1146/annurev-pathol-020117-043625

8. Purtilo D.T., Cassel C., Yang J.P. Letter: fatal infectious mononucleosis in familial lymphohistiocytosis. N Engl J Med 1974; 291 (14): 736. DOI: 10.1056/nejm197410032911415

9. Kesici S., Keskin E.Y., Chiang S., Kasapkara C.S., Sekine T., Akçaboy M., et al. First Report of an SH2D1A Mutation Associated with X-Linked Lymphoproliferative Disease in Turkey. Turk J Hematol 2018; 35 (3): 200–16. DOI: 10.4274/tjh.2017.0445

10. Jin Y., Zhou W., Tian Z., Chen T.X. Variable clinical phenotypes of X-linked lymphoproliferative syndrome in China: Report of five cases with three novel mutations and review of the literature. Hum Immunol 2016; 77 (8): 658–66. DOI: 10.1016/j.humimm.2016.06.005

11. Baranski B., Armstrong G., Truman J.T., Quinnan G.V. Jr, Straus S.E., Young N.S. Epstein-Barr virus in the bone marrow of patients with aplastic anemia. Ann Intern Med 1988; 109 (9): 695–704. DOI: 10.7326/0003-4819-109-9-695

12. Pachlopnik Schmid J., Canioni D., Moshous D., Touzot F., Mahlaoui N., Hauck F., et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood 2011; 117 (5): 1522–9. DOI: 10.1182/blood2010-07-298372

13. Latour S., Aguilar C. XIAP deficiency syndrome in humans. Semin Cell Dev Biol 2015; 39: 115–23. DOI: 10.1016/j.semcdb.2015.01.015

14. [Elektronnyi resurs]. URL: https:// esid.org/Working-Parties/RegistryWorking-Party/Diagnosis-criteria. (Data obrashcheniya 27.07.2020).

15. Henter J., Horne A., Aricó M., Egeler R.M., Filipovich A.H., Imashuku S., et al. HLH-2004: Diagnostic and Therapeutic Guidelines for Hemophagocytic Lymphohistiocytosis. Pediatr Blood Cancer 2007; 48 (2): 124–31. DOI: 10.1002/pbc.21039

16. Xu X., Tang Y. Dilemmas in diagnosis and management of hemophagocytic lymphohistiocytosis in children. World J Pediatr 2020; 16 (4): 333–40. DOI: 10.1007/s12519-019-00299-3

17. Bergsten E., Horne A., Aricó M., Astigarraga I., Egeler R.M., Filipovich A.H., et al. Confirmed efficacy of etoposide and dexamethasone in HLH treatment: long term results of the cooperative HLH-2004 study. Blood 2017; 130 (25): 2728–38. DOI: 10.1182/blood-2017-06-788349

18. Horne A., Wickström R., Jordan M.B., Yeh E.A., Naqvi A., Henter J., Janka G. How to Treat Involvement of the Central Nervous System in Hemophagocytic Lymphohistiocytosis? Curr Treat Options Neurol 2017; 19 (1): 3. DOI: 10.1007/s11940-017-0439-4

19. Sin J.H., Zangardi M.L. Ruxolitinib for secondary hemophagocytic lymphohistiocytosis: First case report. Hematol Oncol Stem Cell Ther 2017; 12 (3): 166–70. DOI: 10.1016/j.hemonc.2017.07.002

20. Al-Salama Z. Emapalumab: First Global Approval. Drugs 2019; 79 (1): 99–103. DOI: 10.1007/s40265-018-1046-8

21. Overwater E., Smulders Y., Burg M., Lombardi M.P., Meijers-Heijboer H.E., Kuijpers T.W., Houweling A.C. The value of DNA storage and pedigree analysis in rare diseases: a 17-year-old boy with X-linked lymphoproliferative disease (XLP) caused by a de novo SH2D1A mutation. Eur J Pediatr 2014; 173 (12): 1695–8. DOI: 10.1007/s00431-014- 2313-7

22. Veillette A. NK cell regulation by SLAM family receptors and SAP-related adapters. Immunol Rev 2006; 214: 22–34. DOI: 10.1111/j.1600-065X.2006.00453.x

23. Filipovich A., Kejian Zhang K., Snow A., Marsh R.A. X-linked lymphoproliferative syndromes: brothers or distant cousins? Blood 2010; 116 (18): 3398– 408. DOI: 10.1182/blood-2010-03-275909

24. Marsh R.A., Madden L., Kitchen B.J., Mody R., McClimon B., Jordan M.B., et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood 2010; 116 (7): 1079–82. DOI: 10.1182/blood-2010-01-256099

25. Jordan M.B. Emergence of Targeted Therapy for Hemophagocytic Lymphohistiocytosis. Hematologist 2018; 15 (Issue 2).

26. Rumble J.M., Oetjen K.A., Stein P.L., Schwartzberg P.L., Moore B.B., Duckett C.S. Phenotypic differences between mice deficient in XIAP and SAP, two factors targeted in X-linked lymphoproliferative syndrome (XLP). Cell Immunol 2009; 259 (1): 82–9. DOI: 10.1016/j.cellimm.2009.05.017

27. Marsh R.A., Bleesing J.J., Chandrakasan S., Jordan M.B., Davies S.M., Filipovich A.H. Reduced-intensity conditioning hematopoietic cell transplantation is an effective treatment for patients with SLAM-associated protein deficiency/X-linked lymphoproliferative disease type 1. Biol Blood Marrow Transplant 2014; 20 (10): 1641–5. DOI: 10.1016/j.bbmt.2014.06.003

28. Marsh R.A., Rao K., Satwani P., Lehmberg K., Müller I., Li D., et al. Allogeneic hematopoietic cell transplantation for XIAP deficiency: an international survey reveals poor out comes. Blood 2013; 121 (6): 877–83. DOI: 10.1182/blood2012-06-432500