Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2018; 17: 9-15
Молекулярно-генетическая характеристика ОМЛ с t(8;21) у детей
Панферова А.В. , Гаськова М.В. , Зеркаленкова Е.А. , Апрелова Е.В. , Казакова А.Н. , Тимофеева Н.М. , Солдаткина О.И. , Никитин Е.Н. , Чекменева Ю.Ю. , Калинина И.И. , Плясунова С.А. , Ольшанская Ю.В. , Новичкова Г.А. , Масчан М.А. , Масчан А.А.
https://doi.org/10.24287/1726-1708-2018-17-1-9-15Аннотация
Список литературы
1. Schoch C., Kern W., Schnittger S., et al. The influence of age on prognosis of de novo acute myeloid leukemia differs according to cytogenetic subgroups. Haematologica 2004; 89 (9): 108-290.
2. Döhner H., Estey E.H., Amadori S., et al; European Leukemia Net. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115 (3): 453-74.
3. Sander A., Zimmermann M., Dworzak M., et al. Consequent and intensified relapse therapy improved survival in pediatric AML: Results of relapse treatment in 379 patients of three consecutive AML-BFM trials. Leukemia 2010; 24: 1422-8.
4. Kaspers G.J., Zimmermann M., Reinhardt D., et al. Improved outcome in pediatric relapsed acute myeloid leukemia: Results of a randomized trial on liposomal daunorubicin by the International BFM Study Group. J Clin Oncol 2013; 31: 599-607.
5. Klein K., Kaspers G., Harrison C.J., et al. Clinical Impact of Additional Cytogenetic Aberrations, cKIT and RAS Mutations, and Treatment Elements in Pediatric t(8;21)-AML: Results From an International Retrospective Study by the International Berlin-Frankfurt-Münster Study Group. J Clin Oncol 2015 Dec 20; 33 (36): 4247-58.
6. Pession A., Masetti R., Rizzari C., et al. Results of the AIEOP AML 2002/01 multicenter 6prospective trial for the treatment of children with acute myeloid leukemia. Blood 2013; 122 170-8.
7. Gibson B.E., Webb D.K., Howman A.J., et al. United Kingdom Childhood Leukaemia Working Group; the Dutch Childhood Oncology Group. Results of a randomized trial in children with Acute Myeloid Leukaemia: Medical research council AML12 trial. Br J Haematol 2011; 155: 366-76.
8. Jourdan E., Boissel N., Chevret S., et al. French AML Intergroup. Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia. Blood 2013; 121т(12): 2213-23.
9. Schlenk R.F., Benner A., Krauter J., et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol 2004; 22 (18): 3741-50.
10. Appelbaum F.R., Kopecky K.J., Tallman M.S., et al. The clinical spectrum of adult acute myeloid leukaemia associated with core binding factor translocations. Br J Haematol 2006; 135 (2): 165-73.
11. Marcucci G., Mr´ozek K., Ruppert A.S., et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study. J Clin Oncol 2005; 23 (24): 5705-17.
12. Rowley J.D. Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann Genet 1973; 16 (2): 109-12.
13. Le Beau M.M., Larson R.A., Bitter M.A., et al. Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic clinicopathological association. N Engl J Med 1983; 309 (11): 630-6.
14. Renneville A., Roumier C., Biggio V., et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia 2008; 22 (5): 915-31.
15. Speck N.A., Gilliland D.G. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2002; 2 (7): 502-13.
16. Downing J.R. The core-binding factor leukemias: lessons learned from murine models. Curr Opin Genet Dev 2003; 13 (1): 48-54.
17. Miyamoto T., Nagafuji K., Akashi K., et al. Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood 1996; 87 (11): 4789-96.
18. Wiemels J.L., Xiao Z., Buffler P.A., et al. In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood 2002; 99 (10): 3801-5.
19. Gilliland D.G. Molecular genetics of human leukemias: new insights into therapy. Semin Hematol 2002; 39 (4 suppl 3): 6-11.
20. Duployez N., Willekens C., Marceau-Renaut A., et al. Prognosis and monitoring of core-binding factor acute myeloid leukemia: current and emerging factors. Expert Rev Hematol 2015; 8 (1): 43-56.
21. Sangle N.A., Perkins S.L. Core-binding factor acute myeloid leukemia. Arch Pathol Lab Med 2011; 135 (11): 1504-9.
22. Schoch C., Kohlmann A., Schnittger S., et al. Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci USA 2002; 99 (15): 10008-13.
23. Micol J.-B., Duployez N., Boissel N., et al. Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood 2014; 124 (9): 1445-9.
24. Metzeler K.H. ASXL genes and RUNX1: an intimate connection? Blood 2014; 124 (9): 1382-3.
25. Hsu C.-H., Nguyen C., Yan C., et al. Transcriptome profiling of pediatric core binding factor AML. PLoS One 2015; 10 (9): e0138782.
26. Duployez N., Labis E., Marceau-Renaut A., et al. Genomic Landscape of Pediatric CBF-AML By SNP-Array Karyotyping and Extensive Mutational Analysis. Blood 2014; 124: 1007.
27. Duployez N., Marceau-Renaut A., Boissel N., et al. Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood 2016; 127 (20): 2451-9.
28. Bertoli S., Vergez F., Sarry J.-E., et al. Do AML patients with DNMT3A exon 23 mutations benefit from idarubicin as compared to daunorubicin? A single center experience Olivier LaRochelle1. Oncotarget 2011; 2 (11): 850-61.
29. Sihto H., Sarlomo-Rikala M., Tynninen O., et al. KIT and Platelet-Derived Growth Factor Receptor Alpha Tyrosine Kinase Gene Mutations and KIT Amplifications in Human Solid Tumors. J Clin Oncol 2005; 23 (1).
Pediatric Hematology/Oncology and Immunopathology. 2018; 17: 9-15
Molecular characterization of pediatric acute myeloid leukemia with t(8;21)
Panfyorova A. V., Gaskova M. V., Zerkalenkova E. A., Aprelova E. V., Kazakova A. N., Timofeeva N. M., Soldatkina O. I., Nikitin E. N., Chekmeneva Y. Y., Kalinina I. I., Plyasunova S. A., Olshanskaya Y. V., Novichkova G. A., Maschan M. A., Maschan A. A.
https://doi.org/10.24287/1726-1708-2018-17-1-9-15Abstract
Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been considered as unique group within AML and are usually reported as core binding factor AML (CBF-AML) but there is significant clinical and biological heterogeneity within and relapse incidence reaches up to 40%. It is known that, translocations involving CBFs are not sufficient to induce fulminant leukemia alone, therefore is considered as a model for the multistep pathogenesis of AML. To characterize more broad spectrum of genetic changes we performed extensive mutational analysis of 54 genes by high-throughput sequencing in 30 patients with t(8;21)-AML. The molecular landscape of pediatric AML with t(8;21) was highly heterogeneous and harbored frequent mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) – 60% in group with variable mutant allele ratios. Mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies – 43% as well. These data support the theory of synergic cooperation between these events and suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21). The adoption of advances in DNA sequencing as a high-throughput sequencing technology is a useful tool in diagnostics of pediatric AML.
References
1. Schoch C., Kern W., Schnittger S., et al. The influence of age on prognosis of de novo acute myeloid leukemia differs according to cytogenetic subgroups. Haematologica 2004; 89 (9): 108-290.
2. Döhner H., Estey E.H., Amadori S., et al; European Leukemia Net. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115 (3): 453-74.
3. Sander A., Zimmermann M., Dworzak M., et al. Consequent and intensified relapse therapy improved survival in pediatric AML: Results of relapse treatment in 379 patients of three consecutive AML-BFM trials. Leukemia 2010; 24: 1422-8.
4. Kaspers G.J., Zimmermann M., Reinhardt D., et al. Improved outcome in pediatric relapsed acute myeloid leukemia: Results of a randomized trial on liposomal daunorubicin by the International BFM Study Group. J Clin Oncol 2013; 31: 599-607.
5. Klein K., Kaspers G., Harrison C.J., et al. Clinical Impact of Additional Cytogenetic Aberrations, cKIT and RAS Mutations, and Treatment Elements in Pediatric t(8;21)-AML: Results From an International Retrospective Study by the International Berlin-Frankfurt-Münster Study Group. J Clin Oncol 2015 Dec 20; 33 (36): 4247-58.
6. Pession A., Masetti R., Rizzari C., et al. Results of the AIEOP AML 2002/01 multicenter 6prospective trial for the treatment of children with acute myeloid leukemia. Blood 2013; 122 170-8.
7. Gibson B.E., Webb D.K., Howman A.J., et al. United Kingdom Childhood Leukaemia Working Group; the Dutch Childhood Oncology Group. Results of a randomized trial in children with Acute Myeloid Leukaemia: Medical research council AML12 trial. Br J Haematol 2011; 155: 366-76.
8. Jourdan E., Boissel N., Chevret S., et al. French AML Intergroup. Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia. Blood 2013; 121t(12): 2213-23.
9. Schlenk R.F., Benner A., Krauter J., et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol 2004; 22 (18): 3741-50.
10. Appelbaum F.R., Kopecky K.J., Tallman M.S., et al. The clinical spectrum of adult acute myeloid leukaemia associated with core binding factor translocations. Br J Haematol 2006; 135 (2): 165-73.
11. Marcucci G., Mr´ozek K., Ruppert A.S., et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study. J Clin Oncol 2005; 23 (24): 5705-17.
12. Rowley J.D. Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann Genet 1973; 16 (2): 109-12.
13. Le Beau M.M., Larson R.A., Bitter M.A., et al. Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic clinicopathological association. N Engl J Med 1983; 309 (11): 630-6.
14. Renneville A., Roumier C., Biggio V., et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia 2008; 22 (5): 915-31.
15. Speck N.A., Gilliland D.G. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2002; 2 (7): 502-13.
16. Downing J.R. The core-binding factor leukemias: lessons learned from murine models. Curr Opin Genet Dev 2003; 13 (1): 48-54.
17. Miyamoto T., Nagafuji K., Akashi K., et al. Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood 1996; 87 (11): 4789-96.
18. Wiemels J.L., Xiao Z., Buffler P.A., et al. In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood 2002; 99 (10): 3801-5.
19. Gilliland D.G. Molecular genetics of human leukemias: new insights into therapy. Semin Hematol 2002; 39 (4 suppl 3): 6-11.
20. Duployez N., Willekens C., Marceau-Renaut A., et al. Prognosis and monitoring of core-binding factor acute myeloid leukemia: current and emerging factors. Expert Rev Hematol 2015; 8 (1): 43-56.
21. Sangle N.A., Perkins S.L. Core-binding factor acute myeloid leukemia. Arch Pathol Lab Med 2011; 135 (11): 1504-9.
22. Schoch C., Kohlmann A., Schnittger S., et al. Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci USA 2002; 99 (15): 10008-13.
23. Micol J.-B., Duployez N., Boissel N., et al. Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood 2014; 124 (9): 1445-9.
24. Metzeler K.H. ASXL genes and RUNX1: an intimate connection? Blood 2014; 124 (9): 1382-3.
25. Hsu C.-H., Nguyen C., Yan C., et al. Transcriptome profiling of pediatric core binding factor AML. PLoS One 2015; 10 (9): e0138782.
26. Duployez N., Labis E., Marceau-Renaut A., et al. Genomic Landscape of Pediatric CBF-AML By SNP-Array Karyotyping and Extensive Mutational Analysis. Blood 2014; 124: 1007.
27. Duployez N., Marceau-Renaut A., Boissel N., et al. Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood 2016; 127 (20): 2451-9.
28. Bertoli S., Vergez F., Sarry J.-E., et al. Do AML patients with DNMT3A exon 23 mutations benefit from idarubicin as compared to daunorubicin? A single center experience Olivier LaRochelle1. Oncotarget 2011; 2 (11): 850-61.
29. Sihto H., Sarlomo-Rikala M., Tynninen O., et al. KIT and Platelet-Derived Growth Factor Receptor Alpha Tyrosine Kinase Gene Mutations and KIT Amplifications in Human Solid Tumors. J Clin Oncol 2005; 23 (1).
События
-
Журнал «Літасфера» присоединился к Elpub! >>>
22 июл 2025 | 11:00 -
К платформе Elpub присоединился журнал «Труды НИИСИ» >>>
21 июл 2025 | 10:43 -
Журнал «Успехи наук о животных» присоединился к Elpub! >>>
18 июл 2025 | 12:37 -
Журнал «Наука. Инновации. Технологии» принят в DOAJ >>>
17 июл 2025 | 12:17 -
К платформе Elpub присоединился журнал « Библиотечный мир» >>>
15 июл 2025 | 12:17