Журналов:     Статей:        

Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2016; 15: 72-80

Опыт применения TCRaß+ и CD19+ деплеции при неродственных и гаплоидентичных трансплантациях гемопоэтических стволовых клеток у детей с первичными иммунодефицитными состояниями

Лаберко Александра Леонидовна, Масчан Михаил Александрович, Шелихова Лариса Николаевна, Скворцова Юлия Валерьевна, Шипицына Ирина Павловна, Гутовская Елена Игоревна, Смирнова Ирина Николаевна, Родина Юлия Александровна, Дерипапа Елена Васильевна, Дибирова Суна Абдурагимовна, Хамин Игорь Геннадьевич, Новичкова Галина Анатольевна, Масчан Алексей Александрович, Щербина Анна Юрьевна, Балашов Дмитрий Николаевич

https://doi.org/10.24287/1726-1708-2016-15-1-72-80

Аннотация

В работе представлены результаты трансплантации гемопоэтических стволовых клеток (ТГСК) с применением TCRaß+/CD19+ деплеции трансплантата у пациентов с первичными иммунодефицитными состояниями (ПИДС). Основной целью работы явилась оценка эффективности терапии пациентов с использованием инновационной технологии подготовки трансплантата, направленной на снижение риска развития реакции «трансплантат против хозяина» (РТПХ) при сохранении адекватного контроля инфекционных осложнений после ТГСК. С июля 2012 г. по сентябрь 2015 г. 60 пациентам с ПИДС в возрасте 0,24-17,5 года (медиана 2,4 года) была выполнена ТГСК от неродственного (n = 46) и гаплоидентичного (n = 14) доноров с TCRaß+/CD19+ деплецией. Количество CD34+-клеток в трансплантате составило 3,2-21,3 X 106/кг (медиана 11,7 х 106/кг), количество TCRaß+-лимфоцитов - 0,45-368 х 103/кг (медиана 11,73 х 103/кг). Кумулятивная вероятность развития острой РТПХ составила 19% [95% доверительный интервал (ДИ) 11-32%], без статистически значимых различий при сравнении ТГСК от неродственного (16%: 95% ДИ 8-31%) и гаплоидентичного (30%: 95% ДИ 13-68%) доноров (p = 0,98). У большинства пациентов (9 из 11) зарегистрирована острая РТПХ II стадии, и только у двух пациентов - РТПХ III-IV стадии. Кумулятивная вероятность реактивации цитомегаловирусной (ЦМВ)-инфекции составила 47% (95% ДИ 33-66%), а частота возникновения висцеральных ЦМВ-инфекций -13,8% (у 8 из 58 пациентов), однако эти показатели не оказывали значимого влияния на общую выживаемость пациентов. Ассоциированная с вирусом Эпштейна-Барр посттрансплантационная лимфопролиферативная болезнь не зарегистрирована ни у одного из пациентов. Кумулятивный риск развития недостаточности трансплантата (первичное неприживление или отторжение) составил 25% (95% ДИ 16-40%) без статистически значимых различий в зависимости от вида донора - неродственный или гаплоидентичный (25%: 95% ДИ 15-42% против 24%: 95% ДИ 15-42% соответственно: p = 0,92). Однако при детальном анализе были выявлены различия между группами пациентов, которым проводили кондиционирование с одним и двумя алкилирующими агентами: кумулятивный риск развития недостаточности трансплантата составил 33% (95% Ди 20-55%) и 13% (95% ДИ 4-36%) соответственно (p = 0,48). Пациентам с недостаточностью трансплантата (n = 13) были выполнены повторные ТГСК с применением различных технологий: отторжение трансплантата после повторной ТГСК зарегистрировано у двух пациентов, 1 пациент умер. Медиана наблюдения за пациентами после ТГСК составила 442 (20-1181) дня. Общая выживаемость составила 80% (95% ДИ 69-92%), кумулятивная вероятность смерти, ассоциированной с ТГСК, - 12% (95% ДИ 6-24%). Причиной смерти 6 из 7 пациентов явились инфекционные осложнения в раннем посттрансплантационном периоде. Таким образом, ТГСК с TCRaß+/CD19+ деплецией является перспективной технологией, позволяющей контролировать риски основных посттрансплантационных осложнений и обеспечивать высокие показатели выживаемости пациентов с ПИДС.
Список литературы

1. Fischer A. Human primary immunodeficiency diseases. Immunity. 2007; 27(6): 835-45.

2. Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet. 1968; 2(7583): 1366-9.

3. Bach FH, Albertini RJ, Joo P, Anderson JL, Bortin MM. Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome. Lancet. 1968; 2(7583): 1364-6.

4. Gennery AR, Slatter MA, Grandin L, Taupin P, Cant AJ, Veys P, et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol. 2010; 126(3): 602-10.e1-11.

5. Pai SY, Notarangelo LD. Hematopoietic cell transplantation for Wiskott-Aldrich syndrome: advances in biology and future directions for treatment. Immunol Allergy Clin North Am. 2010; 30(2): 179-94.

6. Booth C, Gilmour KC, Veys P, Gennery AR, Slatter MA, Chapel, H et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood. 2011; 117(1): 53-62.

7. Chakrabarti S, Milligan DW, Brown J, Osman H, Vipond IB, Pamphilon DH, et al. Influence of cytomegalovirus (CMV) sero-positivity on CMV infection, lymphocyte recovery and non-CMV infections following T-cell-depleted allogeneic stem cell transplantation: a comparison between two T-cell depletion regimens. Bone Marrow Transplant. 2004; 33(2): 197-204.

8. Bacigalupo A, Mordini N, Pitto A, Piaggio G, Podestà M, Benvenuto F, et al. Transplantation of HLA-mismatched CD34+ selected cells in patients with advanced malignancies: severe immunodeficiency and related complications. Br J Haematol. 1997; 98(3): 760-6.

9. Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998; 339(17): 1186-93.

10. Bertaina A, Merli P, Rutella S, Pagliara D, Bernardo ME, Masetti R, et al. HLA-haploidentical stem cell transplantation after removal of aß+ T and B cells in children with nonmalignant disorders. Blood. 2014; 124(5): 822-6.

11. Airoldi I, Bertaina A, Prigione I, Zorzoli A, Pagliara D, Cocco C, et al. γδ T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-aß+/CD19+ lymphocytes. Blood. 2015; 125(15): 2349-58.

12. Balashov D, Shcherbina A, Maschan M, Trakhtman P, Skvortsova Y, Shelikhova L, et al. Single-center experience of unrelated and haploidentical stem cell transplantation with TCRaß and CD19 depletion in children with primary immunodeficiency syndromes. Biol Blood Marrow Transplant. 2015; 21(11): 1955-62.

13. Vantourout P, Hayday A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat Rev Immunol. 2013; 13(2): 88-100.

14. Bekiaris V, Šedy JR, Ware CF. Mixing signals: molecular turn ons and turn offs for innate γδ T-cells. Front Immunol. 2014; 5: 654.

15. Curtis RE, Travis LB, Rowlings PA, Socié G, Kingma DW, Banks PM, et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood. 1999; 94(7): 2208-16.

16. Chiang KY, Hazlett LJ, Godder KT, Abhyankar SH, Christiansen NP, van Rhee F, et al. Epstein-Barr virus-associated B cell lymphoproliferative disorder following mismatched related T cell-depleted bone marrow transplantation. Bone Marrow Transplant. 2001; 28(12): 1117-23.

17. Lang P, Teltschik HM, Feuchtinger T, Müller I, Pfeiffer M, Schumm M, et al. Transplantation of CD3/CD19 depleted allografts from haploidentical family donors in paediatric leukaemia. Br J Haematol. 2014; 165(5): 688-98.

18. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995; 15(6): 825-8.

19. Grunebaum E, Mazzolari E, Porta F, Dallera D, Atkinson A, Reid B, et al. Bone marrow transplantation for severe combined immune deficiency. JAMA. 2006: 295(5): 508-18.

20. Slatter M, Nademi Z, Patel S, Barge D, Valappil M, Brigham K, et al. Haploidentical hematopoietic stem cell transplantation can lead to viral clearance in severe combined immunodeficiency. J Allergy Clin Immunol. 2013; 131(6): 1705-8.

21. Dvorak CC, Hassan A, Slatter MA, Hönig M, Lankester AC, Buckley RH, et al. Comparison of outcomes of hematopoietic stem cell transplantation without chemotherapy conditioning by using matched sibling and unrelated donors for treatment of severe combined immunodeficiency. J Allergy Clin Immunol. 2014; 134(4): 935-43.e15.

22. Балашов ДН. Факторы риска и контроль вирусных инфекций после трансплантации гемопоэтических стволовых клеток. Автореф. дисс.. докт. мед. наук. М., 2011. / Balashov DN. Faktory riska i kontrol' virusnykh infektsii posle transplantatsii gemopoeticheskikh stvolovykh kletok. Avtoref. diss. dokt. med. nauk. Moscow, 2011. (In Russian).

23. Laberko A, Maschan M, Shelikhova L, Balashov D, Skvortsova J, Boyakova E, et al. Analysis of risk factors of viral reactivation after haploidentical and matched unrelated hematopoietic stem cell transplantation with TCR alpha/beta and CD19 depletion. Bone Marrow Transplant. 2015; 50(Suppl. 1): S187-8. (41st Annual Meeting of the European Society for Blood and Marrow Transplantation, March, 22-25, 2015, Istanbul, Turkey).

24. Hiwarkar P, Gajdosova E, Qasim W, Worth A, Breuer J, Chiesa R, et al. Frequent occurrence of cytomegalovirus retinitis during immune reconstitution warrants regular ophthalmic screening in high-risk pediatric allogeneic hematopoietic stem cell transplant recipients. Clin Infect Dis. 2014; 58(12): 1700-6.

25. Cantoni N, Hirsch HH, Khanna N, Gerull S, Buser A, Bucher C, et al. Evidence for a bidirectional relationship between cytomegalovirus replication and acute graft-versus-host disease. Biol Blood Marrow Transplant. 2010; 16(9): 1309-14.

26. Handgretinger R. Negative depletion of CD3(+) and TcRaß(+) T cells. Curr Opin Hematol. 2012; 19(6): 434-9.

27. Amrolia P, Gaspar HB, Hassan A, Webb D, Jones A, Sturt N, et al. Nonmyeloablative stem cell transplantation for congenital immunodeficiencies. Blood. 2000; 96(4): 1239-46.

28. Rao K, Amrolia PJ, Jones A, Cale CM, Naik P, King D, et al. Improved survival after unrelated donor bone marrow transplantation in children with primary immunodeficiency using a reduced-intensity conditioning regimen. Blood. 2005: 105(2): 879-85.

29. Oshrine BR, Olson TS, Bunin N. Mixed chimerism and graft loss in pediatric recipients of an alemtuzumab-based reduced-intensity conditioning regimen for non-malignant disease. Pediatr Blood Cancer. 2014; 61(10): 1852-9.

30. Shaw BE, Byrne JL, Das-Gupta E, Carter GI, Russell NH. The impact of chimerism patterns and predonor leukocyte infusion lymphopenia on survival following T cell-depleted reduced intensity conditioned transplants. Biol Blood Marrow Transplant. 2007; 13(5): 550-9.

Pediatric Hematology/Oncology and Immunopathology. 2016; 15: 72-80

TCRaß+ and CD19+ depletion in unrelated and haploidentical hematopoietic stem cell transplantation in children with primary immunodeficiencies

Laberko Alexandra L., Maschan Michael A., Shelikhova Larissa N., Skvortsova Yuliya V., Shipitsyna Irina P., Gutovskaya Elena I., Smirnova Irina N., Rodina Yuliya A., Deripapa Elena V., Dibirova Suna A., Khamin Igor G., Novichkova Galina A., Maschan Alexei A., Shcherbina Anna Yu., Balashov Dmitry N.

https://doi.org/10.24287/1726-1708-2016-15-1-72-80

Abstract

The results of hematopoietic stem cell transplantation (HSCT) with TCRaß+/CD19+ depletion in patients with primary immunodeficiencies (PIDs) are presented. The aim of our study was to evaluate the efficacy of therapy with the use of innovation technology of the transplant preparation, aimed at minimization of the risk of graft-versus-host disease (GVHD) with adequate control of infectious complications after HSCT. A total of 60 patients with PIDs aged from 0.24 to 17.5 years (median 2.4 years) received HSCT with TCRaß+/CD19+ depletion from unrelated (n = 46) and haploidentical (n = 14) donors from July 2012 to September 2015. The count of CD34+-cells in the transplant was 3.2-21.3 x 106/kg (median 11.7 x 106/kg), the count of TCRaß+-lymphocytes - 0.45-368 x 103/kg (median 11.73 x 103/kg). The cumulative incidence of acute GVHD was 19% [95% confidence interval (CI) 11-32%], without statistically significant difference between the patients receiving HSCT from unrelated (16%: 95% CI 8-31%) and haploidentical (30%: 95% CI 13-68%) donors (p = 0.98). The majority of patients (9 of 11) developed stage II acute GVHD and only 2 patients had stage III-IV GVHD. The cumulative incidence of cytomegalovirus (CMV) reactivation was 47% (95% CI 33-66%), the incidence of visceral CMV infection was 13.8% (in 8 of 58 patients), but these parameters were inessential for the overall survival of patients. Epstein-Barr virus-associated posttransplant lymphoproliferative disease was not recorded in any of the patients. The cumulative incidence of graft failure (graft failure or graft rejection) was 25% (95% CI 16-40%) without statistically significant difference between patients receiving HSCT from unrelated and haploidentical donors (25%: 95% CI 15-42% vs. 24%: 95% CI 15-42%, respectively: p = 0.92). However, a detailed analysis revealed differences between the groups of patients receiving one and two alkylating agents in conditioning regimes: the cumulative risk of the transplant failure was 33% (95% CI 20-55%) and 13% (95% CI 4-36%), respectively (p = 0.48). Patients with the transplant failure (n = 13) received repeated HSCT with the use of various technologies: two patients developed graft rejection after second HSCT, 1 patient died. The median follow-up period after HSCT was 442 (20-1181) days. Overall survival was 80% (95% CI 69-92%), the cumulative incidence of transplant-related mortality - 12% (95% CI 6-24%). Deaths were caused by infectious complications during the early posttransplant period in 6 of 7 patients. Hence, HSCT with TCRaß+/CD19+ depletion proved to be a promising technology allowing the regulation of risks of the major posttransplant complications and improving the survival of patients with PIDs.
References

1. Fischer A. Human primary immunodeficiency diseases. Immunity. 2007; 27(6): 835-45.

2. Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet. 1968; 2(7583): 1366-9.

3. Bach FH, Albertini RJ, Joo P, Anderson JL, Bortin MM. Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome. Lancet. 1968; 2(7583): 1364-6.

4. Gennery AR, Slatter MA, Grandin L, Taupin P, Cant AJ, Veys P, et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol. 2010; 126(3): 602-10.e1-11.

5. Pai SY, Notarangelo LD. Hematopoietic cell transplantation for Wiskott-Aldrich syndrome: advances in biology and future directions for treatment. Immunol Allergy Clin North Am. 2010; 30(2): 179-94.

6. Booth C, Gilmour KC, Veys P, Gennery AR, Slatter MA, Chapel, H et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood. 2011; 117(1): 53-62.

7. Chakrabarti S, Milligan DW, Brown J, Osman H, Vipond IB, Pamphilon DH, et al. Influence of cytomegalovirus (CMV) sero-positivity on CMV infection, lymphocyte recovery and non-CMV infections following T-cell-depleted allogeneic stem cell transplantation: a comparison between two T-cell depletion regimens. Bone Marrow Transplant. 2004; 33(2): 197-204.

8. Bacigalupo A, Mordini N, Pitto A, Piaggio G, Podestà M, Benvenuto F, et al. Transplantation of HLA-mismatched CD34+ selected cells in patients with advanced malignancies: severe immunodeficiency and related complications. Br J Haematol. 1997; 98(3): 760-6.

9. Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998; 339(17): 1186-93.

10. Bertaina A, Merli P, Rutella S, Pagliara D, Bernardo ME, Masetti R, et al. HLA-haploidentical stem cell transplantation after removal of aß+ T and B cells in children with nonmalignant disorders. Blood. 2014; 124(5): 822-6.

11. Airoldi I, Bertaina A, Prigione I, Zorzoli A, Pagliara D, Cocco C, et al. γδ T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-aß+/CD19+ lymphocytes. Blood. 2015; 125(15): 2349-58.

12. Balashov D, Shcherbina A, Maschan M, Trakhtman P, Skvortsova Y, Shelikhova L, et al. Single-center experience of unrelated and haploidentical stem cell transplantation with TCRaß and CD19 depletion in children with primary immunodeficiency syndromes. Biol Blood Marrow Transplant. 2015; 21(11): 1955-62.

13. Vantourout P, Hayday A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat Rev Immunol. 2013; 13(2): 88-100.

14. Bekiaris V, Šedy JR, Ware CF. Mixing signals: molecular turn ons and turn offs for innate γδ T-cells. Front Immunol. 2014; 5: 654.

15. Curtis RE, Travis LB, Rowlings PA, Socié G, Kingma DW, Banks PM, et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood. 1999; 94(7): 2208-16.

16. Chiang KY, Hazlett LJ, Godder KT, Abhyankar SH, Christiansen NP, van Rhee F, et al. Epstein-Barr virus-associated B cell lymphoproliferative disorder following mismatched related T cell-depleted bone marrow transplantation. Bone Marrow Transplant. 2001; 28(12): 1117-23.

17. Lang P, Teltschik HM, Feuchtinger T, Müller I, Pfeiffer M, Schumm M, et al. Transplantation of CD3/CD19 depleted allografts from haploidentical family donors in paediatric leukaemia. Br J Haematol. 2014; 165(5): 688-98.

18. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995; 15(6): 825-8.

19. Grunebaum E, Mazzolari E, Porta F, Dallera D, Atkinson A, Reid B, et al. Bone marrow transplantation for severe combined immune deficiency. JAMA. 2006: 295(5): 508-18.

20. Slatter M, Nademi Z, Patel S, Barge D, Valappil M, Brigham K, et al. Haploidentical hematopoietic stem cell transplantation can lead to viral clearance in severe combined immunodeficiency. J Allergy Clin Immunol. 2013; 131(6): 1705-8.

21. Dvorak CC, Hassan A, Slatter MA, Hönig M, Lankester AC, Buckley RH, et al. Comparison of outcomes of hematopoietic stem cell transplantation without chemotherapy conditioning by using matched sibling and unrelated donors for treatment of severe combined immunodeficiency. J Allergy Clin Immunol. 2014; 134(4): 935-43.e15.

22. Balashov DN. Faktory riska i kontrol' virusnykh infektsii posle transplantatsii gemopoeticheskikh stvolovykh kletok. Avtoref. diss.. dokt. med. nauk. M., 2011. / Balashov DN. Faktory riska i kontrol' virusnykh infektsii posle transplantatsii gemopoeticheskikh stvolovykh kletok. Avtoref. diss. dokt. med. nauk. Moscow, 2011. (In Russian).

23. Laberko A, Maschan M, Shelikhova L, Balashov D, Skvortsova J, Boyakova E, et al. Analysis of risk factors of viral reactivation after haploidentical and matched unrelated hematopoietic stem cell transplantation with TCR alpha/beta and CD19 depletion. Bone Marrow Transplant. 2015; 50(Suppl. 1): S187-8. (41st Annual Meeting of the European Society for Blood and Marrow Transplantation, March, 22-25, 2015, Istanbul, Turkey).

24. Hiwarkar P, Gajdosova E, Qasim W, Worth A, Breuer J, Chiesa R, et al. Frequent occurrence of cytomegalovirus retinitis during immune reconstitution warrants regular ophthalmic screening in high-risk pediatric allogeneic hematopoietic stem cell transplant recipients. Clin Infect Dis. 2014; 58(12): 1700-6.

25. Cantoni N, Hirsch HH, Khanna N, Gerull S, Buser A, Bucher C, et al. Evidence for a bidirectional relationship between cytomegalovirus replication and acute graft-versus-host disease. Biol Blood Marrow Transplant. 2010; 16(9): 1309-14.

26. Handgretinger R. Negative depletion of CD3(+) and TcRaß(+) T cells. Curr Opin Hematol. 2012; 19(6): 434-9.

27. Amrolia P, Gaspar HB, Hassan A, Webb D, Jones A, Sturt N, et al. Nonmyeloablative stem cell transplantation for congenital immunodeficiencies. Blood. 2000; 96(4): 1239-46.

28. Rao K, Amrolia PJ, Jones A, Cale CM, Naik P, King D, et al. Improved survival after unrelated donor bone marrow transplantation in children with primary immunodeficiency using a reduced-intensity conditioning regimen. Blood. 2005: 105(2): 879-85.

29. Oshrine BR, Olson TS, Bunin N. Mixed chimerism and graft loss in pediatric recipients of an alemtuzumab-based reduced-intensity conditioning regimen for non-malignant disease. Pediatr Blood Cancer. 2014; 61(10): 1852-9.

30. Shaw BE, Byrne JL, Das-Gupta E, Carter GI, Russell NH. The impact of chimerism patterns and predonor leukocyte infusion lymphopenia on survival following T cell-depleted reduced intensity conditioned transplants. Biol Blood Marrow Transplant. 2007; 13(5): 550-9.