Журналов:     Статей:        

Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2016; 15: 10-16

Молекулярно-генетическая диагностика первичных иммунодефицитных состояний (обзор литературы и собственные клинические наблюдения)

Кузьменко Наталья Борисовна, Варламова Татьяна Владимировна, Мерсиянова Ирина Викторовна, Райкина Елена Владиславовна, Бобрынина Власта Олеговна, Щербина Анна Юрьевна

https://doi.org/10.24287/1726-1708-2016-15-1-10-16

Аннотация

Первичные иммунодефицитные состояния (ПИДС) представляют собой гетерогенную группу заболеваний с высокой предрасположенностью к развитию инфекций, аутоиммунных и онкологических заболеваний. Известно около 300 генов, поломки которых приводят к иммунодефициту. Понимание механизмов наследования болезни, их различных особенностей, а также внешних факторов, влияющих на проявление генетических дефектов, позволяет прогнозировать выраженность клинических проявлений иммунодефицита на ранних этапах диагностики, определять тактику ведения пациента, а также вероятность рождения здоровых детей в семьях, в которых встречалось заболевание. В статье приведены примеры из собственной практики, которые иллюстрируют различные закономерности и феномены наследования ПИДС. В результате проведения пренатальной диагностики на базе Федерального научно-клинического центра детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева Минздрава России (Москва) было обследовано 16 эмбрионов, сиблинги которых имели генетические дефекты ПИДС. У 4 из 16 эмбрионов диагноз ПИДС был подтвержден. Также в статье представлены рекомендации по обследованию родственников больных с ПИДС.
Список литературы

1. Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, Cunningham-Rundles C, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency. Front Immunol. 2014; 5: 162.

2. Fischer A. Human primary immunodeficiency diseases. Immunity. 2007; 27(6): 835-45.

3. Pessia E, Makino T, Bailly-Bechet M, McLysaght A, Marais GA. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci USA. 2012; 109(14): 5346-51.

4. Nguyen DK, Disteche CM. Dosage compensation of the active X chromosome in mammals. Nat Genet. 2006; 38(1): 47-53.

5. Rösen-Wolff A, Soldan W, Heyne K, Bickhardt J, Gahr M, Roesler J. Increased susceptibility of a carrier of X-linked chronic granulomatous disease (CGD) to Aspergillus fumigatus infection associated with age-related skewing of lyonization. Ann Hematol. 2001; 80(2): 113-5.

6. Moellering RC Jr, Weinberg AN. Persistent Salmonella infection in a female carrier for chronic granulomatous disease. Ann Intern Med. 1970; 73(4): 595-601.

7. Miyazaki S, Shin H, Goya N, Nakagawara A. Identification of a carrier mother of a female patient with chronic granulomatous disease. J Pediatr. 1976; 89(5): 784-6.

8. Mills EL, Rholl KS, Quie PG. X-linked inheritance in females with chronic granulomatous disease. J Clin Invest. 1980; 66(2): 332-40.

9. Lun A, Roesler J, Renz H. Unusual late onset of X-linked chronic granulomatous disease in an adult woman after unsuspicious childhood. Clin Chem. 2002; 48(5): 780-1.

10. Dusi S, Poli G, Berton G, Catalano P, Fornasa CV, Peserico A. Chronic granulomatous disease in an adult female with granulomatous cheilitis. Evidence for an X-linked pattern of inheritance with extreme lyonization. Acta Haematol. 1990; 84(1): 49-56.

11. Curnutte JT, Hopkins PJ, Kuhl W, Beutler E. Studying X inactivation. Lancet. 1992; 339(8795): 749.

12. Al-Herz W, Aldhekri H, Barbouche MR, Rezaei N. Consanguinity and primary immunodeficiencies. Hum Hered. 2014; 77(1-4): 138-43.

13. Rezaei N, Mohammadinejad P, Aghamohammadi A. The demographics of primary immunodeficiency diseases across the unique ethnic groups in Iran, and approaches to diagnosis and treatment. Ann N Y Acad Sci. 2011; 1238: 24-32.

14. Varon R, Seemanova E, Chrzanowska K, Hnateyko O, Piekutowska-Abramczuk D, Krajewska-Walasek M, et al. Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three Slav populations. Eur J Hum Genet. 2000; 8(11): 900-2.

15. Martlnez-Feito A, Melero J, Mora-DIaz S, Rodrlguez-Vigil C, Elduayen R, Gonzalez-Granado LI, et al. Autoimmune lymphoproliferative syndrome due to somatic FAS mutation (ALPS-sFAS) combined with a germline caspase-10 (CASP10) variation. Immunobiology. 2016; 221(1): 40-7.

16. Borregaard N. Severe congenital neutropenia: new lane for ELANE. Blood. 2014: 123(4): 462-3.

17. Ochs HD, Smith CIE, Puck J.M., eds. Primary immunodeficiency diseases: a molecular and genetic approach. 2nd ed. Oxford University Press: 2007: Pt 2.

18. Zhu Q, Zhang M, Blaese RM, Derry JM, Junker A, Francke U, et al. The Wiskott-Aldrich syndrome and X-linked congenital thrombocytopenia are caused by mutations of the same gene. Blood. 1995; 86(10): 3797-804. Available at: http: //www-ncbi-nlm-nih-gov.ezp-prod1.hul.harvard.edu/pubmed/7579347

19. Notarangelo LD, Miao CH, Ochs HD. Wiskott-Aldrich syndrome. Curr Opin Hematol. 2008; 15(1): 30-6.

20. Ochs HD, Filipovich AH, Veys P, Cowan MJ, Kapoor N. Wiskott-Aldrich syndrome: diagnosis, clinical and laboratory manifestations, and treatment. Biol Blood Marrow Transplant. 2009; 15(1, Suppl): 84-90.

21. Ochs HD, Smith CIE, Puck JM., eds. Primary immunodeficiency diseases: a molecular and genetic approach. 2nd ed. Oxford University Press: 2007: Pt 1: 16-9.

22. Biesecker LG, Spinner NB. A genomic view of mosaicism and human disease. Nat Rev Genet. 2013; 14(5): 307-20.

Pediatric Hematology/Oncology and Immunopathology. 2016; 15: 10-16

Molecular genetic diagnosis of primary immunodeficiencies (Review of literature and clinical case reports)

Kuzmenko Natalya B., Varlamova Tatyana V., Mersiyanova Irina V., Raikina Elena V., Bobrynina Vlasta O., Shcherbina Anna Yu.

https://doi.org/10.24287/1726-1708-2016-15-1-10-16

Abstract

Primary immunodeficiencies (PIDs) form a heterogeneous group of diseases associated with high incidence of infections, autoimmune diseases and malignancies. About 300 genes are known, breakage in which lead to immunodeficiency. Understanding of the mechanisms of inheritance of PID, their characteristics, and the external factors essential for manifestation of the genetic defects makes it possible to predict the clinical manifestations of immunodeficiency at the early stages of diagnosis, determines the treatment strategy, and predicts the probability of healthy progeny in families with a history of the disease. Clinical case reports from the authors' practice illustrate various regularities and phenomena of PIDs inheritance. Sixteen embryos of siblings with genetically determined PID were examined for prenatal diagnosis. The diagnosis of PIDs was confirmed in 4 of 16 embryos. Recommendations on examinations of relatives of patients with PIDs are presented in the article.
References

1. Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, Cunningham-Rundles C, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency. Front Immunol. 2014; 5: 162.

2. Fischer A. Human primary immunodeficiency diseases. Immunity. 2007; 27(6): 835-45.

3. Pessia E, Makino T, Bailly-Bechet M, McLysaght A, Marais GA. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci USA. 2012; 109(14): 5346-51.

4. Nguyen DK, Disteche CM. Dosage compensation of the active X chromosome in mammals. Nat Genet. 2006; 38(1): 47-53.

5. Rösen-Wolff A, Soldan W, Heyne K, Bickhardt J, Gahr M, Roesler J. Increased susceptibility of a carrier of X-linked chronic granulomatous disease (CGD) to Aspergillus fumigatus infection associated with age-related skewing of lyonization. Ann Hematol. 2001; 80(2): 113-5.

6. Moellering RC Jr, Weinberg AN. Persistent Salmonella infection in a female carrier for chronic granulomatous disease. Ann Intern Med. 1970; 73(4): 595-601.

7. Miyazaki S, Shin H, Goya N, Nakagawara A. Identification of a carrier mother of a female patient with chronic granulomatous disease. J Pediatr. 1976; 89(5): 784-6.

8. Mills EL, Rholl KS, Quie PG. X-linked inheritance in females with chronic granulomatous disease. J Clin Invest. 1980; 66(2): 332-40.

9. Lun A, Roesler J, Renz H. Unusual late onset of X-linked chronic granulomatous disease in an adult woman after unsuspicious childhood. Clin Chem. 2002; 48(5): 780-1.

10. Dusi S, Poli G, Berton G, Catalano P, Fornasa CV, Peserico A. Chronic granulomatous disease in an adult female with granulomatous cheilitis. Evidence for an X-linked pattern of inheritance with extreme lyonization. Acta Haematol. 1990; 84(1): 49-56.

11. Curnutte JT, Hopkins PJ, Kuhl W, Beutler E. Studying X inactivation. Lancet. 1992; 339(8795): 749.

12. Al-Herz W, Aldhekri H, Barbouche MR, Rezaei N. Consanguinity and primary immunodeficiencies. Hum Hered. 2014; 77(1-4): 138-43.

13. Rezaei N, Mohammadinejad P, Aghamohammadi A. The demographics of primary immunodeficiency diseases across the unique ethnic groups in Iran, and approaches to diagnosis and treatment. Ann N Y Acad Sci. 2011; 1238: 24-32.

14. Varon R, Seemanova E, Chrzanowska K, Hnateyko O, Piekutowska-Abramczuk D, Krajewska-Walasek M, et al. Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three Slav populations. Eur J Hum Genet. 2000; 8(11): 900-2.

15. Martlnez-Feito A, Melero J, Mora-DIaz S, Rodrlguez-Vigil C, Elduayen R, Gonzalez-Granado LI, et al. Autoimmune lymphoproliferative syndrome due to somatic FAS mutation (ALPS-sFAS) combined with a germline caspase-10 (CASP10) variation. Immunobiology. 2016; 221(1): 40-7.

16. Borregaard N. Severe congenital neutropenia: new lane for ELANE. Blood. 2014: 123(4): 462-3.

17. Ochs HD, Smith CIE, Puck J.M., eds. Primary immunodeficiency diseases: a molecular and genetic approach. 2nd ed. Oxford University Press: 2007: Pt 2.

18. Zhu Q, Zhang M, Blaese RM, Derry JM, Junker A, Francke U, et al. The Wiskott-Aldrich syndrome and X-linked congenital thrombocytopenia are caused by mutations of the same gene. Blood. 1995; 86(10): 3797-804. Available at: http: //www-ncbi-nlm-nih-gov.ezp-prod1.hul.harvard.edu/pubmed/7579347

19. Notarangelo LD, Miao CH, Ochs HD. Wiskott-Aldrich syndrome. Curr Opin Hematol. 2008; 15(1): 30-6.

20. Ochs HD, Filipovich AH, Veys P, Cowan MJ, Kapoor N. Wiskott-Aldrich syndrome: diagnosis, clinical and laboratory manifestations, and treatment. Biol Blood Marrow Transplant. 2009; 15(1, Suppl): 84-90.

21. Ochs HD, Smith CIE, Puck JM., eds. Primary immunodeficiency diseases: a molecular and genetic approach. 2nd ed. Oxford University Press: 2007: Pt 1: 16-9.

22. Biesecker LG, Spinner NB. A genomic view of mosaicism and human disease. Nat Rev Genet. 2013; 14(5): 307-20.