Журналов:     Статей:        

Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2016; 15: 66-73

Первичная диагностика и оценка минимальной диссеминированной и минимальной остаточной болезни путем определения перестройки c-MYC-IgH с помощью полимеразной цепной реакции длинных фрагментов при лимфоме/лейкозе Беркитта

Лавриненко Виктория Александровна, Волочник Елена Викторовна, Фёдорова Алина Степановна, Алейникова Ольга Витальевна

https://doi.org/10.24287/1726-1708-2016-15-4-66-73

Аннотация

Целью исследования явились определение перестройки c-MYC-IgH с помощью полимеразной цепной реакции длинных фрагментов (ПЦР-ДФ) для диагностики лимфомы/лейкоза Беркитта, сравнение результатов ПЦР-Дф с цитогенетическими методами, а также оценка возможности использования ПЦР-ДФ для анализа минимальной диссеминированной (МДБ) и минимальной остаточной болезни (МОБ). Обследованы 55 пациентов в возрасте от 2 до 23 лет с лимфомой/лейкозом Беркитта, перестройка c-MYC-IgH с помощью ПЦР-ДФ была выявлена у 35 (63,6%) пациентов. Проведение ПЦР-ДФ возможно у всех пациентов в отличие от G-окрашивания, однако c-MYC-IgH с помощью ПЦР-ДФ была выявлена только у 27 (71,1%) из 38 пациентов с цитогенетически подтвержденной транслокацией t(8;14) (q24;q32). ПЦР-ДФ позволила выявить перестройку c-MYC-IgH у 2 (40%) из 5 пациентов, у которых ее не удалось выявить с помощью флуоресцентной гибридизации in situ (fluorescence in situ hybridization - FISH). Комбинация методов позволила выявить перестройки гена c-MYC у 52 (94,5%) пациентов. МДБ с помощью ПЦР-ДФ была выявлена у 11,1% пациентов с III стадией лимфомы Беркитта и у всех пациентов с IV стадией лимфомы Беркитта, в том числе и без морфологического поражения костного мозга. ПЦР-ДФ может быть использована для первичной дифференциальной диагностики лимфомы/лейкоза Беркитта, а также для определения МДБ. При этом для оценки МОБ данный метод малоинформативен из-за невысокой чувствительности и получения только качественных результатов.
Список литературы

1. Mosse С, Weck K. The Molecular pathology of Burkitt lymphoma. In: Dunphy CH, ed. Molecular pathology of hematolymphoid diseases. Spinger New York Dordrecht Heidelberg London, 2010$227-85.

2. Mbulaiteye SM, Biggar RJ, Bhatia K, Linet MS, Devesa SS. Sporadic childhood Burkitt lymphoma incidence in the United States during 1992-2005. Pediatr Blood Cancer. 2009;53(3):366-70.

3. Pagano L, Caira M, Valentini CG, Fianchi L. Clinical aspects and therapy of sporadic Burkitt lymphoma. Mediterr J Hematol Infect Dis. 2009;1(2):e2009030.

4. Patte C, Auperin A, Gerrard M, Michon J, Pinkerton R, Sposto R, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773-80.

5. Woessmann W, Seidemann K, Mann G, Zimmermann M, Burkhardt B, Oschlies I, et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood. 2005;105(3):948-58.

6. Mussolin L, Pillon M, Conter V, Piglione M, Lo Nigro L, Pierani P, et al. Prognostic role of minimal residual disease in mature B-cell acute lymphoblastic leukemia of childhood. J Clin Oncol. 2007;25(33):5254-61.

7. Jourdain A, Auperin A, Minard-Colin V, Aladjidi N, Zsiros J, Coze C, et al. Outcome of and prognostic factors for relapse in children and adolescents with mature B-cell lymphoma and leukemia treated in three consecutive prospective "Lymphomes Malins B" protocols. A Societe Frangaise des Cancers de l'Enfant study. Haematologica. 2015;100(6):810-7.

8. Mussolin L, Basso K, Pillon M, d’Amore ES, Lombardi A, Luzzatto L, et al. Prospective analysis of minimal bone marrow infiltration in pediatric Burkitt’s lymphomas by long-distance polymerase chain reaction for t(8;14)(q24;q32). Leukemia. 2003;17(3):585-9.

9. Mussolin L, Pillon M, d’Amore ES, Conter V, Piglione M, Lo Nigro L, et al. Minimal disseminated disease in high-risk Burkitt’s lymphoma identifies patients with different prognosis. J Clin Oncol. 2011;29(13):1779-84.

10. Shiramizu B, Goldman S, Smith L, Agsalda-Garcia M, Galardy P, Perkins SL, et al. Impact of persistent minimal residual disease post-consolidation therapy in children and adolescents with advanced Burkitt leukaemia: a Children’s Oncology Group Pilot Study Report. Br J Haematol. 2015;170(3):367-71.

11. Poirel HA, Cairo MS, Heerema NA, Swansbury J, Auperin A, Launay E, et al. Specific cytogenetic abnormalities are associated with a significantly inferior outcome in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB/LMB 96 international study. Leukemia. 2009;23(2):323-31.

12. Busch K, Borkhardt A, Wössmann W, Reiter A, Harbott J. Combined polymerase chain reaction methods to detect c-myc/IgH rearrangement in childhood Burkitt’s lymphoma for minimal residual disease analysis. Haematologica. 2004;89(7): 818-25.

13. Harris NL, Stein H, Coupland SE, Hummel M, Favera RD, Pasqualucci L, et al. New approaches to lymphoma diagnosis. Hematology Am Soc Hematol Educ Program. 2001;194-220.

14. Neri A, Barriga F, Knowles DM, Magrath IT, Dalla-Favera R. Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenetic forms of Burkitt lymphoma. Proc Natl Acad Sci USA. 1988; 85(8):2748-52.

15. Emanuel BS, Seiden JR, Chaganti RS, Jhanwar S, Nowell PC, Croce CM. The 2p breakpoint of a 2;8 translocation in Burkitt lymphoma interrupts the V kappa locus. Proc Natl Acad Sci USA. 1984;81(8):2444-6.

16. Hollis GF, Mitchell KF, Battey J, Potter H, Taub R, Lenoir GM, et al. A variant translocation places the lambda immunoglobulin genes 3' to the c-myc oncogene in Burkitt's lymphoma. Nature. 1984;307(5953):752-5.

17. Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19(1):1-11.

18. Burmeister T, Schwartz S, Horst HA, Rieder H, Gökbuget N, Hoelzer D, et al. Molecular heterogeneity of sporadic adult Burkitt-type leukemia/lymphoma as revealed by PCR and cytogenetics: correlation with morphology, immunology and clinical features. Leukemia. 2005;19(8):1391-8.

19. Akasaka T, Muramatsu M, Ohno H, Miura I, Tatsumi E, Fukuhara S, et al. Application of long-distance polymerase chain reaction to detection of junctional sequences created by chromosomal translocation in mature B-cell neoplasms. Blood. 1996;88(3):985-94.

20. Basso K, Frascella E, Zanesco L, Rosolen A. Improved long-distance polymerase chain reaction for the detection of t(8;14)(q24;q32) in Burkitt's lymphomas. Am J Pathol. 1999;155(5):1479-85.

21. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al, eds. Classification of tumours of haematopoietic and lymphoid tissues. WHO Lyon, France, IARC Press, 2008.

22. Murphy SB. Classification, staging and end results of treatment of childhood non-Hodgkin’s lymphomas: dissimilarities from lymphomas in adults. Semin Oncol. 1980;7(3):332-9.

23. Самочатова ЕВ, Шелихова ЛН, Мякова НВ, Литвинов ДВ, Белогурова МБ, Фечина ЛГ и др. Возможности и проблемы современной терапии неходжкинских лимфом у детей и подростков. Педиатрия. Журнал им. ГН Сперанского. 2011;90(4):37-43.

24. Stasevich I, Utskevich R, Kustanovich A, Litvinko N, Savitskaya T, Chernyavskaya S, et al. Translocation (10;11)(p12;q23) in childhood acute myeloid leukemia: incidence and complex mechanism. Cancer Genet Cytogenet. 2006;169(2):114-20.

25. Shaffer LG, McGowan-Jordan J, Schmid M, edr. ISCN 2013: An International System for Human Cytogenetic Nomenclature. Basel, 2013.

26. Haralambieva E, Boerma EJ, van Imhoff GW, Rosati S, Schuuring E, MüllerHermelink HK, et al. Clinical, immunophenotypic, and genetic analysis of adult lymphomas with morphologic features of Burkitt Lymphoma. Am J Surg Pathol. 2005;29(8):1086-94.

27. Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF, et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354(23):2419-30.

28. Ferry JA. Burkitt’s lymphoma: clinicopathologic features and differential diagnosis. Oncologist. 2006;11(4):375-83.

29. zur Stadt U, Hoser G, Reiter A, Welte K, Sykora KW. Application of long PCR to detect t(8;14)(q24;q32) translocations in childhood Burkitt's lymphoma and B-ALL. Ann Oncol. 1997;8(Suppl. 1):31-5.

30. Joos S, Haluska FG, Falk MH, Henglein B, Hameister H, Croce CM, et al. Mapping chromosomal breakpoints of Burkitt's t(8;14) translocations far upstream of c-myc. Cancer Res. 1992;52(23):6547-52.

31. Shiramizu B, Goldman S, Kusao I, Agsalda M, Lynch J, Smith L, et al. Minimal disease assessment in the treatment of children and adolescents with intermediate-risk (stage III/IV) B-cell non-Hodgkin lymphoma: a Children’s Oncology Group report. Br J Haematol. 2001;153(6):758-63.

Pediatric Hematology/Oncology and Immunopathology. 2016; 15: 66-73

Primary diagnostics and assessment of minimal disseminated and minimal residual disease in Burkitt lymphoma/leukemia by detection of c-MYC-IgH rearrangements with long-distance polymerase chain reaction

Lavrinenko Victoria A., Volochnik Elena V., Fedorova Alina S., Aleinikova Olga V.

https://doi.org/10.24287/1726-1708-2016-15-4-66-73

Abstract

The aim of this study was to identify с-MYC-IgH with long-distance polymerase chain reaction (LD-PCR) for Burkitt's lymphoma/ leukemia diagnosis, to compare LD-PCR with cytogenetic methods and to evaluate the possibility of LD-PCR application for minimal disseminated (MdD) and minimal residual disease (MRD) detection. с-MYC-IgH rearrangements were detected in 63,6% of the 55 patients at the age 2-23 years. In comparison to G-banding, LD-PCR was possible to perform for all patients, however LD-PCR detected с-MYC-IgH only in 71,1% of the patients with translocation t (8;14)(q24;q32). с-MYC-IgH rearrangements were found by LD-PCR in 2 of 5 (40%) of patients who were negative by FISH and G-banding. Combination of these methods allowed to reveal of c-MYC rearrangements in 94,5% of the patients. MDD was identified in 11,1% patient with stage III and in all patients with stage IV both negative and positive by standard morphological analysis. LD-PCR could be used for primary diagnosis of Burkitt's lymphoma/leukemia and MDD detection. At the same time, LD-PCR is less informative for MRD evaluation because of low sensitivity and possibility to obtain only qualitative results.
References

1. Mosse S, Weck K. The Molecular pathology of Burkitt lymphoma. In: Dunphy CH, ed. Molecular pathology of hematolymphoid diseases. Spinger New York Dordrecht Heidelberg London, 2010$227-85.

2. Mbulaiteye SM, Biggar RJ, Bhatia K, Linet MS, Devesa SS. Sporadic childhood Burkitt lymphoma incidence in the United States during 1992-2005. Pediatr Blood Cancer. 2009;53(3):366-70.

3. Pagano L, Caira M, Valentini CG, Fianchi L. Clinical aspects and therapy of sporadic Burkitt lymphoma. Mediterr J Hematol Infect Dis. 2009;1(2):e2009030.

4. Patte C, Auperin A, Gerrard M, Michon J, Pinkerton R, Sposto R, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773-80.

5. Woessmann W, Seidemann K, Mann G, Zimmermann M, Burkhardt B, Oschlies I, et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood. 2005;105(3):948-58.

6. Mussolin L, Pillon M, Conter V, Piglione M, Lo Nigro L, Pierani P, et al. Prognostic role of minimal residual disease in mature B-cell acute lymphoblastic leukemia of childhood. J Clin Oncol. 2007;25(33):5254-61.

7. Jourdain A, Auperin A, Minard-Colin V, Aladjidi N, Zsiros J, Coze C, et al. Outcome of and prognostic factors for relapse in children and adolescents with mature B-cell lymphoma and leukemia treated in three consecutive prospective "Lymphomes Malins B" protocols. A Societe Frangaise des Cancers de l'Enfant study. Haematologica. 2015;100(6):810-7.

8. Mussolin L, Basso K, Pillon M, d’Amore ES, Lombardi A, Luzzatto L, et al. Prospective analysis of minimal bone marrow infiltration in pediatric Burkitt’s lymphomas by long-distance polymerase chain reaction for t(8;14)(q24;q32). Leukemia. 2003;17(3):585-9.

9. Mussolin L, Pillon M, d’Amore ES, Conter V, Piglione M, Lo Nigro L, et al. Minimal disseminated disease in high-risk Burkitt’s lymphoma identifies patients with different prognosis. J Clin Oncol. 2011;29(13):1779-84.

10. Shiramizu B, Goldman S, Smith L, Agsalda-Garcia M, Galardy P, Perkins SL, et al. Impact of persistent minimal residual disease post-consolidation therapy in children and adolescents with advanced Burkitt leukaemia: a Children’s Oncology Group Pilot Study Report. Br J Haematol. 2015;170(3):367-71.

11. Poirel HA, Cairo MS, Heerema NA, Swansbury J, Auperin A, Launay E, et al. Specific cytogenetic abnormalities are associated with a significantly inferior outcome in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB/LMB 96 international study. Leukemia. 2009;23(2):323-31.

12. Busch K, Borkhardt A, Wössmann W, Reiter A, Harbott J. Combined polymerase chain reaction methods to detect c-myc/IgH rearrangement in childhood Burkitt’s lymphoma for minimal residual disease analysis. Haematologica. 2004;89(7): 818-25.

13. Harris NL, Stein H, Coupland SE, Hummel M, Favera RD, Pasqualucci L, et al. New approaches to lymphoma diagnosis. Hematology Am Soc Hematol Educ Program. 2001;194-220.

14. Neri A, Barriga F, Knowles DM, Magrath IT, Dalla-Favera R. Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenetic forms of Burkitt lymphoma. Proc Natl Acad Sci USA. 1988; 85(8):2748-52.

15. Emanuel BS, Seiden JR, Chaganti RS, Jhanwar S, Nowell PC, Croce CM. The 2p breakpoint of a 2;8 translocation in Burkitt lymphoma interrupts the V kappa locus. Proc Natl Acad Sci USA. 1984;81(8):2444-6.

16. Hollis GF, Mitchell KF, Battey J, Potter H, Taub R, Lenoir GM, et al. A variant translocation places the lambda immunoglobulin genes 3' to the c-myc oncogene in Burkitt's lymphoma. Nature. 1984;307(5953):752-5.

17. Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19(1):1-11.

18. Burmeister T, Schwartz S, Horst HA, Rieder H, Gökbuget N, Hoelzer D, et al. Molecular heterogeneity of sporadic adult Burkitt-type leukemia/lymphoma as revealed by PCR and cytogenetics: correlation with morphology, immunology and clinical features. Leukemia. 2005;19(8):1391-8.

19. Akasaka T, Muramatsu M, Ohno H, Miura I, Tatsumi E, Fukuhara S, et al. Application of long-distance polymerase chain reaction to detection of junctional sequences created by chromosomal translocation in mature B-cell neoplasms. Blood. 1996;88(3):985-94.

20. Basso K, Frascella E, Zanesco L, Rosolen A. Improved long-distance polymerase chain reaction for the detection of t(8;14)(q24;q32) in Burkitt's lymphomas. Am J Pathol. 1999;155(5):1479-85.

21. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al, eds. Classification of tumours of haematopoietic and lymphoid tissues. WHO Lyon, France, IARC Press, 2008.

22. Murphy SB. Classification, staging and end results of treatment of childhood non-Hodgkin’s lymphomas: dissimilarities from lymphomas in adults. Semin Oncol. 1980;7(3):332-9.

23. Samochatova EV, Shelikhova LN, Myakova NV, Litvinov DV, Belogurova MB, Fechina LG i dr. Vozmozhnosti i problemy sovremennoi terapii nekhodzhkinskikh limfom u detei i podrostkov. Pediatriya. Zhurnal im. GN Speranskogo. 2011;90(4):37-43.

24. Stasevich I, Utskevich R, Kustanovich A, Litvinko N, Savitskaya T, Chernyavskaya S, et al. Translocation (10;11)(p12;q23) in childhood acute myeloid leukemia: incidence and complex mechanism. Cancer Genet Cytogenet. 2006;169(2):114-20.

25. Shaffer LG, McGowan-Jordan J, Schmid M, edr. ISCN 2013: An International System for Human Cytogenetic Nomenclature. Basel, 2013.

26. Haralambieva E, Boerma EJ, van Imhoff GW, Rosati S, Schuuring E, MüllerHermelink HK, et al. Clinical, immunophenotypic, and genetic analysis of adult lymphomas with morphologic features of Burkitt Lymphoma. Am J Surg Pathol. 2005;29(8):1086-94.

27. Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF, et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354(23):2419-30.

28. Ferry JA. Burkitt’s lymphoma: clinicopathologic features and differential diagnosis. Oncologist. 2006;11(4):375-83.

29. zur Stadt U, Hoser G, Reiter A, Welte K, Sykora KW. Application of long PCR to detect t(8;14)(q24;q32) translocations in childhood Burkitt's lymphoma and B-ALL. Ann Oncol. 1997;8(Suppl. 1):31-5.

30. Joos S, Haluska FG, Falk MH, Henglein B, Hameister H, Croce CM, et al. Mapping chromosomal breakpoints of Burkitt's t(8;14) translocations far upstream of c-myc. Cancer Res. 1992;52(23):6547-52.

31. Shiramizu B, Goldman S, Kusao I, Agsalda M, Lynch J, Smith L, et al. Minimal disease assessment in the treatment of children and adolescents with intermediate-risk (stage III/IV) B-cell non-Hodgkin lymphoma: a Children’s Oncology Group report. Br J Haematol. 2001;153(6):758-63.