Журналов:     Статей:        

Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2016; 15: 13-20

Рецепторный аппарат клеток гранулоцитарно-макрофагальной линии у недоношенных новорожденных: фенотипические и функциональные характеристики. Значение для клинической практики

Панкратьева Людмила Леонидовна, Мухин Владимир Евгеньевич, Праулова Дарья Александровна, Милева Ольга Ивановна, Володин Николай Николаевич, Румянцев Александр Григорьевич

https://doi.org/10.24287/1726-1708-2016-15-4-13-20

Аннотация

Цель. Изучить экспрессию нейтрофилами Fc-gamma рецепторов и возможность ее модуляции у недоношенных новорожденных с бактериальной инфекцией. Пациенты и методы. Исследовали образцы пуповинной крови, а также периферической венозной крови новорожденных, собранные на 28-30-е сутки жизни. Методом проточной цитофлуориметрии определяли уровень поверхностной экспрессии Fc-gamma рецепторов нейтрофилов (CD64, CD32, CD16), фагоцитарную активность и кислородный взрыв гранулоцитов, стимулированных флуоресцентно меченными Escherichia coli. Результаты. Исследованы образцы крови 48 детей, из них 10 - доношенные новорожденные (1-я группа), 18 - недоношенные новорожденные с ЭНМТ и ОНМТ (2-я группа), 20 - недоношенные новорожденные с НМТ (3-я группа). Экспрессия CD64 у недоношенных детей из 2-й и 3-й группы при рождении составила 7,1 MFI (5,1; 11,5) и 6,0 MfI (5,3; 9,8) соответственно, что статистически значимо выше (p = 0,013), чем у детей из 1-й группы (4,27 MFI (2,4; 5,8)). Экспрессия CD16 при рождении снижена (p = 0,021) у недоношенных детей (2-я группа: 80,9 MFI (58,7; 114,8); 3-я группа: 99,7 MFI (71,3; 126,0)) по сравнению с доношенными новорожденными (125,3 MFI (95,5; 144,1)) и увеличивается к концу 1 месяца жизни (2-я группа: 118,5 MFI (99,5; 132,2); 3-я группа: 126,6 MFI (110,1; 129,0)). Анализ экспрессии CD32 не показал статистически значимых различий в исследуемых группах. Показана корреляция интенсивности кислородного взрыва нейтрофилов с гестационным возрастом (Rs = 0,67; p = 0,0005). Культивирование гранулоцитов в присутствии Г-КСФ приводит к 2,4-5-кратному повышению экспрессии CD16, CD32 и усилению кислородного взрыва. Заключение. Недоношенные новорожденные характеризуются дизрегуляцией экспресии Fc-gamma рецепторов и функциональной недостаточностью нейтрофилов. Г-КСФ модулирует экспрессию CD16 и CD32 на поверхности ней-трофилов и усиливает кислородный взрыв.
Список литературы

1. Дегтярева МВ, Бирюкова ТВ, Володин НН, Солдатова ИГ, Воронцова ЮН, Бабак ОА и др. Клинико-лабораторные особенности раннего неонатального сепсиса у детей различного гестационного возраста и оценка эффективности иммунозаместительной терапии Пентаглобином. Педиатрия. Журнал им. Г.Н.Сперанского. 2008;87(1):32-40.

2. Fanaroff AA, Korones SB, Wright LL, Wright EC, Poland RL, Bauer CB, et al. A controlled trial of intravenous immune globulin to reduce nosocomial infections in very-low-birth-weight infants. National Institute Of Child Health And Human Development Neonatal Research Network. N Engl J Med. 1994;330:1107-13.

3. Christensen RD, Hardman T, Thornton J, Hill HR. A randomized, double-blind, placebo-controlled investigation of the safety of intravenous immune globulin administration to preterm neonates. J Perinatol. 1989;9:126-30.

4. Kempf C, Stucki M, Boschetti N. Pathogen inactivation and removal procedures used in the production of intravenous immunoglobulins. Biologicals. 2007;35:35-42.

5. Stoll BJ, Hansen N. Infections in VLBW infants: studies from the NICHD neonatal research network. Semin Perinatol. 2003;27:293-301.

6. Adams-Chapman I, Stoll BJ. Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Curr Opin Infect Dis. 2006;19:290-7.

7. Wilson-Costello D, Friedman H, Minich N, Siner B, Taylor G, Schluchter M, et al. Improved neurodevelopmental outcomes for extremely low birth weight infants in 2000-2002. Pediatrics. 2007;119:37-45.

8. Ohlsson A, Lacy JB. Intravenous immunoglobulin for suspected or subsequently proven infection in neonates. Cochrane Database Syst Rev. 2004. Issue no. 1. Article no. CD001239.

9. Ohlsson A, Lacy JB. Intravenous immunoglobulin for suspected or subsequently proven infection in neonates. Cochrane Database Syst Rev 2013. Issue no. 7. Article no. CD001239.

10. The INIS Study. International neonatal immunotherapy study: non-specific intravenous immunoglobulin therapy for suspected or proven neonatal sepsis -an international, placebo controlled, multicentre randomised trial. BMC Pregnancy Childbirth. 2008;8:52.

11. Ohlsson A, Lacy JB. Intravenous immunoglobulin for preventing infection in preterm and/or low-birth-weight infants. Cochrane Database Syst Rev. 2004. Issue no. 1. Article no. CD000361.

12. Negi VS, Elluru S, Siberil S, Graff-Dubois S, Mouthon L, Kazatchkine MD, et al. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol. 2007;27:233-45.

13. Mussi-Pinhata MM, Rego MA. Immunological peculiarities of extremely preterm infants: a challenge for the prevention of nosocomial sepsis. J Pediatr (Rio J). 2005;81:S59-68.

14. Kallman J, Schollin J, Schalen C, Erlandsson A, Kihlstrom E. Impaired phagocytosis and opsonisation towards group B streptococci in preterm neonates. Arch Dis Child Fetal Neonatal Ed. 1998;78:F46-50.

15. Wolach B, Dolfin T, Regev R, Gilboa S, Schlesinger M. The development of the complement system after 28 weeks' gestation. Acta Paediatr. 1997;86:523-7.

16. Cates KL, Goetz C, Rosenberg N, Pantschenko A, Rowe JC, Ballow M. Longitudinal development of specific and functional antibody in very low birth weight premature infants. Pediatr Res. 1988;23:14-22.

17. Lewis D, Wilson C. Developmental Immunology and Role of Host Defenses in Fetal and Neonatal Susceptibility to Infection. In: Remington, Klein, Wilson and Baker (eds.) Infectious Diseases of the Fetus and Newborn Infant. 6th edn Elsevier Saunders: Philadelphia, 2006.

18. Baley JE. Neonatal sepsis: the potential for immunotherapy. Clin Perinatol. 1988;15:755-71.

19. Shaw CK, Thapalial A, Shaw P, Malla K. Intravenous immunoglobulins and haematopoietic growth factors in the prevention and treatment of neonatal sepsis: ground reality or glorified myths? Int J Clin Pract. 2007;61:482-7.

20. Maeda M, van Schie RC, Yuksel B, Greenough A, Fanger MW, Guyre PM et al. Differential expression of Fc receptors for IgG by monocytes and granulocytes from neonates and adults. Clin Exp Immunol. 1996;103:343-7.

21. Nagelkerke S, Kuijpers T. Immunomodulation by IVIg and the Role of Fc-Gamma Receptors: Classic Mechanisms of Action after all? Front Immunol. 2015 Jan 21;5:674.

22. Haridan U, Mokhtar U, Machado L. A comparison of assays for accurate copy number measurement of the low-affinity Fc gamma receptor genes FCGR3A and FCGR3B. PLoS One. 2015 Jan 16;10(1):e0116791.

Pediatric Hematology/Oncology and Immunopathology. 2016; 15: 13-20

The receptor apparatus of granulocyte-macrophage line cells in premature newborns: phenotypical and functional characteristics. Significance for clinical practice

Pankrat’Eva Lyudmila L., Mukhin Vladimir E., Praulova Darya A., Mileva Olga I., Volodin Nikolay N., Rumyantsev Alexandr G.

https://doi.org/10.24287/1726-1708-2016-15-4-13-20

Abstract

The objective. To study neutrophil Fc-gamma receptor expression and the possibility of its modulation in premature newborns with bacterial infection. Patients and methods. We examined samples of umbilical blood and also peripheral venous blood of newborns collected on the 28-30th day of life. The method of flow cytometry was used to detect the level of surface expression of neutrophil Fc-gamma receptors (CD64, CD32, CD16), phagocytic activity and oxidative burst of granulocytes stimulated by fluorescent labelled Escherichia coli. Results. Blood samples of 48 children were examined, of them 10 - full-term newborns (group 1), 18 - premature newborns with ELBW and VLBW (group 2), 20 - premature newborns with LBW (group 3). CD64 expression at birth in premature children from the 2nd and 3rd groups was 7.1 MFI (5.1; 11.5) and 6.0 MFI (5.3; 9.8), respectively, which is significantly higher (p = 0.013) than in children from group 1 (4.27 MFI (2.4; 5.8)). CD16 expression at birth was lower (p = 0.021) in premature children (group 2: 80.9 MFI (58.7; 114.8); group 3: 99.7 MFI (71.3; 126.0)) as compared with full-term newborns (125.3 MFI (95.5; 144.1)) and increased by the end of the 1st month of life (group 2: 118.5 MFI (99.5; 132.2); group 3: 126.6 MFI (110.1; 129.0)). Analysis of CD32 expression did not show statistically significant differences in the groups of study. A correlation between the intensity of oxidative burst of neutrophils and gestational age has been shown (Rs = 0.67; p = 0.0005). Granulocyte cultivation in the presence of G-CSF brings about a 2.4-5-fold increase of CD16, CD32 expression and enhanced oxidative burst. Conclusion. Premature newborns are characterised by dysregulation of Fc-gamma receptor expression and functional deficiency of neutrophils. G-CSF modulates CD16 and CD32 expression on the neutrophil surface and enhances oxidative burst.
References

1. Degtyareva MV, Biryukova TV, Volodin NN, Soldatova IG, Vorontsova YuN, Babak OA i dr. Kliniko-laboratornye osobennosti rannego neonatal'nogo sepsisa u detei razlichnogo gestatsionnogo vozrasta i otsenka effektivnosti immunozamestitel'noi terapii Pentaglobinom. Pediatriya. Zhurnal im. G.N.Speranskogo. 2008;87(1):32-40.

2. Fanaroff AA, Korones SB, Wright LL, Wright EC, Poland RL, Bauer CB, et al. A controlled trial of intravenous immune globulin to reduce nosocomial infections in very-low-birth-weight infants. National Institute Of Child Health And Human Development Neonatal Research Network. N Engl J Med. 1994;330:1107-13.

3. Christensen RD, Hardman T, Thornton J, Hill HR. A randomized, double-blind, placebo-controlled investigation of the safety of intravenous immune globulin administration to preterm neonates. J Perinatol. 1989;9:126-30.

4. Kempf C, Stucki M, Boschetti N. Pathogen inactivation and removal procedures used in the production of intravenous immunoglobulins. Biologicals. 2007;35:35-42.

5. Stoll BJ, Hansen N. Infections in VLBW infants: studies from the NICHD neonatal research network. Semin Perinatol. 2003;27:293-301.

6. Adams-Chapman I, Stoll BJ. Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Curr Opin Infect Dis. 2006;19:290-7.

7. Wilson-Costello D, Friedman H, Minich N, Siner B, Taylor G, Schluchter M, et al. Improved neurodevelopmental outcomes for extremely low birth weight infants in 2000-2002. Pediatrics. 2007;119:37-45.

8. Ohlsson A, Lacy JB. Intravenous immunoglobulin for suspected or subsequently proven infection in neonates. Cochrane Database Syst Rev. 2004. Issue no. 1. Article no. CD001239.

9. Ohlsson A, Lacy JB. Intravenous immunoglobulin for suspected or subsequently proven infection in neonates. Cochrane Database Syst Rev 2013. Issue no. 7. Article no. CD001239.

10. The INIS Study. International neonatal immunotherapy study: non-specific intravenous immunoglobulin therapy for suspected or proven neonatal sepsis -an international, placebo controlled, multicentre randomised trial. BMC Pregnancy Childbirth. 2008;8:52.

11. Ohlsson A, Lacy JB. Intravenous immunoglobulin for preventing infection in preterm and/or low-birth-weight infants. Cochrane Database Syst Rev. 2004. Issue no. 1. Article no. CD000361.

12. Negi VS, Elluru S, Siberil S, Graff-Dubois S, Mouthon L, Kazatchkine MD, et al. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol. 2007;27:233-45.

13. Mussi-Pinhata MM, Rego MA. Immunological peculiarities of extremely preterm infants: a challenge for the prevention of nosocomial sepsis. J Pediatr (Rio J). 2005;81:S59-68.

14. Kallman J, Schollin J, Schalen C, Erlandsson A, Kihlstrom E. Impaired phagocytosis and opsonisation towards group B streptococci in preterm neonates. Arch Dis Child Fetal Neonatal Ed. 1998;78:F46-50.

15. Wolach B, Dolfin T, Regev R, Gilboa S, Schlesinger M. The development of the complement system after 28 weeks' gestation. Acta Paediatr. 1997;86:523-7.

16. Cates KL, Goetz C, Rosenberg N, Pantschenko A, Rowe JC, Ballow M. Longitudinal development of specific and functional antibody in very low birth weight premature infants. Pediatr Res. 1988;23:14-22.

17. Lewis D, Wilson C. Developmental Immunology and Role of Host Defenses in Fetal and Neonatal Susceptibility to Infection. In: Remington, Klein, Wilson and Baker (eds.) Infectious Diseases of the Fetus and Newborn Infant. 6th edn Elsevier Saunders: Philadelphia, 2006.

18. Baley JE. Neonatal sepsis: the potential for immunotherapy. Clin Perinatol. 1988;15:755-71.

19. Shaw CK, Thapalial A, Shaw P, Malla K. Intravenous immunoglobulins and haematopoietic growth factors in the prevention and treatment of neonatal sepsis: ground reality or glorified myths? Int J Clin Pract. 2007;61:482-7.

20. Maeda M, van Schie RC, Yuksel B, Greenough A, Fanger MW, Guyre PM et al. Differential expression of Fc receptors for IgG by monocytes and granulocytes from neonates and adults. Clin Exp Immunol. 1996;103:343-7.

21. Nagelkerke S, Kuijpers T. Immunomodulation by IVIg and the Role of Fc-Gamma Receptors: Classic Mechanisms of Action after all? Front Immunol. 2015 Jan 21;5:674.

22. Haridan U, Mokhtar U, Machado L. A comparison of assays for accurate copy number measurement of the low-affinity Fc gamma receptor genes FCGR3A and FCGR3B. PLoS One. 2015 Jan 16;10(1):e0116791.