Журналов:     Статей:        

Российский биотерапевтический журнал. 2017; 16: 25-28

Профили экспрессии потенциальных генов-мишеней при диссеминированном раке желудка

Кипкеева Ф. М., Музаффарова Т. А., Нариманов М. Н., Малехова О. А., Богуш Т. А., Карпухин А. В.

https://doi.org/10.17650/1726-9784-2017-16-4-25-28

Аннотация

Цель исследования - изучение количественных профилей экспрессии матричной РНК потенциальных генов-мишеней при диссеминированном раке желудка (ДРЖ). Материалы и методы Применяли количественную полимеразную цепную реакцию в реальном времени на парных образцах опухоль - норма. Результаты. Наиболее часто (25-41 % случаев) повышенный уровень матричной РНК в опухоли по отношению к контролю наблюдался для генов TGF-ß (трансформирующий фактор роста ß), NRP-1 (нейропилин 1) и генов семейства VEGF (фактор роста эндотелия сосудов). Впервые при раке желудка обнаружена корреляция уровней экспрессии 3 генов: TGF-ß, NRP-1 и VEGFR-2 и обратная корреляция уровней экспрессии генов VEGF и bFGF (основной фактор роста фибробластов). Заключение. Выявленная корреляция экспрессии генов TGF-ß, NRP-1 и VEGFR-2 обусловлена, видимо, взаимодействием NRP-1 с продуктами 2 других генов и может быть связана с высоким метастатическим потенциалом прогрессирующей опухоли при ДРЖ. Обнаруженная обратная корреляция экспрессии генов VEGF-А и bFGF может свидетельствовать о стимуляции ангиогенеза в опухоли при сниженной активности пути VEGF через активизацию сигнального пути bFGF. Полученные результаты следует учитывать при таргетной терапии ДРЖ.
Список литературы

1. Terry M.B., Gaudet M.M., Gammon M.D. The epidemiology of gastric cancer. Semin Radiat Oncol 2002; 12(2): 111 -27. DOI: 10.1053/srao.30814. PMID: 11979413.

2. Когония Л.М., Корнилова А.Г. Метастатический рак желудка: новое в лекарственной терапии. Альманах клинической медицины 2013; 29: 65-70. DOI: http://dx.doi.org/10.18786/2072-0505-2013-29-65-70.

3. Katz L.H., Likhter M., Jogunoori W. et al. TGF-ß signaling in liver and gastrointestinal cancers. Cancer Lett 2016; 379(2): 166-72. DOI: 10.1016/j.canlet.2016.03.033. PMID: 27039259.

4. Li L., Jiang X., Zhang Q. et al. Neuropil-in-1 is associated with clinicopathology of gastric cancer and contributes to cell proliferation and migration as multifunctional co-receptors. J Exp Clin Cancer Res 2016; 35: 16. DOI: 10.1186/s13046-016-0291-5. PMID: 26795388.

5. Prud’homme G.J., Glinka Y. Neuropil-ins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget 2012; 3(9): 921-39. DOI: 10.18632/oncotarget.626. PMID: 22948112.

6. Djordjevic S., Driscoll P.C. Targeting VEGF signalling via the neuropilin co-receptor. Drug Discovery Today 2013; 18(9-10): 447-55. DOI: 10.1016/j.drudis.2012.11.013. PMID: 23228652.

7. Korc M., Friesel R.E. The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets 2009; 9(5): 639-51. PMID: 19508171.

8. Lieu C., Heymach J., Overman M. et al. Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin Cancer Res 2011; 17(19): 6130-9. DOI: 10.1158/1078-0432.CCR-11-0659. PMID: 21953501.

9. Zhao M., Yu Z., Li Z. et al. Expression of angiogenic growth factors VEGF, bFGF and ANG1 in colon cancer after bevacizumab treatment in vitro: a potential self-regulating mechanism. Oncol Rep 2017; 37(1): 601-7. DOI: 10.3892/or.2016.5231. PMID: 27840995.

10. Kilgour E., Su X., Zhan P. et al. Prevalence and prognostic significance of FGF receptor 2 (FGFR2) gene amplification in Caucasian and Korean gastric cancer cohorts. J Clin Oncol 2012; 30(suppl; abstr 4124).

11. Park Y.S., Na Y.S., Ryu M.H. et al. FGFR2 assessment in gastric cancer using quantitative real-time polymerase chain reaction, fluorescent in situ hybridization, and immunohistochemistry. Am J Clin Pathol 2015; 143(6): 865-72. DOI: 10.1309/AJCPNFLSMWWPP8DR. PMID: 25972329.

12. Xie L., Su X., Zhang L. et al. FGFR2 gene amplification in gastric cancer predicts sensitivity to the selective FGFR inhibitor AZD4547. Clin Cancer Res 2013; 19(9): 2572-83. DOI: 10.1158/1078-0432.CCR-12-3898. PMID: 23493349.

13. Bang Y.J., Van Cutsem E., Feyereislova A. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER-2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010; 376(9742): 687-97. DOI: 10.1016/S0140-6736(10)61121-X. PMID: 20728210.

14. Mullan P.B., Quinn J.E., Gilmore P.M. et al. BRCA1 and GADD45 mediated G2/M cell cycle arrest in response to antimicrotubule agents. Oncogene 2001; 20(43): 6123-31. DOI: 10.1038/sj.onc.1204712. PMID: 11593420.

Russian Journal of Biotherapy. 2017; 16: 25-28

Expression profiles of potential target genes in disseminated gastric cancer

Kipkeeva F. M., Muzaffarova T. A., Narimanov M. N., Malekhova O. A., Bogush T. A., Karpukhin A. V.

https://doi.org/10.17650/1726-9784-2017-16-4-25-28

Abstract

Objective is the investigation of messenger RNA quantitative expression profiles of potential target genes among disseminated gastric cancer cases. Materials and methods. Quantitative real-time polymerase chain reaction on paired tumor-normal samples. Results. The most frequently (25-41 % of cases) an increased level of messenger RNA in the tumor with respect to normal tissue was observed for the genes of TGF-ß (transforming growth factor ß), NRP-1 (neuropiline 1) and VEGF (vascular endothelial growth factor) family genes. For the first time a correlation between the expression levels of the three genes: NRP-1, TGF-ß and VEGFR-2, and the inverse correlation of the levels of VEGF and bFGF gene expression were found. Conclusion. The revealed correlation between the expression of TGF-ß, NRP-1 and VEGFR-2 genes is apparently due to the interaction of NRP-1 with the products of two other genes and may be associated with a high metastatic potential of the progressing tumor in disseminated gastric cancer. The observed inverse correlation of the VEGF-A and bFGF gene expression may indicate the stimulation of angiogenesis in the tumor with reduced activity of the VEGF pathway by activating the bFGF signaling pathway. The results obtained should be taken into account under targeted therapy.
References

1. Terry M.B., Gaudet M.M., Gammon M.D. The epidemiology of gastric cancer. Semin Radiat Oncol 2002; 12(2): 111 -27. DOI: 10.1053/srao.30814. PMID: 11979413.

2. Kogoniya L.M., Kornilova A.G. Metastaticheskii rak zheludka: novoe v lekarstvennoi terapii. Al'manakh klinicheskoi meditsiny 2013; 29: 65-70. DOI: http://dx.doi.org/10.18786/2072-0505-2013-29-65-70.

3. Katz L.H., Likhter M., Jogunoori W. et al. TGF-ß signaling in liver and gastrointestinal cancers. Cancer Lett 2016; 379(2): 166-72. DOI: 10.1016/j.canlet.2016.03.033. PMID: 27039259.

4. Li L., Jiang X., Zhang Q. et al. Neuropil-in-1 is associated with clinicopathology of gastric cancer and contributes to cell proliferation and migration as multifunctional co-receptors. J Exp Clin Cancer Res 2016; 35: 16. DOI: 10.1186/s13046-016-0291-5. PMID: 26795388.

5. Prud’homme G.J., Glinka Y. Neuropil-ins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget 2012; 3(9): 921-39. DOI: 10.18632/oncotarget.626. PMID: 22948112.

6. Djordjevic S., Driscoll P.C. Targeting VEGF signalling via the neuropilin co-receptor. Drug Discovery Today 2013; 18(9-10): 447-55. DOI: 10.1016/j.drudis.2012.11.013. PMID: 23228652.

7. Korc M., Friesel R.E. The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets 2009; 9(5): 639-51. PMID: 19508171.

8. Lieu C., Heymach J., Overman M. et al. Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin Cancer Res 2011; 17(19): 6130-9. DOI: 10.1158/1078-0432.CCR-11-0659. PMID: 21953501.

9. Zhao M., Yu Z., Li Z. et al. Expression of angiogenic growth factors VEGF, bFGF and ANG1 in colon cancer after bevacizumab treatment in vitro: a potential self-regulating mechanism. Oncol Rep 2017; 37(1): 601-7. DOI: 10.3892/or.2016.5231. PMID: 27840995.

10. Kilgour E., Su X., Zhan P. et al. Prevalence and prognostic significance of FGF receptor 2 (FGFR2) gene amplification in Caucasian and Korean gastric cancer cohorts. J Clin Oncol 2012; 30(suppl; abstr 4124).

11. Park Y.S., Na Y.S., Ryu M.H. et al. FGFR2 assessment in gastric cancer using quantitative real-time polymerase chain reaction, fluorescent in situ hybridization, and immunohistochemistry. Am J Clin Pathol 2015; 143(6): 865-72. DOI: 10.1309/AJCPNFLSMWWPP8DR. PMID: 25972329.

12. Xie L., Su X., Zhang L. et al. FGFR2 gene amplification in gastric cancer predicts sensitivity to the selective FGFR inhibitor AZD4547. Clin Cancer Res 2013; 19(9): 2572-83. DOI: 10.1158/1078-0432.CCR-12-3898. PMID: 23493349.

13. Bang Y.J., Van Cutsem E., Feyereislova A. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER-2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010; 376(9742): 687-97. DOI: 10.1016/S0140-6736(10)61121-X. PMID: 20728210.

14. Mullan P.B., Quinn J.E., Gilmore P.M. et al. BRCA1 and GADD45 mediated G2/M cell cycle arrest in response to antimicrotubule agents. Oncogene 2001; 20(43): 6123-31. DOI: 10.1038/sj.onc.1204712. PMID: 11593420.