Журналов:     Статей:        

Российский биотерапевтический журнал. 2016; 15: 53-58

ПРОЯВЛЕНИЕ ЦИТОСТАТИЧЕСКОГО ЭФФЕКТА МОНОКЛОНАЛЬНЫХ АНТИТЕЛ К БЕЛКУ PRAME

Лыжко Н. А., Мисюрин Всеволод Андреевич, Финашутина Ю. П., Ахлынина Т. В., Кесаева Л. А., Тихонова В. В., Касаткина Н. Н., Солопова О. Н., Барышникова М. А., Мисюрин А. В.

https://doi.org/10.17650/1726-9784-2016-15-4-53-58

Аннотация

Введение. Белок PRAME является перспективной мишенью для противоопухолевой иммунотерапии, так как не экспрессируется в здоровых тканях, но активен в опухолевых клетках многих гистологических типов. Нами были разработаны мышиные моноклональные антитела (МКАТ) 5D3F2 и 6H8F12, распознающие эпитопы белка PRAME. Цель исследования - определение эффектов, оказываемых МКАТ 5D3F2 и 6H8F12 на клетки, экспрессирующие ген PRAME на различных уровнях. Материалы и методы. Использовались линии клеток NOMO-1 и WI-38 с низким уровнем экспрессии PRAME, THP-1 - со средним уровнем экспрессии, К562 и WI-38-PRAME - с высоким уровнем экспрессии PRAME. Проводилось инкубирование данных линий клеток с МКАТ 5D3F2 и 6H8F12. Конечная концентрация МКАТ в культуральной среде составила от 6 до 120мкг/мл. Проводился подсчет клеток после инкубирования МКАТ после 24, 48 и 72 ч эксперимента. Количество мертвых клеток оценивали при проведении МТТ-теста после 24 ч инкубирования клеток с МКАТ 6H8F12. Результаты. Скорость роста клеток замедлилась при инкубировании в присутствии МКАТ. Эффект замедления роста клеток увеличивался напрямую с ростом концентрации МКАТ в среде (коэффициент корреляции Пирсона составил 0,67; p = 0,0219). Рост клеток линии К562 был значимо меньшим, чем линии THP-1 (p = 0,0061), NOMO-1 (p = 0,0005) и WI-38 (p = 0,0002), в присутствии одинакового количества МКАТ 6H8F12. Скорость роста клеток линии К562 была ниже, чем клеток линии WI-38-PRAME (p = 0,0027), несмотря на одинаковый уровень экспрессии гена PRAME. Влияние МКАТ 5D3F2 и 6H8F12 на скорость роста клеток было сопоставимым (p = 0,3946). Согласно данным MTT-теста в линиях K562 и WI-38-PRAME погибало сопоставимое количество клеток после 24 ч инкубирования с МКАТ 5D3F2 и 6H8F12 (p = 0,8405). При тех же условиях погибло меньше клеток линии THP-1, чем K562 (p = 0,6335). По сравнению с K562 в линиях NOMO-1 и WI-38 погибло существенно меньшее количество клеток (p = 0,0026 и p = 0,0005 соответственно). Заключение. Показано, что МКАТ 5D3F2 и 6H8F12 проявляют существенный цитотоксический эффект в отношении клеток, экспрессирующих PRAME. При более высоком уровне экспрессии гена PRAME в клетках цитостатический эффект более сильный.
Список литературы

1. Мисюрин В.А. Аутосомные раково-тестикулярные гены. Российский биотерапевтический журнал 2014;13(3):77-82.

2. Голубцова Н.В., Степанова Е.В., Бармашов А.Е. и др. Определение специфических противоопухолевых антител у больных диссеминированной меланомой в процессе вакцинотерапии. Российский биотерапевтический журнал 2014;11(3):25-8.

3. Williams J.M., Chen G.C., Zhu L., Rest R. F. Using the yeast two-hybrid system to identify human epithelial cell proteins that bind gonococcal Opa proteins: intracellular gonococci bind pyruvate kinase via their Opa proteins and require host pyruvate for growth. Mol Microbiol 199;27(1):171- 86. PMID: 9466265.

4. Лыжко Н.А., Ахлынина Т.В., Мисюрин A3. и др. Повышение уровня экспрессии гена PRAME в опухолевых клетках сопровождается локализацией белка в клеточном ядре. Российский биотерапевтический журнал 2015;14(4):19-30.

5. Stevenson G.T. Three major uncertainties in the antibody therapy of cancer. Haematologica 2014;99(10):1538-1546. DOI: 10.3324/haematol. 2013.084640.

6. Bradbury A.R. M., Sidhu S., Dubel S. et al. Beyond natural antibodies: the power of in vitro display technologies. Nature Biotechnology 2011;29:245-54. DOI: 10.1038/nbt. 1791.

7. Trauth B.C., Klas C., Peters A.M. et al. Monoclonal antibody-mediated tumor re gression by induction of apoptosis. Science 1989;245(4915):301-5. PMID: 2787530.

8. Yonehara S., Ishii A., Yonehara M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 1989;169(5):1747-56. PMID: 2469768.

9. Dobson C.L., Main S., Newton P. et al. Human monomeric antibody fragments to TRAIL-R1 and TRAIL-R2 that display potent in vitro agonism. MAbs 2009;1:552- 62. PMID: 20068388.

10. Maegawa M., Takeuchi K., Funakoshi E. et al. Growth stimulation of non-small cell lung cancer cell lines by antibody against epidermal growth factor receptor promoting formation of ErbB2/ ErbB3 heterodimers. Mol Cancer Res 2007;5(4):393-401. DOI: 10.1158/1541 - 7786. MCR-06-0303. PMID: 17426253.

11. Wadelin F.R., Fulton J., Collins H.M. et al. PRAME is a golgi-targeted protein that associates with the Elongin BC complex and is upregulated by interferon-gamma and bacterial PAMPs. PLoS One 2013;8(2):e58052. PMID: 23460923.

12. Costessi A., Mahrour N., Ti-jchon E. The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters. EMBO J 2011;30(18):3786-98. DOI: 10.1038/ emboj.2011.262. PMID: 21822215.

13. De Carvalho D.D., Mello B.P, Pereira W.O., Amarante-Mendes G.P. PRAME/EZH2-mediated regulation of TRAIL: a new target for cancer therapy. Curr Mol Med 2013;13(2):296-304. PMID: 23228130.

14. Мисюрин В.А., Лукина А.Е., Мисюрин А.В. и др. Особенности соотношения уровней экспрессии генов PRAME и PML/RARa в дебюте острого промиелоцитарного лейкоза. Российский биотерапевтический журнал 2014;13(1):9-16.

15. Xu Y., Rong L.-J., Meng S.-L. et al. PRAME promotes in vitro leukemia cells death by regulating S100A4/p53 signaling. European Review for Medical and Pharmacological Sciences 2016;20:1057-63. PMID: 27049257.

16. Huang Q., Li L., Lin Z. et al. Identification of Preferentially Expressed Antigen of Melanoma as a Potential Tumor Suppressor in Lung Adenocarcinoma. Med Sci Monit 2016;22:1837-42. PMID: 27241212.

17. Ахлынина Т.В., Мисюрин А.В., Лыжко Н.А. и др. Наличие иммуногенного антигена в опухолевой клетке способствует антипролиферативному действию дендритных клеток. Российский биотерапевтический журнал 2014;13(4):23-30.

18. Kawasaki T., Taro K. Toll-Like Receptor Signaling Pathways. Front Immunol 2014;5(461). DOI: 10.3389/fimmu. 2014.00461.

Russian Journal of Biotherapy. 2016; 15: 53-58

DEVELOPMENT OF CYTOSTATIC EFFECT OF MONOCLONAL ANTIBODIES TO THE PROTEINS PRAME

Lyzhko N. A., Misyurin V. A., Finashutina Y. P., Akhlynina T. V., Kesaeva L. A., Tikhonova V. V., Kasatkina N. N., Solopova O. N., Baryshnikova M. A., Misyurin A. V.

https://doi.org/10.17650/1726-9784-2016-15-4-53-58

Abstract

Introduction. PRAME protein is a promising target for cancer immunotherapy. PRAME is not expressed in normal tissues, but active in number of the tumor types. We have developed the mouse monoclonal antibodies 5D3F2 and 6H8F12 against PRAME epitopes. Aim. To determine the effects provided by the monoclonal antibodies 5D3F2 and 6H8F12 against the cells with different levels of PRAME gene expression. Materials and methods. We used different cell lines: NOMO-1 and WI-38 with low levels of expression PRAME; THP-1 with intermediate level of PRAME expression; K562 and WI-38-PRAME with high level of PRAME expression. We incubated these cell lines in the presence of monoclonal antibodies 5D3F2 and 6H8F12. The final concentration of monoclonal antibodies in culture varied from 6 pg/ml to 120 mcg/ml. The live cells were counted at the 24, 48 and 72 hours after incubation. The number of dead cells was evaluated by the MTT-test after 24 hours. Results. Cell growth rate is significanely decreased during incubation with monoclonal antibodies. This effect is correlated with increase of monoclonal antibody concentrations (Pearson coefficient 0,67;p = 0,0219). K562 growth rate was much less compared to the THP-1’s rate (p = 0,0061), NOMO-1 (p = 0,0005) and WI-38 (p = 0,0002) in the presence of the same amount of monoclonal antibody 6H8F12. K562 cell growth rate was lower than the WI-38-PRAME’s rate (p = 0,0027), despite the comparable level of PRAME expression. Effects of monoclonal antibody 5D3F2 and 6H8F12 were similar (p = 0,3946). According to the MTT-test, the comparable number of death cells in K562 and WI-38-PRAME was observed (p = 0,8405). Under the same conditions the amount of death cells in THP-1 was smaller than K562 (p = 0,6335). To compare with K562, fewer cells died in NOMO-1 and WI-38 (p = 0,0026 and p = 0,0005, respectively). Conclusion. It was shown that monoclonal antibody 5D3F2 and 6H8F12 exhibit a significant cytotoxic effect against PRAME-express-ing cells. In case of higher levels of PRAME expression the cytotoxic effect was stronger.
References

1. Misyurin V.A. Autosomnye rakovo-testikulyarnye geny. Rossiiskii bioterapevticheskii zhurnal 2014;13(3):77-82.

2. Golubtsova N.V., Stepanova E.V., Barmashov A.E. i dr. Opredelenie spetsificheskikh protivoopukholevykh antitel u bol'nykh disseminirovannoi melanomoi v protsesse vaktsinoterapii. Rossiiskii bioterapevticheskii zhurnal 2014;11(3):25-8.

3. Williams J.M., Chen G.C., Zhu L., Rest R. F. Using the yeast two-hybrid system to identify human epithelial cell proteins that bind gonococcal Opa proteins: intracellular gonococci bind pyruvate kinase via their Opa proteins and require host pyruvate for growth. Mol Microbiol 199;27(1):171- 86. PMID: 9466265.

4. Lyzhko N.A., Akhlynina T.V., Misyurin A3. i dr. Povyshenie urovnya ekspressii gena PRAME v opukholevykh kletkakh soprovozhdaetsya lokalizatsiei belka v kletochnom yadre. Rossiiskii bioterapevticheskii zhurnal 2015;14(4):19-30.

5. Stevenson G.T. Three major uncertainties in the antibody therapy of cancer. Haematologica 2014;99(10):1538-1546. DOI: 10.3324/haematol. 2013.084640.

6. Bradbury A.R. M., Sidhu S., Dubel S. et al. Beyond natural antibodies: the power of in vitro display technologies. Nature Biotechnology 2011;29:245-54. DOI: 10.1038/nbt. 1791.

7. Trauth B.C., Klas C., Peters A.M. et al. Monoclonal antibody-mediated tumor re gression by induction of apoptosis. Science 1989;245(4915):301-5. PMID: 2787530.

8. Yonehara S., Ishii A., Yonehara M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 1989;169(5):1747-56. PMID: 2469768.

9. Dobson C.L., Main S., Newton P. et al. Human monomeric antibody fragments to TRAIL-R1 and TRAIL-R2 that display potent in vitro agonism. MAbs 2009;1:552- 62. PMID: 20068388.

10. Maegawa M., Takeuchi K., Funakoshi E. et al. Growth stimulation of non-small cell lung cancer cell lines by antibody against epidermal growth factor receptor promoting formation of ErbB2/ ErbB3 heterodimers. Mol Cancer Res 2007;5(4):393-401. DOI: 10.1158/1541 - 7786. MCR-06-0303. PMID: 17426253.

11. Wadelin F.R., Fulton J., Collins H.M. et al. PRAME is a golgi-targeted protein that associates with the Elongin BC complex and is upregulated by interferon-gamma and bacterial PAMPs. PLoS One 2013;8(2):e58052. PMID: 23460923.

12. Costessi A., Mahrour N., Ti-jchon E. The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters. EMBO J 2011;30(18):3786-98. DOI: 10.1038/ emboj.2011.262. PMID: 21822215.

13. De Carvalho D.D., Mello B.P, Pereira W.O., Amarante-Mendes G.P. PRAME/EZH2-mediated regulation of TRAIL: a new target for cancer therapy. Curr Mol Med 2013;13(2):296-304. PMID: 23228130.

14. Misyurin V.A., Lukina A.E., Misyurin A.V. i dr. Osobennosti sootnosheniya urovnei ekspressii genov PRAME i PML/RARa v debyute ostrogo promielotsitarnogo leikoza. Rossiiskii bioterapevticheskii zhurnal 2014;13(1):9-16.

15. Xu Y., Rong L.-J., Meng S.-L. et al. PRAME promotes in vitro leukemia cells death by regulating S100A4/p53 signaling. European Review for Medical and Pharmacological Sciences 2016;20:1057-63. PMID: 27049257.

16. Huang Q., Li L., Lin Z. et al. Identification of Preferentially Expressed Antigen of Melanoma as a Potential Tumor Suppressor in Lung Adenocarcinoma. Med Sci Monit 2016;22:1837-42. PMID: 27241212.

17. Akhlynina T.V., Misyurin A.V., Lyzhko N.A. i dr. Nalichie immunogennogo antigena v opukholevoi kletke sposobstvuet antiproliferativnomu deistviyu dendritnykh kletok. Rossiiskii bioterapevticheskii zhurnal 2014;13(4):23-30.

18. Kawasaki T., Taro K. Toll-Like Receptor Signaling Pathways. Front Immunol 2014;5(461). DOI: 10.3389/fimmu. 2014.00461.