Андрология и генитальная хирургия. 2023; 24: 25-36
Генетические и сперматологические аспекты синдрома ацефалических сперматозоидов
Хаят С. Ш., Брагина Е. Е., Курило Л. Ф., Черных В. Б.
https://doi.org/10.17650/2070-9781-2023-24-4-25-36Аннотация
Синдром ацефалических сперматозоидов является генетически обусловленной формой первичного мужского бесплодия, связанного с тератозооспермией вследствие нарушенного аппарата сопряжения головка–жгутик, и характеризуется наличием в эякуляте сперматозоидов без головки (ацефалических). Морфологические изменения сперматозоида при данном синдроме описаны у человека, однако этиология и патогенез синдрома недостаточно изучены. В последние годы благодаря прогрессу в технологии секвенирования и развитию высокотехнологичных методов исследования генома, протеома и других омиксных технологий стало возможным выявление множества генетических причин нарушений сперматогенеза и развития мужского бесплодия, а также лучшее понимание их механизмов. В статье представлен краткий обзор генов, связанных с синдромом ацефалических сперматозоидов.
Список литературы
1. Андрология для урологов. Клинические рекомендации. Под ред. П.А. Щеплева. М.: Медконгресс, 2019. 424 с.
2. Курило Л.Ф., Штаут М.И. Генетические и эпигенетические механизмы регуляции, хронология и динамика сперматогенеза у млекопитающих. Андрология и генитальная хирургия 2015;16(1):31–40. DOI: 10.17650/2070-9781-2015-1-31-40
3. Neto F.T., Bach P.V., Najari B.B. et al. Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol 2016;59:10–26. DOI: 10.1016/j.semcdb.2016.04.009
4. Krausz C., Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol 2018;15(6):369–84. DOI: 10.1038/s41585-018-0003-3
5. Jiao S.Y., Yang Y.H., Chen S.R. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum Reprod Update 2021;27(1):154–89. DOI: 10.1093/humupd/dmaa034
6. WHO laboratory manual for the examination and processing of human semen. 6th edn. Geneva: WHO, 2021.
7. Брагина Е.Е., Бочарова Е.Н. Количественное электронно микроскопическое исследование сперматозоидов при диагностике мужского бесплодия. Андрология и генитальная хирургия 2014;15(1):41–50. DOI: 10.17650/2070-9781-2014-1-41-50
8. Брагина Е.Е., Сорокина Т.М., Арифулин Е.А., Курило Л.Ф. Генетически обусловленные формы патозооспермии. Обзор литературы и результаты исследований. Андрология и генитальная хирургия 2015;16(3):29–39. DOI: 10.17650/2070-9781-2015-16-3-29-39
9. Sha Y., Liu W., Li L. et al. Pathogenic variants in ACTRT1 cause acephalic spermatozoa syndrome. Front Cell Dev Biol 2021;9:676246. DOI: 10.3389/fcell.2021.676246
10. Zaneveld L.J., Polakoski K.L. Collection and physical examination of the ejaculate. In: Techniques of human andrology. Ed. by E.S. Hafez. Amsterdam: Elsevier/North-Holland Biomedical Press, 1977. Pp. 147–172.
11. Chemes H.E., Puigdomenech E.T., Carizza C. et al. Acephalic spermatozoa and abnormal development of the head-neck attachment: a human syndrome of genetic origin. Hum Reprod 1999;14(7):1811–8. DOI: 10.1093/humrep/14.7.1811
12. Бочарова Е.Н. Генетически обусловленная ультраструктурная патология сперматозоидов. Вестник новых медицинских технологий 2008;15(1):52–5.
13. Perotti M.E., Giarola A., Gioria M. Ultrastructural study of the decapitated sperm defect in an infertile man. J Reprod Fertil 1981;63(2):543–9. DOI: 10.1530/jrf.0.0630543
14. Baccetti B., Selmi M.G., Soldani P. Morphogenesis of “decapitated” spermatozoa in a man. J Reprod Fertil 1984;70(2):395–7. DOI: 10.1530/jrf.0.0700395
15. Chemes H.E., Carizza C., Scarinci F. et al. Lack of a head in human spermatozoa from sterile patients: a syndrome associated with impaired fertilization. Fertil Steril 1987;47(2):310–6. DOI: 10.1016/s0015-0282(16)50011-9
16. Baccetti B., Burrini A.G., Collodel G. et al. Morphogenesis of the decapitated and decaudated sperm defect in two brothers. Gamete Res 1989;23(2):181–8. DOI: 10.1002/mrd.1120230205
17. Perotti M.E., Gioria M. Fine structure and morphogenesis of “headless” human spermatozoa associated with infertility. Cell Biol Int Rep 1981;5(2):113. DOI: 10.1016/0309-1651(81)90018-7
18. De Kretser D.M. Ultrastructural features of human spermiogenesis. Z Zellforsch Mikrosk Anat 1969;98(4):477–505. DOI: 10.1007/BF00347027
19. Узбеков Р.Э., Алиева И.Б. Центросома – загадка «клеточного процессора». Цитология 2008;(2):91–112.
20. Fishman E.L., Jo K., Nguyen Q.P.H. et al. A novel atypical sperm centriole is functional during human fertilization. Nat Commun 2018;9(1):2210. DOI: 10.1038/s41467-018-04678-8
21. Avidor-Reiss T., Achinger L., Uzbekov R. The Centriole’s role in miscarriages. Front Cell Dev Biol 2022;10:864692. DOI: 10.3389/fcell.2022.864692
22. Schatten H., Sun Q.-Y. The role of centrosomes in mammalian fertilization and its significance for ICSI. Mol Hum Reprod 2009;15(9):531–8. DOI: 10.1093/molehr/gap049
23. Sathananthan A.H., Ratnam S.S., Ng S.C. et al. The sperm centriole: its inheritance, replication and perpetuation in early human embryos. Hum Reprod 1996;11(2):345–56. DOI: 10.1093/hum-rep/11.2.345
24. Sathananthan A.H., Ratnasooriya W.D., de Silva P.K., Menezes J. Characterization of human gamete centrosomes for assisted reproduction. Ital J Anat Embryol 2001;106(2 Suppl 2):61–73.
25. Nakamura S., Terada Y., Horiuchi T. et al. Analysis of the human sperm centrosomal function and the oocyte activation ability in a case of globozoospermia, by ICSI into bovine oocytes. Hum Reprod 2002;17(11):2930–4. DOI: 10.1093/humrep/17.11.2930
26. Garanina A.S., Alieva I.B., Bragina E.E. et al. The centriolar adjunct–appearance and disassembly in spermiogenesis and the potential impact on fertility. Cells 2019;8(2):180. DOI: 10.3390/cells8020180
27. Nie H., Tang Y., Qin W. Beyond acephalic spermatozoa: the complexity of intracytoplasmic sperm injection outcomes. Biomed Res Int 2020;2020:6279795. DOI: 10.1155/2020/6279795
28. Moretti E., Signorini C., Noto D. et al. The relevance of sperm morphology in male infertility. Front Reprod Health 2022;4:945351. DOI: 10.3389/frph.2022.945351
29. Shang Y., Yan J., Tang W. et al. Mechanistic insights into acephalic spermatozoa syndrome-associated mutations in the human SUN5 gene. J Biol Chem 2018;293(7):2395–407. DOI: 10.1074/jbc.RA117.000861
30. Le Lannou D. [Teratospermia consisting of the absence of the head of the spermatozoa because of a fault in the joint between the head and the neck of the sperm in man (In French)]. J Gynecol Obstet Biol Reprod (Paris) 1979;8(1):43–5.
31. Cazin C., Boumerdassi Y., Martinez G. et al. Identification and characterization of the most common genetic variant responsible for acephalic spermatozoa syndrome in men originating from North Africa. Int J Mol Sci 2021;22(4):2187. DOI: 10.3390/ijms22042187
32. Jan S.Z., Vormer T.L., Jongejan A. et al. Unraveling transcriptome dynamics in human spermatogenesis. Development 2017;144(20):3659–73. DOI: 10.1242/dev.152413
33. Beurois J., Cazin C., Kherraf Z.-E. et al. Genetics of teratozoospermia: back to the head. Best Pract Res Clin Endocrinol Metab 2020;34(6):101473. DOI: 10.1016/j.beem.2020.101473
34. Sha Y., Wang X., Yuan J. et al. Loss-of-function mutations in centrosomal protein 112 is associated with human acephalic spermatozoa phenotype. Clin Genet 2020;97(2):321–8. DOI: 10.1111/cge.13662
35. Crisp M., Liu Q., Roux K. et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 2006;172(1):41–53. DOI: 10.1083/jcb.200509124
36. Mazaheri Moghaddam M., Mazaheri Moghaddam M., Hamzeiy H. et al. Genetic basis of acephalic spermatozoa syndrome, and intracytoplasmic sperm injection outcomes in infertile men: a systematic scoping review. J Assist Reprod Genet 2021;38(3):573–86. DOI: 10.1007/s10815-020-02008-w
37. Yassine S., Escoffier J., Abi Nahed R. et al. Dynamics of Sun5 localization during spermatogenesis in wild type and Dpy19l2 knockout mice indicates that Sun5 is not involved in acrosome attachment to the nuclear envelope. PLoS One 2015;10(3):e0118698. DOI: 10.1371/journal.pone.0118698
38. Zhu F., Wang F., Yang X. et al. Biallelic SUN5 mutations cause autosomal-recessive acephalic spermatozoa syndrome. Am J Hum Genet 2016;99(4):942–9. DOI: 10.1016/j.ajhg.2016.08.004
39. Zhu F., Liu C., Wang F. et al. Mutations in PMFBP1 cause acephalic spermatozoa syndrome. Am J Hum Genet 2018;103(2):188–99. DOI: 10.1016/j.ajhg.2018.06.010
40. Shang Y., Zhu F., Wang L. et al. Essential role for SUN5 in anchoring sperm head to the tail. eLife 2017;6:e28199. DOI: 10.7554/eLife.28199
41. Oji A., Noda T., Fujihara Y. et al. CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice. Sci Rep 2016;6:31666. DOI: 10.1038/srep31666
42. Plaseski T., Noveski P., Popeska Z. et al. Association study of single-nucleotide polymorphisms in FASLG, JMJDIA, LOC203413, TEX15, BRDT, OR2W3, INSR, and TAS2R38 genes with male infertility. J Androl 2012;33(4):675–83. DOI: 10.2164/jandrol.111.013995
43. Pivot-Pajot C., Caron C., Govin J. et al. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomaincontaining protein. Mol Cell Biol 2003;23(15):5354–65. DOI: 10.1128/mcb.23.15.5354-5365.2003
44. Berkovits B.D., Wolgemuth D.J. The role of the double bromodomain-containing BET genes during mammalian spermatogenesis. Curr Top Dev Biol 2013;102:293–326. DOI: 10.1016/b978-0-12-416024-8.00011-8
45. Li L., Sha Y., Wang X. et al. Whole-exome sequencing identified a homozygous BRDT mutation in a patient with acephalic spermatozoa. Oncotarget 2017;8(12):19914–22. DOI:10.18632/oncotarget.15251
46. Bisgrove D.A., Mahmoudi T., Henklein P., Verdin E. Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. Proc Natl Acad Sci U S A 2007;104(34):13690–5. DOI: 10.1073/pnas.0705053104
47. Liu G., Wang N., Zhang H. et al. Novel mutations in PMFBP1, TSGA10 and SUN5: expanding the spectrum of mutations that may cause acephalic spermatozoa. Clin Genet 2020;97(6):938–9. DOI: 10.1111/cge.13747
48. Sha Y.W., Wang X., Xu X. et al. Biallelic mutations in PMFBP1 cause acephalic spermatozoa. Clin Genet 2019;95(2):277–86. DOI: 10.1111/cge.13461
49. Lu M., Kong S., Xiang M. et al. A novel homozygous missense mutation of PMFBP1 causes acephalic spermatozoa syndrome. J Assist Reprod Genet 2021;38(4):949–55. DOI: 10.1007/s10815-021-02075-7
50. Sha Y.W., Sha Y.K., Ji Z.Y. et al. TSGA10 is a novel candidate gene associated with acephalic spermatozoa. Clin Genet 2018;93(4):776–83. DOI: 10.1111/cge.13140
51. Ye Y., Wei X., Sha Y. et al. Loss-of-function mutation in TSGA10 causes acephalic spermatozoa phenotype in human. Mol Genet Genomic Med 2020;8(7):e1284. DOI: 10.1002/mgg3.1284
52. Luo G., Hou M., Wang B. et al. Tsga10 is essential for arrangement of mitochondrial sheath and male fertility in mice. Andrology 2021;9(1):368–75. DOI: 10.1111/andr.12889
53. Gershoni M., Hauser R., Yogev L. et al. A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes. Genet Med 2017;19(9):998–1006. DOI: 10.1038/gim.2016.225
54. Li L., Sha Y.W., Xu X. et al. DNAH6 is a novel candidate gene associated with sperm head anomaly. Andrologia 2018;50(4):e12953. DOI: 10.1111/and.12953
55. Li Q., Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am J Hum Genet 2017;100(2):267–80. DOI: 10.1016/j.ajhg.2017.01.004
56. Chen H., Zhu Y., Zhu Z. et al. Detection of heterozygous mutation in hook microtubule-tethering protein 1 in three patients with decapitated and decaudated spermatozoa syndrome. J Med Genet 2018;55(3):150–7. DOI: 10.1136/jmedgenet-2016-104404
57. Liu M., Ru Y., Gu Y. et al. Disruption of Ssp411 causes impaired sperm head formation and male sterility in mice. Biochim Biophys Acta Gen Subj 2018;1862(3):660–8. DOI: 10.1016/j.bbagen.2017.12.005
58. Wang X., Jiang C., Dai S. et al. Identification of nonfunctional SPATA20 causing acephalic spermatozoa syndrome in humans. Clin Genet 2023;103(3):310–9. DOI: 10.1111/cge.14268
59. Zhang X.Z., Wei L.L., Zhang X.H. et al. Loss of perinuclear theca ACTRT1 causes acrosome detachment and severe male subfertility in mice. Development 2022;149(12):dev200489. DOI: 10.1242/dev.200489
60. Li Y.Z., Li N., Liu W.S. et al. Biallelic mutations in spermatogenesis and centriole-associated 1 like (SPATC1L) cause acephalic spermatozoa syndrome and male infertility. Asian J Androl 2022;24(1):67–72. DOI: 10.4103/aja.aja_56_21
61. Porcu G., Mercier G., Boyer P. et al. Pregnancies after ICSI using sperm with abnormal head-tail junction from two brothers: case report. Hum Reprod 2003;18(3):562–7. DOI: 10.1093/humrep/deg121
62. Wang Y., Xiang M.F., Zheng N. et al. Genetic pathogenesis of acephalic spermatozoa syndrome: past, present, and future. Asian J Androl 2022;24(3):231–7. DOI: 10.4103/aja202198
Andrology and Genital Surgery. 2023; 24: 25-36
Genetic and spermatological aspects of acephalic sperm syndrome
Khayat S. Sh., Bragina E. E., Kurilo L. F., Chernykh V. B.
https://doi.org/10.17650/2070-9781-2023-24-4-25-36Abstract
Acephalic sperm syndrome is a genetically determined form of primary male infertility associated with teratozoospermia due to a disrupted head-tail coupling apparatus. Acephalic spermatozoa syndrome is characterized by high proportion of headless (acephalic) spermatozoa in the ejaculate. Sperm morphological changes in this syndrome were characterized, however, the etiology and pathogenesis of this syndrome have not been under evaluated. In recent years, with the progress in sequencing technology and other high-performance methods of genome, proteome and other omics technologies, it has become possible to identify many genetic causes of disorders of spermatogenesis and male infertility, as well as a better understanding of their mechanisms. This article provides a brief overview of the genes associated with acephalic sperm syndrome.
References
1. Andrologiya dlya urologov. Klinicheskie rekomendatsii. Pod red. P.A. Shchepleva. M.: Medkongress, 2019. 424 s.
2. Kurilo L.F., Shtaut M.I. Geneticheskie i epigeneticheskie mekhanizmy regulyatsii, khronologiya i dinamika spermatogeneza u mlekopitayushchikh. Andrologiya i genital'naya khirurgiya 2015;16(1):31–40. DOI: 10.17650/2070-9781-2015-1-31-40
3. Neto F.T., Bach P.V., Najari B.B. et al. Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol 2016;59:10–26. DOI: 10.1016/j.semcdb.2016.04.009
4. Krausz C., Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol 2018;15(6):369–84. DOI: 10.1038/s41585-018-0003-3
5. Jiao S.Y., Yang Y.H., Chen S.R. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum Reprod Update 2021;27(1):154–89. DOI: 10.1093/humupd/dmaa034
6. WHO laboratory manual for the examination and processing of human semen. 6th edn. Geneva: WHO, 2021.
7. Bragina E.E., Bocharova E.N. Kolichestvennoe elektronno mikroskopicheskoe issledovanie spermatozoidov pri diagnostike muzhskogo besplodiya. Andrologiya i genital'naya khirurgiya 2014;15(1):41–50. DOI: 10.17650/2070-9781-2014-1-41-50
8. Bragina E.E., Sorokina T.M., Arifulin E.A., Kurilo L.F. Geneticheski obuslovlennye formy patozoospermii. Obzor literatury i rezul'taty issledovanii. Andrologiya i genital'naya khirurgiya 2015;16(3):29–39. DOI: 10.17650/2070-9781-2015-16-3-29-39
9. Sha Y., Liu W., Li L. et al. Pathogenic variants in ACTRT1 cause acephalic spermatozoa syndrome. Front Cell Dev Biol 2021;9:676246. DOI: 10.3389/fcell.2021.676246
10. Zaneveld L.J., Polakoski K.L. Collection and physical examination of the ejaculate. In: Techniques of human andrology. Ed. by E.S. Hafez. Amsterdam: Elsevier/North-Holland Biomedical Press, 1977. Pp. 147–172.
11. Chemes H.E., Puigdomenech E.T., Carizza C. et al. Acephalic spermatozoa and abnormal development of the head-neck attachment: a human syndrome of genetic origin. Hum Reprod 1999;14(7):1811–8. DOI: 10.1093/humrep/14.7.1811
12. Bocharova E.N. Geneticheski obuslovlennaya ul'trastrukturnaya patologiya spermatozoidov. Vestnik novykh meditsinskikh tekhnologii 2008;15(1):52–5.
13. Perotti M.E., Giarola A., Gioria M. Ultrastructural study of the decapitated sperm defect in an infertile man. J Reprod Fertil 1981;63(2):543–9. DOI: 10.1530/jrf.0.0630543
14. Baccetti B., Selmi M.G., Soldani P. Morphogenesis of “decapitated” spermatozoa in a man. J Reprod Fertil 1984;70(2):395–7. DOI: 10.1530/jrf.0.0700395
15. Chemes H.E., Carizza C., Scarinci F. et al. Lack of a head in human spermatozoa from sterile patients: a syndrome associated with impaired fertilization. Fertil Steril 1987;47(2):310–6. DOI: 10.1016/s0015-0282(16)50011-9
16. Baccetti B., Burrini A.G., Collodel G. et al. Morphogenesis of the decapitated and decaudated sperm defect in two brothers. Gamete Res 1989;23(2):181–8. DOI: 10.1002/mrd.1120230205
17. Perotti M.E., Gioria M. Fine structure and morphogenesis of “headless” human spermatozoa associated with infertility. Cell Biol Int Rep 1981;5(2):113. DOI: 10.1016/0309-1651(81)90018-7
18. De Kretser D.M. Ultrastructural features of human spermiogenesis. Z Zellforsch Mikrosk Anat 1969;98(4):477–505. DOI: 10.1007/BF00347027
19. Uzbekov R.E., Alieva I.B. Tsentrosoma – zagadka «kletochnogo protsessora». Tsitologiya 2008;(2):91–112.
20. Fishman E.L., Jo K., Nguyen Q.P.H. et al. A novel atypical sperm centriole is functional during human fertilization. Nat Commun 2018;9(1):2210. DOI: 10.1038/s41467-018-04678-8
21. Avidor-Reiss T., Achinger L., Uzbekov R. The Centriole’s role in miscarriages. Front Cell Dev Biol 2022;10:864692. DOI: 10.3389/fcell.2022.864692
22. Schatten H., Sun Q.-Y. The role of centrosomes in mammalian fertilization and its significance for ICSI. Mol Hum Reprod 2009;15(9):531–8. DOI: 10.1093/molehr/gap049
23. Sathananthan A.H., Ratnam S.S., Ng S.C. et al. The sperm centriole: its inheritance, replication and perpetuation in early human embryos. Hum Reprod 1996;11(2):345–56. DOI: 10.1093/hum-rep/11.2.345
24. Sathananthan A.H., Ratnasooriya W.D., de Silva P.K., Menezes J. Characterization of human gamete centrosomes for assisted reproduction. Ital J Anat Embryol 2001;106(2 Suppl 2):61–73.
25. Nakamura S., Terada Y., Horiuchi T. et al. Analysis of the human sperm centrosomal function and the oocyte activation ability in a case of globozoospermia, by ICSI into bovine oocytes. Hum Reprod 2002;17(11):2930–4. DOI: 10.1093/humrep/17.11.2930
26. Garanina A.S., Alieva I.B., Bragina E.E. et al. The centriolar adjunct–appearance and disassembly in spermiogenesis and the potential impact on fertility. Cells 2019;8(2):180. DOI: 10.3390/cells8020180
27. Nie H., Tang Y., Qin W. Beyond acephalic spermatozoa: the complexity of intracytoplasmic sperm injection outcomes. Biomed Res Int 2020;2020:6279795. DOI: 10.1155/2020/6279795
28. Moretti E., Signorini C., Noto D. et al. The relevance of sperm morphology in male infertility. Front Reprod Health 2022;4:945351. DOI: 10.3389/frph.2022.945351
29. Shang Y., Yan J., Tang W. et al. Mechanistic insights into acephalic spermatozoa syndrome-associated mutations in the human SUN5 gene. J Biol Chem 2018;293(7):2395–407. DOI: 10.1074/jbc.RA117.000861
30. Le Lannou D. [Teratospermia consisting of the absence of the head of the spermatozoa because of a fault in the joint between the head and the neck of the sperm in man (In French)]. J Gynecol Obstet Biol Reprod (Paris) 1979;8(1):43–5.
31. Cazin C., Boumerdassi Y., Martinez G. et al. Identification and characterization of the most common genetic variant responsible for acephalic spermatozoa syndrome in men originating from North Africa. Int J Mol Sci 2021;22(4):2187. DOI: 10.3390/ijms22042187
32. Jan S.Z., Vormer T.L., Jongejan A. et al. Unraveling transcriptome dynamics in human spermatogenesis. Development 2017;144(20):3659–73. DOI: 10.1242/dev.152413
33. Beurois J., Cazin C., Kherraf Z.-E. et al. Genetics of teratozoospermia: back to the head. Best Pract Res Clin Endocrinol Metab 2020;34(6):101473. DOI: 10.1016/j.beem.2020.101473
34. Sha Y., Wang X., Yuan J. et al. Loss-of-function mutations in centrosomal protein 112 is associated with human acephalic spermatozoa phenotype. Clin Genet 2020;97(2):321–8. DOI: 10.1111/cge.13662
35. Crisp M., Liu Q., Roux K. et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 2006;172(1):41–53. DOI: 10.1083/jcb.200509124
36. Mazaheri Moghaddam M., Mazaheri Moghaddam M., Hamzeiy H. et al. Genetic basis of acephalic spermatozoa syndrome, and intracytoplasmic sperm injection outcomes in infertile men: a systematic scoping review. J Assist Reprod Genet 2021;38(3):573–86. DOI: 10.1007/s10815-020-02008-w
37. Yassine S., Escoffier J., Abi Nahed R. et al. Dynamics of Sun5 localization during spermatogenesis in wild type and Dpy19l2 knockout mice indicates that Sun5 is not involved in acrosome attachment to the nuclear envelope. PLoS One 2015;10(3):e0118698. DOI: 10.1371/journal.pone.0118698
38. Zhu F., Wang F., Yang X. et al. Biallelic SUN5 mutations cause autosomal-recessive acephalic spermatozoa syndrome. Am J Hum Genet 2016;99(4):942–9. DOI: 10.1016/j.ajhg.2016.08.004
39. Zhu F., Liu C., Wang F. et al. Mutations in PMFBP1 cause acephalic spermatozoa syndrome. Am J Hum Genet 2018;103(2):188–99. DOI: 10.1016/j.ajhg.2018.06.010
40. Shang Y., Zhu F., Wang L. et al. Essential role for SUN5 in anchoring sperm head to the tail. eLife 2017;6:e28199. DOI: 10.7554/eLife.28199
41. Oji A., Noda T., Fujihara Y. et al. CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice. Sci Rep 2016;6:31666. DOI: 10.1038/srep31666
42. Plaseski T., Noveski P., Popeska Z. et al. Association study of single-nucleotide polymorphisms in FASLG, JMJDIA, LOC203413, TEX15, BRDT, OR2W3, INSR, and TAS2R38 genes with male infertility. J Androl 2012;33(4):675–83. DOI: 10.2164/jandrol.111.013995
43. Pivot-Pajot C., Caron C., Govin J. et al. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomaincontaining protein. Mol Cell Biol 2003;23(15):5354–65. DOI: 10.1128/mcb.23.15.5354-5365.2003
44. Berkovits B.D., Wolgemuth D.J. The role of the double bromodomain-containing BET genes during mammalian spermatogenesis. Curr Top Dev Biol 2013;102:293–326. DOI: 10.1016/b978-0-12-416024-8.00011-8
45. Li L., Sha Y., Wang X. et al. Whole-exome sequencing identified a homozygous BRDT mutation in a patient with acephalic spermatozoa. Oncotarget 2017;8(12):19914–22. DOI:10.18632/oncotarget.15251
46. Bisgrove D.A., Mahmoudi T., Henklein P., Verdin E. Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. Proc Natl Acad Sci U S A 2007;104(34):13690–5. DOI: 10.1073/pnas.0705053104
47. Liu G., Wang N., Zhang H. et al. Novel mutations in PMFBP1, TSGA10 and SUN5: expanding the spectrum of mutations that may cause acephalic spermatozoa. Clin Genet 2020;97(6):938–9. DOI: 10.1111/cge.13747
48. Sha Y.W., Wang X., Xu X. et al. Biallelic mutations in PMFBP1 cause acephalic spermatozoa. Clin Genet 2019;95(2):277–86. DOI: 10.1111/cge.13461
49. Lu M., Kong S., Xiang M. et al. A novel homozygous missense mutation of PMFBP1 causes acephalic spermatozoa syndrome. J Assist Reprod Genet 2021;38(4):949–55. DOI: 10.1007/s10815-021-02075-7
50. Sha Y.W., Sha Y.K., Ji Z.Y. et al. TSGA10 is a novel candidate gene associated with acephalic spermatozoa. Clin Genet 2018;93(4):776–83. DOI: 10.1111/cge.13140
51. Ye Y., Wei X., Sha Y. et al. Loss-of-function mutation in TSGA10 causes acephalic spermatozoa phenotype in human. Mol Genet Genomic Med 2020;8(7):e1284. DOI: 10.1002/mgg3.1284
52. Luo G., Hou M., Wang B. et al. Tsga10 is essential for arrangement of mitochondrial sheath and male fertility in mice. Andrology 2021;9(1):368–75. DOI: 10.1111/andr.12889
53. Gershoni M., Hauser R., Yogev L. et al. A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes. Genet Med 2017;19(9):998–1006. DOI: 10.1038/gim.2016.225
54. Li L., Sha Y.W., Xu X. et al. DNAH6 is a novel candidate gene associated with sperm head anomaly. Andrologia 2018;50(4):e12953. DOI: 10.1111/and.12953
55. Li Q., Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am J Hum Genet 2017;100(2):267–80. DOI: 10.1016/j.ajhg.2017.01.004
56. Chen H., Zhu Y., Zhu Z. et al. Detection of heterozygous mutation in hook microtubule-tethering protein 1 in three patients with decapitated and decaudated spermatozoa syndrome. J Med Genet 2018;55(3):150–7. DOI: 10.1136/jmedgenet-2016-104404
57. Liu M., Ru Y., Gu Y. et al. Disruption of Ssp411 causes impaired sperm head formation and male sterility in mice. Biochim Biophys Acta Gen Subj 2018;1862(3):660–8. DOI: 10.1016/j.bbagen.2017.12.005
58. Wang X., Jiang C., Dai S. et al. Identification of nonfunctional SPATA20 causing acephalic spermatozoa syndrome in humans. Clin Genet 2023;103(3):310–9. DOI: 10.1111/cge.14268
59. Zhang X.Z., Wei L.L., Zhang X.H. et al. Loss of perinuclear theca ACTRT1 causes acrosome detachment and severe male subfertility in mice. Development 2022;149(12):dev200489. DOI: 10.1242/dev.200489
60. Li Y.Z., Li N., Liu W.S. et al. Biallelic mutations in spermatogenesis and centriole-associated 1 like (SPATC1L) cause acephalic spermatozoa syndrome and male infertility. Asian J Androl 2022;24(1):67–72. DOI: 10.4103/aja.aja_56_21
61. Porcu G., Mercier G., Boyer P. et al. Pregnancies after ICSI using sperm with abnormal head-tail junction from two brothers: case report. Hum Reprod 2003;18(3):562–7. DOI: 10.1093/humrep/deg121
62. Wang Y., Xiang M.F., Zheng N. et al. Genetic pathogenesis of acephalic spermatozoa syndrome: past, present, and future. Asian J Androl 2022;24(3):231–7. DOI: 10.4103/aja202198
События
-
Журнал «Современная наука и инновации» принят в DOAJ >>>
28 июл 2025 | 08:36 -
К платформе Elpub присоединились 4 журнала КФУ >>>
24 июл 2025 | 08:39 -
Журнал «Advanced Engineering Research (Rostov-on-Don)» вошел в Russian Science Citation Index >>>
23 июл 2025 | 08:38 -
Журнал «Літасфера» присоединился к Elpub! >>>
22 июл 2025 | 11:00 -
К платформе Elpub присоединился журнал «Труды НИИСИ» >>>
21 июл 2025 | 10:43