Журналов:     Статей:        

Андрология и генитальная хирургия. 2023; 24: 75-81

Липидомный анализ семенной плазмы в диагностике мужского бесплодия, ассоциированного с варикоцеле

Гамидов С. И., Шатылко Т. В., Бицоев Т. Б., Тамбиев А. Х., Токарева А. О., Чаговец В. В., Стародубцева Н. Л., Франкевич В. Е.

https://doi.org/10.17650/2070-9781-2023-24-3-75-81

Аннотация

Введение. Примерно 50 % случаев бесплодия в браке приходятся на мужской фактор. Одной из самых частых причин мужского бесплодия является варикозное расширение вен гроздьевидного сплетения семенного канатика, или варикоцеле. Однако тот факт, что лишь в 10-45 % случаев лечения варикоцеле путем микрохирургической субингвинальной варикоцелэктомии наступает самостоятельная беременность в паре, говорит о необходимости поиска диагностического маркера, позволяющего прогнозировать успешность хирургического лечения варикоцеле до операции.

Цель исследования – изучить особенности липидного профиля семенной плазмы пациентов с варикоцеле и оценить возможность использования липидомного анализа семенной плазмы при отборе мужчин с варикоцеле для хирургического лечения.

Материалы и методы. Пятидесяти трем пациентам в возрасте от 18 до 44 лет с варикоцеле и нарушениями параметров спермограммы, состоящих в бесплодном браке, была выполнена микрохирургическая варикоцелэктомия по Мармару врачами одного отделения. В контрольную группу вошли 24 здоровых мужчины без варикоцеле, с нормозооспермией и установленной фертильностью. В качестве материала для исследования использовали семенную плазму мужчин, в которой определяли липидный состав методом масс-спектрометрии.

Результаты. При сравнении липидных профилей семенной плазмы мужчин из группы контроля и группы с варикоцеле, а также липидных профилей семенной плазмы, полученной до и после операции, статистически значимых различий обнаружено не было. При сравнении липидных профилей сданной до микрохирургической варикоцелэктомии семенной плазмы пациентов, у которых был достигнут (n = 15) и не был достигнут (n = 16) эффект после операции, было обнаружено статистически значимое различие уровня HexCer-NDS d20:0/18:0 в режиме положительных ионов и 8 липидов в режиме отрицательных ионов. Данные липиды относятся преимущественно к окисленным фосфолипидам, кардиолипинам и фосфатидилэтаноламинам.

Заключение. Липидом семенной плазмы пациентов, у которых был достигнут эффект после перенесенной операции по поводу варикоцеле, имеет статистически значимое различие с липидным профилем семенной плазмы тех пациентов, у которых эффекта достигнуто не было.

Список литературы

1. Ferlin A., Raicu F., Gatta V. et al. Male infertility: role of genetic background. Reprod Biomed Online 2007;14(6):734–45. DOI: 10.1016/s1472-6483(10)60677-3

2. Brugh V.M. 3rd, Matschke H.M., Lipshultz L.I. Male factor infertility. Endocrinol Metab Clin North Am 2003;32(3):689–707. DOI: 10.1016/s0889-8529(03)00047-1

3. Котов С.В., Ирицян М.М., Бадаква Г.В. Результаты применения комплекса ББЕСТФертил у пациентов после микрохирургической подпаховой варикоцелэктомии (операции Мармара). Урология 2022;1:50–4. DOI: 10.18565/urology.2022.1.50-54

4. Diegidio P., Jhaveri J.K., Ghannam S. et al. Review of current varicocelectomy techniques and their outcomes. BJU Int 2011;108(7):1157–72. DOI: 10.1111/j.1464-410X.2010.09959.x

5. Agarwal A., Roychoudhury S., Bjugstad K.B., Cho C.L. Oxidation-reduction potential of semen: what is its role in the treatment of male infertility? Ther Adv Urol 2016;8(5):302–18. DOI: 10.1177/1756287216652779

6. Корнеев И.А. Мужское бесплодие при оксидативном стрессе: пути решения проблемы. Урология 2022;1:102–8. DOI: 10.18565/urology.2022.1.102-108

7. Agarwal A., Gupta S., Sharma R. Measurement of DNA fragmentation in spermatozoa by TUNEL assay using bench top flow cytometer. In: Andrological evaluation of male infertility. Ed. by A. Agarwal, S. Gupta, R. Sharma. Springer, Cham, 2016. P. 181–203. DOI: 10.1007/978-3-319-26797-5_24

8. Kovac J.R., Pastuszak A.W., Lamb D.J. The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil Steril 2013;99(4):998–1007. DOI: 10.1016/j.fertnstert.2013.01.111

9. Тулаганов К.А., Садриддинов Х.Н., Ибрагимов У.К. Фертильность мужчин и биохимический состав спермоплазмы. Андрология и генитальная хирургия 2009;10(2):94.

10. Lenzi A., Picardo M., Gandini L., Dondero F. Lipids of the sperm plasma membrane: from polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Hum Reprod Update 1996;2(3):246–56. DOI: 10.1093/humupd/2.3.246

11. Koelmel J.P., Kroeger N.M., Ulmer C.Z. et al. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics 2017;18(1):331. DOI: 10.1186/s12859-017-1744-3

12. Team R.C. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.r-project.org/

13. Team R.C. RStudio: Integrated Development for R. Available at: http://www.rstudio.com/

14. Poulos A., Voglmayr J.K., White I.G. Phospholipid changes in spermatozoa during passage through the genital tract of the bull. Biochim Biophys Acta 1973;306(2):194–202. DOI: 10.1016/0005-2760(73)90225-7

15. Parks J.E., Graham J.K. Effects of cryopreservation procedures on sperm membranes. Theriogenology 1992;38(2):209–22. DOI: 10.1016/0093-691x(92)90231-f

16. Watson P.F. The causes of reduced fertility with cryopreserved semen. Anim Reprod Sci 2000;60–61:481–92. DOI: 10.1016/s0378-4320(00)00099-3

17. Evans H.C., Dinh T.T.N., Ugur M.R. et al. Lipidomic markers of sperm cryotolerance in cattle. Sci Rep 2020;10(1):20192. DOI: 10.1038/s41598-020-77089-9

18. Amaral A., Castillo J., Estanyol J.M. et al. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol Cell Proteomics 2013;12(2):330–42. DOI: 10.1074/mcp.M112.020552

19. Esmaeili V., Shahverdi A.H., Moghadasian M.H., Alizadeh A.R. Dietary fatty acids affect semen quality: a review. Andrology 2015;3(3):450–61. DOI: 10.1111/andr.12024

20. Zerbinati C., Caponecchia L., Rago R. et al. Fatty acids profiling reveals potential candidate markers of semen quality. Andrology 2016;4(6):1094–101. DOI: 10.1111/andr.12236

21. Tavilani H., Doosti M., Nourmohammadi I. et al. Lipid composition of spermatozoa in normozoospermic and asthenozoospermic males. Prostaglandins Leukot Essent Fatty Acids 2007;77(1):45–50. DOI: 10.1016/j.plefa.2007.07.001

22. Lopalco P., Vitale R., Cho Y.S. et al. Alteration of cholesterol sulfate/seminolipid ratio in semen lipid profile of men with oligoasthenozoospermia. Front Physiol 2019;10:1344. DOI: 10.3389/fphys.2019.01344

23. Гамидов С.И., Шатылко Т.В., Тамбиев А.Х. и др. Липидомный профиль семенной плазмы при необструктивной азооспермии с остановкой созревания сперматозоидов. Вестник урологии 2021;9(4):30–9. DOI: 10.21886/2308-6424-2021-9-4-30-39

24. Tasseva G., Bai H.D., Davidescu M. et al. Phosphatidylethanolamine deficiency in Mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology. J Biol Chem 2013;288(6):4158–73. DOI: 10.1074/jbc.M112.434183

25. Jiang F., Ryan M.T., Schlame M. et al. Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem 2000;275(29):22387–94. DOI: 10.1074/jbc.M909868199

26. Horvath S.E., Daum G. Lipids of mitochondria. Prog Lipid Res 2013;52(4):590–614. DOI: 10.1016/j.plipres.2013.07.002

27. Mejia E.M., Hatch G.M. Mitochondrial phospholipids: role in mitochondrial function. J Bioenerg Biomembr 2016;48(2):99–112. DOI: 10.1007/s10863-015-9601-4

28. Ren M., Phoon C.K., Schlame M. Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 2014;55:1–16. DOI: 10.1016/j.plipres.2014.04.001

29. Vance J.E. Phospholipid synthesis and transport in mammalian cells. Traffic 2015;16(1):1–18. DOI: 10.1111/tra.12230

30. Bogdanov M., Dowhan W. Lipid-assisted protein folding. J Biol Chem 1999;274(52):36827–30. DOI: 10.1074/jbc.274.52.36827

Andrology and Genital Surgery. 2023; 24: 75-81

Lipidomic analysis of seminal plasma in work-up of varicocele-associated male infertility

Gamidov S. I., Shatylko T. V., Bitsoev T. B., Tambiev A. Kh., Tokareva A. O., Chagovets V. V., Starodubtseva N. L., Frankevich V. E.

https://doi.org/10.17650/2070-9781-2023-24-3-75-81

Abstract

Background. Approximately 50 % of cases of infertility in couples are attributable to male factor. One of the most common causes of male infertility is varicose dilation of pampiniform plexus veins in spermatic cord, or varicocele. However, the fact that only in 10-45 % of cases microsurgical subinguinal varicocelectomy leads to a spontaneous pregnancy in a couple urges further search for a diagnostic marker which would be able to predict the success of surgical treatment of varicocele preoperatively.

Aim. To study the features of lipid profile of seminal plasma in patients with varicocele and to evaluate the possibility of using lipidomic analysis of seminal plasma for patient selection prior to surgical treatment for varicocele.

Materials and methods. Fifty three patients from infertile couples with varicocele and altered seminal parameters aged 18 to 44 years underwent microsurgical varicocelectomy as described by Marmar. All patients were treated in one department. The control group included 24 healthy normozoospermic men without varicocele who had proven fertility. The material for the study was the seminal plasma of men, lipid composition of which was determined by mass spectrometry.

Results. No significant differences were found in lipid profiles of seminal plasma from men in control group and varicocele group, as well as in lipid profiles of seminal plasma obtained before and after surgery in same patients. Comparison of lipid profiles of seminal plasma provided by patients before microsurgical varicocelectomy, who had clinical effect (n = 15) and who did not have clinical effect (n = 16), revealed differences in level of HexCer-NDS d20:0/18:0 in the positive ion test and in levels of 8 other lipids in the negative ion test. These lipids are related to the oxidation of phospholipids, cardiolipins and phosphatidylethanolamines.

Conclusion. The lipid profile of seminal plasma of patients who had clinical response to varicocele surgery is significantly different from the lipid profile of seminal plasma of non-responder patients.

References

1. Ferlin A., Raicu F., Gatta V. et al. Male infertility: role of genetic background. Reprod Biomed Online 2007;14(6):734–45. DOI: 10.1016/s1472-6483(10)60677-3

2. Brugh V.M. 3rd, Matschke H.M., Lipshultz L.I. Male factor infertility. Endocrinol Metab Clin North Am 2003;32(3):689–707. DOI: 10.1016/s0889-8529(03)00047-1

3. Kotov S.V., Iritsyan M.M., Badakva G.V. Rezul'taty primeneniya kompleksa BBESTFertil u patsientov posle mikrokhirurgicheskoi podpakhovoi varikotselektomii (operatsii Marmara). Urologiya 2022;1:50–4. DOI: 10.18565/urology.2022.1.50-54

4. Diegidio P., Jhaveri J.K., Ghannam S. et al. Review of current varicocelectomy techniques and their outcomes. BJU Int 2011;108(7):1157–72. DOI: 10.1111/j.1464-410X.2010.09959.x

5. Agarwal A., Roychoudhury S., Bjugstad K.B., Cho C.L. Oxidation-reduction potential of semen: what is its role in the treatment of male infertility? Ther Adv Urol 2016;8(5):302–18. DOI: 10.1177/1756287216652779

6. Korneev I.A. Muzhskoe besplodie pri oksidativnom stresse: puti resheniya problemy. Urologiya 2022;1:102–8. DOI: 10.18565/urology.2022.1.102-108

7. Agarwal A., Gupta S., Sharma R. Measurement of DNA fragmentation in spermatozoa by TUNEL assay using bench top flow cytometer. In: Andrological evaluation of male infertility. Ed. by A. Agarwal, S. Gupta, R. Sharma. Springer, Cham, 2016. P. 181–203. DOI: 10.1007/978-3-319-26797-5_24

8. Kovac J.R., Pastuszak A.W., Lamb D.J. The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil Steril 2013;99(4):998–1007. DOI: 10.1016/j.fertnstert.2013.01.111

9. Tulaganov K.A., Sadriddinov Kh.N., Ibragimov U.K. Fertil'nost' muzhchin i biokhimicheskii sostav spermoplazmy. Andrologiya i genital'naya khirurgiya 2009;10(2):94.

10. Lenzi A., Picardo M., Gandini L., Dondero F. Lipids of the sperm plasma membrane: from polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Hum Reprod Update 1996;2(3):246–56. DOI: 10.1093/humupd/2.3.246

11. Koelmel J.P., Kroeger N.M., Ulmer C.Z. et al. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics 2017;18(1):331. DOI: 10.1186/s12859-017-1744-3

12. Team R.C. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.r-project.org/

13. Team R.C. RStudio: Integrated Development for R. Available at: http://www.rstudio.com/

14. Poulos A., Voglmayr J.K., White I.G. Phospholipid changes in spermatozoa during passage through the genital tract of the bull. Biochim Biophys Acta 1973;306(2):194–202. DOI: 10.1016/0005-2760(73)90225-7

15. Parks J.E., Graham J.K. Effects of cryopreservation procedures on sperm membranes. Theriogenology 1992;38(2):209–22. DOI: 10.1016/0093-691x(92)90231-f

16. Watson P.F. The causes of reduced fertility with cryopreserved semen. Anim Reprod Sci 2000;60–61:481–92. DOI: 10.1016/s0378-4320(00)00099-3

17. Evans H.C., Dinh T.T.N., Ugur M.R. et al. Lipidomic markers of sperm cryotolerance in cattle. Sci Rep 2020;10(1):20192. DOI: 10.1038/s41598-020-77089-9

18. Amaral A., Castillo J., Estanyol J.M. et al. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol Cell Proteomics 2013;12(2):330–42. DOI: 10.1074/mcp.M112.020552

19. Esmaeili V., Shahverdi A.H., Moghadasian M.H., Alizadeh A.R. Dietary fatty acids affect semen quality: a review. Andrology 2015;3(3):450–61. DOI: 10.1111/andr.12024

20. Zerbinati C., Caponecchia L., Rago R. et al. Fatty acids profiling reveals potential candidate markers of semen quality. Andrology 2016;4(6):1094–101. DOI: 10.1111/andr.12236

21. Tavilani H., Doosti M., Nourmohammadi I. et al. Lipid composition of spermatozoa in normozoospermic and asthenozoospermic males. Prostaglandins Leukot Essent Fatty Acids 2007;77(1):45–50. DOI: 10.1016/j.plefa.2007.07.001

22. Lopalco P., Vitale R., Cho Y.S. et al. Alteration of cholesterol sulfate/seminolipid ratio in semen lipid profile of men with oligoasthenozoospermia. Front Physiol 2019;10:1344. DOI: 10.3389/fphys.2019.01344

23. Gamidov S.I., Shatylko T.V., Tambiev A.Kh. i dr. Lipidomnyi profil' semennoi plazmy pri neobstruktivnoi azoospermii s ostanovkoi sozrevaniya spermatozoidov. Vestnik urologii 2021;9(4):30–9. DOI: 10.21886/2308-6424-2021-9-4-30-39

24. Tasseva G., Bai H.D., Davidescu M. et al. Phosphatidylethanolamine deficiency in Mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology. J Biol Chem 2013;288(6):4158–73. DOI: 10.1074/jbc.M112.434183

25. Jiang F., Ryan M.T., Schlame M. et al. Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem 2000;275(29):22387–94. DOI: 10.1074/jbc.M909868199

26. Horvath S.E., Daum G. Lipids of mitochondria. Prog Lipid Res 2013;52(4):590–614. DOI: 10.1016/j.plipres.2013.07.002

27. Mejia E.M., Hatch G.M. Mitochondrial phospholipids: role in mitochondrial function. J Bioenerg Biomembr 2016;48(2):99–112. DOI: 10.1007/s10863-015-9601-4

28. Ren M., Phoon C.K., Schlame M. Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 2014;55:1–16. DOI: 10.1016/j.plipres.2014.04.001

29. Vance J.E. Phospholipid synthesis and transport in mammalian cells. Traffic 2015;16(1):1–18. DOI: 10.1111/tra.12230

30. Bogdanov M., Dowhan W. Lipid-assisted protein folding. J Biol Chem 1999;274(52):36827–30. DOI: 10.1074/jbc.274.52.36827