Андрология и генитальная хирургия. 2023; 24: 24-35
Что следует знать урологу о фрагментации ДНК сперматозоидов
Олефир Ю. В., Ефремов Е. А., Родионов М. А., Живулько А. Р., Попов Д. М., Монаков Д. М.
https://doi.org/10.17650/2070-9781-2023-24-1-24-35Аннотация
Введение. Спермограмма – один из основных методов лабораторной диагностики мужского бесплодия, но нормальные ее показатели не гарантируют, что пациент фертилен, а в 10–30 % случаев данное исследование не позволяет выяснить причину бесплодия. Исследование уровня фрагментации ДНК сперматозоидов (ФДС) – возможное решение данной проблемы.
Цель работы – систематизировать имеющуюся на сегодняшний день информацию о клиническом значении, причинах, методах диагностики и лечения ФДС для ее использования урологом в процессе повседневной практики.
Материалы и методы. Проведен поиск публикаций в базах данных eLIBRARY и PubMed с использованием ключевых слов: мужское бесплодие (male infertility), фрагментация ДНК сперматозоидов (sperm DNA fragmentation), этиология (causes), варикоцеле (varicocele), оксидативный стресс (oxidative stress), диагностика (diagnostics), лечение (treatment). Отобрано 111 исследований, которые включены в настоящий обзор.
Результаты. Алкоголь, курение, наркотические вещества, психоэмоциональный стресс, неблагоприятные факторы окружающей среды и профессиональные вредности, инфекции и воспалительный процесс в органах репродуктивной системы, варикоцеле и старший отцовский возраст могут приводить к повышению уровня ФДС и неблагоприятным репродуктивным исходам, в том числе при использовании вспомогательных репродуктивных технологий. Данные о роли метаболического синдрома в генезе ФДС неоднозначны. Основной механизм развития повреждения ДНК сперматозоидов – оксидативный стресс. Уровень ФДС может быть оценен с помощью прямых (Comet, TUNEL) и непрямых (SDS, SCSA) методов. Лечение при ФДС предполагает устранение факторов, приводящих к ее развитию, борьбу с оксидативным стрессом и назначение рекомбинантного фолликулостимулирующего гормона.
Заключение. Уровень ФДС – важный показатель для оценки мужского репродуктивного потенциала и прогнозирования успеха применения различных методов преодоления бесплодия. В последнее время отмечается расширение показаний для использования методов оценки целостности генетического материала сперматозоидов в клинической практике специалистов в области репродуктивной медицины.
Список литературы
1. Ефремов Е.А., Касатонова Е.В. Актуальные и перспективные методы лечения идиопатического мужского бесплодия. Андрология и генитальная хирургия 2022;23(3):48–53. DOI: 10.17650/2070-9781-2022-23-3-48-53
2. Ефремов Е.А., Касатонова Е.В., Красняк С.С. и др. Роль антиоксидантов в улучшении параметров эякулята и клинических исходов у бесплодных пар. Экспериментальная и клиническая урология 2017;2:61–5.
3. Louis J.F., Thoma M.E., Sørensen D.N. et al. The prevalence of couple infertility in the United States from a male perspective: evidence from a nationally representative sample. Andrology 2013;1(5):741–8. DOI: 10.1111/j.2047-2927.2013.00110.x
4. Лебедев Г.С., Голубев Н.А., Шадеркин И.А. и др. Мужское бесплодие в Российской Федерации: статистические данные за 2000–2018 годы. Экспериментальная и клиническая урология 2019;4:4–12. DOI: 10.29188/2222-8543-2019-11-4-4-12
5. Jungwirth А., Diemer T., Kopa Z. et al. Male infertility. EAU Guideline. 2020. Available at: https://uroweb.org/guideline/male-infertility/#8.
6. Hamada A., Esteves S.C., Nizza M., Agarwal A. Unexplained male infertility: diagnosis and management. Int Braz J Urol 2012;38(5):576–94. DOI: 10.1590/s1677-55382012000500002
7. Esteves S.C., Agarwal A. Novel concepts in male infertility. Int Braz J Urol 2011;37(1):5–15. DOI: 10.1590/s1677-55382011000100002
8. Esteves S.C., Agarwal A., Cho C.L., Majzoub A. A Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis on the clinical utility of sperm DNA fragmentation testing in specific male infertility scenarios. Trans Androl Urol 2017;6(Suppl 4):S734–S60. DOI: 10.21037/tau.2017.08.20
9. Santi D., Spaggiari G., Simoni M. Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management – meta-analyses. Reprod Biomed Online 2018;37(3):315–26. DOI: 10.1016/j.rbmo.2018.06.023
10. Коршунов М.Н., Коршунова Е.С., Кызласов П.С. и др. Структурные нарушения хроматина сперматозоидов. Патофизиологические аспекты. Клиническая значимость. Вестник урологии 2021;9(1):95–104. DOI: 10.21886/2308-6424-2021-9-1-95-104
11. Gill K., Jakubik J., Rosiak-Gill A. et al. Utility and predictive value of human standard semen parameters and sperm DNA dispersion for fertility potential. Int J Environ Res Public Health 2019;16(11):2004. DOI: 10.3390/ijerph16112004
12. Dada R. Sperm DNA damage diagnostics: when and why. Transl Androl Urol 2017;6(Suppl 4):S691–S4. DOI: 10.21037/tau.2017.05.26
13. Esteves S.C., Zini A., Coward R.M. et al. Sperm DNA fragmentation testing: summary evidence and clinical practice recommendations. Andrologia 2021;53(2):e13874. DOI: 10.1111/and.13874
14. Руднева С.А., Брагина Е.Е., Арифулин Е.А. и др. Фрагментация ДНК в сперматозоидах и ее взаимосвязь с нарушением сперматогенеза. Андрология и генитальная хирургия 2014;15(4):26–33. DOI: 10.17650/2070-9781-2014-4-26-33
15. Авадиева Н.Э. Применение ДНК фрагментации спермы в андрологической практике. Вестник урологии 2019;7(1):7–11. DOI: 10.21886/2308-6424-2019-7-1-7-11
16. Cho C.L., Agarwal A., Majzoub A., Esteves S.C. Clinical utility of sperm DNA fragmentation testing: concise practice recommendations. Transl Androl Urol 2017;6(Suppl 4):S366–S73. DOI: 10.21037/tau.2017.07.28
17. Esteves S.C., Santi D., Simoni M. An update on clinical and surgical interventions to reduce sperm DNA fragmentation in infertile men. Andrology 2020;8(1):53–81. DOI: 10.1111/andr.12724
18. Boeri L., Capogrosso P., Ventimiglia E. et al. Heavy cigarette smoking and alcohol consumption are associated with impaired sperm parameters in primary infertile men. Asian J Androl 2019;21(5):478–85. DOI: 10.4103/aja.aja_110_18
19. Sharma R., Harlev A., Agarwal A., Esteves S.C. Cigarette smoking and semen quality: a new meta-analysis examining the effect of the 2010 World Health Organization laboratory methods for the examination of human semen. Eur Urol 2016;70(4):635–45. DOI: 10.1016/j.eururo.2016.04.010
20. Mostafa R.M., Nasrallah Y.S., Hassan M.M. et al. The effect of cigarette smoking on human seminal parameters, sperm chromatin structure and condensation. Andrologia 2018;50(3):e12910. DOI: 10.1111/and.12910
21. Fraga C.G., Motchnik P.A., Wyrobek A.J. et al. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res 1996;351(2):199–203. DOI: 10.1016/0027-5107(95)00251-0
22. Gunes S., Metin Mahmutoglu A., Arslan M.A., Henkel R. Smokinginduced genetic and epigenetic alterations in infertile men. Andrologia 2018;50(9):e13124. DOI: 10.1111/and.13124
23. Ranganathan P., Rao K.A., Thalaivarasai Balasundaram S. Deterioration of semen quality and sperm-DNA integrity as influenced by cigarette smoking in fertile and infertile human male smokers – a prospective study. J Cell Biochem 2019;120(7):11784–93. DOI: 10.1002/jcb.28458
24. Vande Loock K., Ciardelli R., Decordier I. et al. Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage. Mutagenesis 2012;27(5):573–80. DOI: 10.1093/mutage/ges022
25. Aboulmaouahib S., Madkour A., Kaarouch I. et al. Impact of alcohol and cigarette smoking consumption in male fertility potential: looks at lipid peroxidation, enzymatic antioxidant activities and sperm DNA damage. Andrologia 2018;50(3):e12926. DOI: 10.1111/and.12926
26. Lee K.M., Ward M.H., Han S. et al. Paternal smoking, genetic polymorphisms in CYP1A1 and childhood leukemia risk. Leuk Res 2009;33(2):250–58. DOI: 10.1016/j.leukres.2008.06.031
27. Kumar S.B., Chawla B., Bisht S. et al. Tobacco use increases oxidative DNA damage in sperm – possible etiology of childhood cancer. Asian Pac J Cancer Prev 2015;16(16):6967–72. DOI: 10.7314/apjcp.2015.16.16.6967
28. Verhaeghe F., Di Pizio P., Bichara C. et al. Cannabis consumption might exert deleterious effects on sperm nuclear quality in infertile men. Reprod Biomed Online 2020;40(2):270–80. DOI: 10.1016/j.rbmo.2019.11.002
29. Radwan M., Jurewicz J., Merecz-Kot D. et al. Sperm DNA damage-the effect of stress and everyday life factors. Int J Impot Res 2016;28(4):148–54. DOI: 10.1038/ijir.2016.15
30. Schmid T.E., Eskenazi B., Baumgartner A. et al. The effects of male age on sperm DNA damage in healthy non-smokers. Hum Reprod 2007;22(1):180–7. DOI: 10.1093/humrep/del338
31. Jurewicz J., Hanke W., Radwan M., Bonde J.P. Environmental factors and semen quality. Int J Occup Med Environ Health 2009;22(4):305–29. DOI: 10.2478/v10001-009-0036-1
32. Lafuente R., García-Blàquez N., Jacquemin B., Checa M.A. Outdoor air pollution and sperm quality. Fertil Steril 2016;106(4):880– 96. DOI: 10.1016/j.fertnstert.2016.08.022
33. Radwan M., Jurewicz J., Polańska K. et al. Exposure to ambient air pollution – does it affect semen quality and the level of reproductive hormones? Ann Hum Biol 2016;43(1):50–6. DOI: 10.3109/03014460.2015.1013986
34. Rubes J., Selevan S.G., Evenson D.P. et al. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod 2005;20(10):2776–83. DOI: 10.1093/humrep/dei122
35. Jeng H.A., Pan C.H., Chao M.R. et al. Sperm quality and DNA integrity of coke oven workers exposed to polycyclic aromatic hydrocarbons. Int J Occup Med Environ Health 2016;29(6):915–26. DOI: 10.13075/ijomeh.1896.00598
36. Rubes J., Selevan S.G., Sram R.J. et al. GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res 2007;625(1–2):20–8. DOI: 10.1016/j.mrfmmm.2007.05.012
37. Evenson D.P., Wixon R.L. Environmental toxicants cause sperm DNA fragmentation as detected by the Sperm Chromatin Structure Assay (SCSA®). Toxicol Appl Pharmacol 2005;207(2 Suppl);532–7. DOI: 10.1016/j.taap.2005.03.021
38. Jamal F., Haque Q.S., Singh S., Rastogi S.K. The influence of organophosphate and carbamate on sperm chromatin and reproductive hormones among pesticide sprayers. Toxicol Ind Health 2016;32(8):1527–36. DOI: 10.1177/0748233714568175
39. Miranda-Contreras L., Cruz I., Osuna J.A. et al. [Effects of occupational exposure to pesticides on semen quality of workers in an agricultural community of Merida state, Venezuela (In Spanish)]. Invest Clin 2015;56(2):123–36.
40. Sánchez-Peña L.C., Reyes B.E., López-Carrillo L. et al. Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers. Toxicol Appl Pharmacol 2004;196(1):108–13. DOI: 10.1016/j.taap.2003.11.023
41. Gandhi J., Hernandez R.J., Chen A. et al. Impaired hypothalamicpituitary-testicular axis activity, spermatogenesis, and sperm function promote infertility in males with lead poisoning. Zygote 2017;25(2):103–10. DOI: 10.1017/S0967199417000028
42. Zhou D.D., Hao J.L., Guo K.M. et al. Sperm quality and DNA damage in men from Jilin Province, China, who are occupationally exposed to ionizing radiation. Genet Mol Res 2016;15(1):gmr.15018078. DOI: 10.4238/gmr.15018078
43. Zhu W.J., Qiao J. [Male reproductive toxicity of bisphenol A (In Chinese)]. Zhonghua Nan Ke Xue 2015;21(11):1026–30.
44. Jurewicz J., Hanke W. Exposure to phthalates: reproductive outcome and children health. A review of epidemiological studies. Int J Occup Med Environ Health 2011;24(2):115–41. DOI: 10.2478/s13382-011-0022-2
45. Bujan L., Walschaerts M., Brugnon F. et al. Impact of lymphoma treatments on spermatogenesis and sperm deoxyribonucleic acid: a multicenter prospective study from the CECOS network. Fertil Steril 2014;102(3):667–74.e.3. DOI: 10.1016/j.fertnstert.2014.06.008
46. O’Flaherty C., Vaisheva F., Hales B.F. et al. Characterization of sperm chromatin quality in testicular cancer and Hodgkin’s lymphoma patients prior to chemotherapy. Hum Reprod 2008;23(5):1044–52. DOI: 10.1093/humrep/den081
47. Smit M., van Casteren N.J., Wildhagen M.F. et al. Sperm DNA integrity in cancer patients before and after cytotoxic treatment. Hum Reprod 2010;18(8):77–83. DOI: 10.1093/humrep/deq104
48. Ståhl O., Eberhard J., Jepson K. et al. Sperm DNA integrity in testicular cancer patients. Hum Reprod 2006;21(12):3199–205. DOI: 10.1093/humrep/del292
49. Корнеев И.А., Мацуева И.А. Мужское бесплодие, метаболический синдром и ожирение. Урологические ведомости 2021;11(2):153–62. DOI: 10.17816/uroved61509
50. Faure C., Dupont C., Baraibar M.A. et al. In subfertile couple, abdominal fat loss in men is associated with improvement of sperm quality and pregnancy: a case-series. PLoS One 2014;9(2):e86300. DOI: 10.1371/journal.pone.0086300
51. Jurewicz J., Radwan M., Sobala W. et al. Dietary patterns and their relationship with semen quality. Am J Mens Health 2018;12(3):575–83. DOI: 10.1177/1557988315627139
52. Morrison C.D., Brannigan R.E. Metabolic syndrome and infertility in men. Best Pract Res Clin Obstet Gynaecol 2015;29(4):507–15. DOI: 10.1016/j.bpobgyn.2014.10.006
53. Sharma R., Agarwal A., Harlev A., Esteves S.C. A meta-analysis to study the effects of body mass index on sperm DNA fragmentation index in reproductive age men. Fertil Steril 2017;108(3):e138–e9. DOI: 10.1016/j.fertnstert.2017.07.417
54. Cho C.L., Esteves S.C., Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl 2016;18(2):186–93. DOI: 10.4103/1008-682X.170441
55. Agarwal A., Hamada A., Esteves S.C. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol 2012;9(12):678–90. DOI: 10.1038/nrurol.2012.197
56. Hamada A., Esteves S.C., Agarwal A. Insight into oxidative stress in varicocele associated male infertility: part 2. Nat Rev Urol 2013;10(1):26–37. DOI: 10.1038/nrurol.2012.198
57. Zini A., Dohle G. Are varicoceles associated with increased deoxyribonucleic acid fragmentation? Fertil Steril 2011;96(6):1283–7. DOI: 10.1016/j.fertnstert.2011.10.016
58. Esteves S.C., Gosálvez J., López-Fernández C. et al. Diagnostic accuracy of sperm DNA degradation index (DDSi) as a potential noninvasive biomarker to identify men with varicocele-associated infertility. Int Urol Nephrol 2015;47(9):1471–7. DOI: 10.1007/s11255-015-1053-6
59. Lira Neto F.T., Roque M., Esteves S.C. Effect of varicocelectomy on sperm deoxyribonucleic acid fragmentation rates in infertile men with clinical varicocele: a systematic review and meta-analysis. Fertil Steril 2021;116(3): 696–712. DOI: 10.1016/j.fertnstert.2021.04.003
60. Roque M., Esteves S.C. Effect of varicocele repair on sperm DNA fragmentation: а review. Int Urol Nephrol 2018;50(4):583–603. DOI: 10.1007/s11255-018-1839-4
61. Cantoro U., Polito M., Muzzonigro G. Reassessing the role of subclinical varicocele in infertile men with impaired semen quality: a prospective study. Urology 2015;85(4):826–30. DOI: 10.1016/j.urology.2015.01.015
62. Kim H.J., Seo J.T., Kim K.J. et al. Clinical significance of subclinical varicocelectomy in male infertility: systematic review and metaanalysis. Andrologia 2016;48(6):654–61. DOI: 10.1111/and.12495
63. García-Peiró A., Ribas-Maynou J., Oliver-Bonet M. et al. Multiple determinations of sperm DNA fragmentation show that varicocelectomy is not indicated for infertile patients with subclinical varicocele. BioMed Res Int 2014;2014:181396. DOI: 10.1155/2014/181396
64. Ni K., Steger K., Yang H. et al. A comprehensive investigation of sperm DNA damage and oxidative stress injury in infertile patients with subclinical, normozoospermic, and astheno/oligozoospermic clinical varicocele. Andrology 2016;4(5):816–24. DOI: 10.1111/andr.12210
65. Agarwal A., Rana M., Qiu E. et al. Role of oxidative stress, infection and inflammation in male infertility. Andrologia 2018;50(11):e13126. DOI: 10.1111/and.13126
66. Боровец С.Ю., Рыбалов М.А., Горбачев А.Г., Аль-Шукри С.Х. Влияние препарата «Простатилен® АЦ» на фрагментацию ДНК сперматозоидов при лечении пациентов с хроническим абактериальным простатитом и сопутствующими нарушениями репродуктивной функции. Андрология и генитальная хирургия 2017;18(3):54–8. DOI: 10.17650/2070-9781-2017- 18-3-54-58
67. Рогозин Д.С. Мужская фертильность: обзор литературы января – марта 2021 года. Вестник урологии 2021;9(2):142–9. DOI: 10.21886/2308-6424-2021-9-2-142-149
68. Buck Louis G.M., Sundaram R., Schisterman E.F. et al. Semen quality and time to pregnancy: the longitudinal investigation of fertility and the environment study. Fertil Steril 2014;101(2):453–62. DOI: 10.1016/j.fertnstert.2013.10.022
69. Carlini T., Paoli D., Pelloni M. et al. Sperm DNA fragmentation in Italian couples with recurrent pregnancy loss. Reprod Biomed Online 2017;34(1):58–65. DOI: 10.1016/j.rbmo.2016.09.014
70. Рыжков А.И., Шорманов И.С., Соколова С.Ю. Фрагментация ДНК сперматозоидов. Есть ли связь с основными параметрами спермы и возрастом? Экспериментальная и клиническая урология 2020;4:58–64. DOI: 10.29188/2222-8543-2020-13-4-58-64
71. Evenson D.P., Djira G., Kasperson K., Christianson J. Relationships between the age of 25,445 men attending infertility clinics and sperm chromatin structure assay (SCSA®) defined sperm DNA and chromatin integrity. Fertil Steril 2020;114(2):311–20. DOI: 10.1016/j.fertnstert.2020.03.028
72. Sakkas D., Alvarez J.G. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 2010;93(4):1027–36. DOI: 10.1016/j.fertnstert.2009.10.046
73. Rima D., Shiv B.K., Bhavna C. et al. Oxidative stress induced damage to paternal genome and impact of meditation and yoga – can it reduce incidence of childhood cancer? Asian Pac J Cancer Prev 2016;17(9):4517–25.
74. De Iuliis G.N., Thomson L.K., Mitchell L.A. et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2’-deoxyguanosine, a marker of oxidative stress. Biol Reprod 2009;81(3): 517–24. DOI: 10.1095/biolreprod.109.076836
75. Muratori M., Tamburrino L., Marchiani S. et al. Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol Med 2015;21(1):109–22. DOI: 10.2119/molmed.2014.00158
76. Agarwal A., Parekh N., Panner Selvam M.K. et al. Male Oxidative Stress Infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J Mens Health 2019;37(3):296–312. DOI: 10.5534/wjmh.190055
77. Chengyong W., Man Y., Mei L. et al. GSTM1 null genotype contributes to increased risk of male infertility: a meta-analysis. J Assist Reprod Genet 2012;29(8):837–45. DOI: 10.1093/humrep/del338
78. Majzoub A., Agarwal A., Esteves S.C. Understanding sperm DNA fragmentation. Trans Androl Urol 2017;6(Suppl 4):S535–S8. DOI: 10.21037/tau.2017.04.27
79. Champroux A., Torres-Carreira J., Gharagozloo P. et al. Mammalian sperm nuclear organization: resiliencies and vulnerabilities. Basic Clin Androl 2016;26:17. DOI: 10.1186/s12610-016-0044-5
80. Gosálvez J., López-Fernández C., Fernández J.L. et al. Unpacking the mysteries of sperm DNA fragmentation: ten frequently asked questions. J Rep Biotech Fertil 2015;4. DOI: 10.1177/2058915815594454
81. Oleszczuk K., Augustinsson L., Bayat N. et al. Prevalence of high DNA fragmentation index in male partners of unexplained infertile couples. Andrology 2013;1(3):357–60. DOI: 10.1111/j.2047-2927.2012.00041.x
82. ESHRE Guideline Group on RPL, Bender Atik R., Christiansen O.B., Elson J. et al. ESHRE guideline: recurrent pregnancy loss. Hum Reprod Open 2018;2018(2):hoy004. DOI: 10.1093/hropen/hoy004
83. Robinson L., Gallos I.D., Conner S.J. et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod Open 2012;27(10):2908–17. DOI: 10.1093/humrep/des261
84. McQueeni D.B., Zhang J., Robins J.C. Sperm DNA fragmentation and recurrent pregnancy loss: a systematic review and metaanalysis. Fertil Steril 2019;112(1):54–60.e3. DOI: 10.1016/j.fertnstert.2019.03.003
85. Tan J., Taskin O., Albert A., Bedaiwy M.A. Association between sperm DNA fragmentation and idiopathic recurrent pregnancy loss: a systematic review and meta-analysis. Reprod Biomed Online 2019;38(6):951–60. DOI: 10.1016/j.rbmo.2018.12.029
86. Zidi-Jrah I., Hajlaoui A., Mougou-Zerelli S. et al. Relationship between sperm aneuploidy, sperm DNA integrity, chromatin packaging, traditional semen parameters, and recurrent pregnancy loss. Fertil Steril 2016;105(1):58–64. DOI: 10.1016/j.fertnstert.2015.09.041
87. Ribas-Maynou J., Benet J. Single and double strand sperm DNA damage: different reproductive effects on male fertility. Genes (Basel) 2019;10(2):105. DOI: 10.3390/genes10020105
88. Vandekerckhove F.W., De Croo I., Gerris J. et al. Sperm chromatin dispersion test before sperm preparation is predictive of clinical pregnancy in cases of unexplained infertility treated with intrauterine insemination and induction with clomiphene citrate. Front Med 2016;3:63. DOI: 10.3389/fmed.2016.00063
89. Chen Q., Zhao J.Y., Xue X., Zhu G.X. The association between sperm DNA fragmentation and reproductive outcomes following intrauterine insemination, a meta-analysis. Reprod Toxicol 2019;86:50–5. DOI: 10.1016/j.reprotox.2019.03.004
90. Боровец С.Ю., Аль-Шукри С.Х., Белоусов В.Я. Прогностическая значимость фрагментации ДНК сперматозоидов в отношении исходов вспомогательных репродуктивных технологий. Урологические ведомости 2015;5(1):39. DOI: 10.17816/uroved5139-39
91. Sugihara A., Van Avermaete F., Roelant E. et al. The role of sperm DNA fragmentation testing in predicting intra-uterine insemination outcome: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 2020;244:8–15. DOI: 10.1016/j.ejogrb.2019.10.005
92. Zhao J., Zhang Q., Wang Y., Li Y. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: а systematic review and meta-analysis. Fertil Steril 2014;102:998–1005. e1008 DOI: 10.1016/j.fertnstert.2014.06.033
93. Xie P., Keating D., Parrella A. et al. Sperm genomic integrity by TUNEL varies throughout the male genital tract. J Urol 2020;203(4):802–8. DOI: 10.1097/JU.0000000000000659
94. Gawecka J.E., Boaz S., Kasperson K. et al. Luminal fluid of epididymis and vas deferens contributes to sperm chromatin fragmentation. Hum Reprod 2015;30(12):2725–36. DOI: 10.1093/humrep/dev245
95. Ambar R.F., Agarwal A., Majzoub A. et al. The use of testicular sperm for intracytoplasmic sperm injection in patients with high sperm DNA damage: a systematic review. World J Mens Health 2020;39(3):391–8. DOI: 10.5534/wjmh.200084
96. Коршунов М.Н., Коршунова Е.С., Даренков С.П. Способ лечения мужского бесплодия при высоком показателе ДНК-фрагментации эякуляторных сперматозоидов. Патент RU 2685797C1 от 23.04.2019.
97. Aitken R.J. DNA damage in human spermatozoa; important contributor to mutagenesis in the offspring. Trans Androl Urol 2017;6(Suppl 4):S761–S4. DOI: 10.21037/tau.2017.09.13
98. Bungum M., Bungum L., Lynch K.F. et al. Spermatozoa DNA damage measured by sperm chromatin structure assay (SCSA) and birth characteristics in children conceived by IVF and ICSI. Int J Androl 2012;35(4):485–90. DOI: 10.1111/j.1365-2605.2011.01222.x
99. Koppen G., Azqueta A., Pourrut B. et al. The next three decades of the comet assay: a report of the 11th International Comet Assay Workshop. Mutagenesis 2017;32(3):397–408. DOI: 10.1093/mutage/gex002
100. Sharma R.K., Sabanegh E., Mahfouz R. et al. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology 2010;76(6):1380–6. DOI: 10.1016/j.urology.2010.04.036
101. Feijó C.M., Esteves S.C. Diagnostic accuracy of sperm chromatin dispersion test to evaluate sperm deoxyribonucleic acid damage in men with unexplained infertility. Fertil Steril 2014;101(1):58–63.e3. DOI: 10.1016/j.fertnstert.2013.09.002
102. Pratap H., Hottigoudar S.Y., Nichanahalli K.S., Chand P. Assessment of sperm deoxyribose nucleic acid fragmentation using sperm chromatin dispersion assay. J Pharmacol Pharmacother 2017;8(2):45–9. DOI: 10.4103/jpp.JPP_187_16
103. Evenson D.P. Sperm Chromatin Structure Assay (SCSA(®)) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim Reprod Sci 2016;169:56–75. DOI: 10.1016/j.anireprosci.2016.01.017
104. Majzoub A., Agarwal A., Cho C.L., Esteves S.C. Sperm DNA fragmentation testing: a cross sectional survey on current practices of fertility specialists. Transl Androl Urol 2017;6(Suppl 4):S710–S9. DOI: 10.21037/tau.2017.06.21
105. Dahan M.H., Mills G., Khoudja R. et al. Three hour abstinence as a treatment for high sperm DNA fragmentation: a prospective cohort study. J Assist Reprod Genet 2021;38(1):227–33. DOI: 10.1007/s10815-020-01999-w
106. Esteves S.C. Interventions to prevent sperm DNA damage effects on reproduction. Adv Exp Med Biol 2019;1166:119–48. DOI: 10.1007/978-3-030-21664-1_8
107. Pini T., Makloski R., Maruniak K. et al. Mitigating the effects of oxidative sperm DNA damage. Antioxidants (Basel) 2020;9(7):589. DOI: 10.3390/antiox9070589
108. Kopa Z., Keszthelyi M., Sofikitis N. Administration of antioxidants in the infertile male: when it may have a beneficial effect? Curr Pharm Des 2020;27(23):2665–8. DOI: 10.2174/1381612826666200303115552
109. Гамидов С.И., Овчинников Р.И., Попова А.Ю. и др. Адъювантная антиоксидантная терапия у больных бесплодием при варикоцеле. Урология 2017;2(Suppl):64–72. DOI: 10.18565/urol.2017.2-supplement.64-72
110. Gual-Frau J., Abad C., Amengual M.J. et al. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients. Hum Fertil (Camb) 2015;18(3):225–9. DOI: 10.3109/14647273.2015.1050462
111. Colacurci N., De Leo V., Ruvolo G. et al. Recombinant FSH improves sperm DNA damage in male infertility: a phase II clinical trial. Front Endocrinol (Lausanne) 2018;9:383. DOI: 10.3389/fendo.2018.00383
Andrology and Genital Surgery. 2023; 24: 24-35
What should urologist know about sperm DNA fragmentation
Olefir Yu. V., Efremov E. A., Rodionov M. A., Zhuvilko A. R., Popov D. M., Monakov D. M.
https://doi.org/10.17650/2070-9781-2023-24-1-24-35Abstract
Background. Spermogram remains one of the main laboratory methods of male infertility diagnosis, but normal spermogram do not guarantee the patient’s fertility. More over, it does not allow us to find out the cause of infertility in 10–30 % cases. The sperm DNA fragmentation (SDF) studying is a possible solution to this problem.
Aim. To systematize the currently available information about of clinical significance, causes, methods of diagnosis and treatment of SDF to be used by an urologist in rutine practice.
Materials and methods. The search of publications in databases was carried out eLIBRARY and PubMed using the keywords: male infertility, sperm DNA fragmentation, etiology, causes, varicocele, oxidative stress, diagnostics, treatment. 111 studies were selected, which are included in this review.
Results. Alcohol, tabacco smoking, narcotic substances, psychoemotional stress, adverse environmental factors and occupational intoxications, reproductive system infections and inflammation, varicocele and older paternal age can lead to SDF increasing and unfavorable reproductive outcomes, for natural pregnancy and while use an assisted reproductive technologies. The data on the role of metabolic syndrome in the genesis of SDF are equivocal. The oxidative stress is the main mechanism of sperm DNA damage. The SDF level can be estimated using direct (Comet, TUNEL) and indirect (SDS, SCSA) methods. Treatment of SDF is aimed at eliminating the detrimental factors, combating oxidative stress and recombinant follicle-stimulating hormone use.
Conclusion. The level of SDF is an important indicator for assessing male reproductive potential and predicting the success of various methods of overcoming infertility. Recently, there has been an expansion of indications for the use of methods for assessing the integrity of sperm genetic material in the clinical practice of specialists in the field of reproductive medicine.
References
1. Efremov E.A., Kasatonova E.V. Aktual'nye i perspektivnye metody lecheniya idiopaticheskogo muzhskogo besplodiya. Andrologiya i genital'naya khirurgiya 2022;23(3):48–53. DOI: 10.17650/2070-9781-2022-23-3-48-53
2. Efremov E.A., Kasatonova E.V., Krasnyak S.S. i dr. Rol' antioksidantov v uluchshenii parametrov eyakulyata i klinicheskikh iskhodov u besplodnykh par. Eksperimental'naya i klinicheskaya urologiya 2017;2:61–5.
3. Louis J.F., Thoma M.E., Sørensen D.N. et al. The prevalence of couple infertility in the United States from a male perspective: evidence from a nationally representative sample. Andrology 2013;1(5):741–8. DOI: 10.1111/j.2047-2927.2013.00110.x
4. Lebedev G.S., Golubev N.A., Shaderkin I.A. i dr. Muzhskoe besplodie v Rossiiskoi Federatsii: statisticheskie dannye za 2000–2018 gody. Eksperimental'naya i klinicheskaya urologiya 2019;4:4–12. DOI: 10.29188/2222-8543-2019-11-4-4-12
5. Jungwirth A., Diemer T., Kopa Z. et al. Male infertility. EAU Guideline. 2020. Available at: https://uroweb.org/guideline/male-infertility/#8.
6. Hamada A., Esteves S.C., Nizza M., Agarwal A. Unexplained male infertility: diagnosis and management. Int Braz J Urol 2012;38(5):576–94. DOI: 10.1590/s1677-55382012000500002
7. Esteves S.C., Agarwal A. Novel concepts in male infertility. Int Braz J Urol 2011;37(1):5–15. DOI: 10.1590/s1677-55382011000100002
8. Esteves S.C., Agarwal A., Cho C.L., Majzoub A. A Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis on the clinical utility of sperm DNA fragmentation testing in specific male infertility scenarios. Trans Androl Urol 2017;6(Suppl 4):S734–S60. DOI: 10.21037/tau.2017.08.20
9. Santi D., Spaggiari G., Simoni M. Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management – meta-analyses. Reprod Biomed Online 2018;37(3):315–26. DOI: 10.1016/j.rbmo.2018.06.023
10. Korshunov M.N., Korshunova E.S., Kyzlasov P.S. i dr. Strukturnye narusheniya khromatina spermatozoidov. Patofiziologicheskie aspekty. Klinicheskaya znachimost'. Vestnik urologii 2021;9(1):95–104. DOI: 10.21886/2308-6424-2021-9-1-95-104
11. Gill K., Jakubik J., Rosiak-Gill A. et al. Utility and predictive value of human standard semen parameters and sperm DNA dispersion for fertility potential. Int J Environ Res Public Health 2019;16(11):2004. DOI: 10.3390/ijerph16112004
12. Dada R. Sperm DNA damage diagnostics: when and why. Transl Androl Urol 2017;6(Suppl 4):S691–S4. DOI: 10.21037/tau.2017.05.26
13. Esteves S.C., Zini A., Coward R.M. et al. Sperm DNA fragmentation testing: summary evidence and clinical practice recommendations. Andrologia 2021;53(2):e13874. DOI: 10.1111/and.13874
14. Rudneva S.A., Bragina E.E., Arifulin E.A. i dr. Fragmentatsiya DNK v spermatozoidakh i ee vzaimosvyaz' s narusheniem spermatogeneza. Andrologiya i genital'naya khirurgiya 2014;15(4):26–33. DOI: 10.17650/2070-9781-2014-4-26-33
15. Avadieva N.E. Primenenie DNK fragmentatsii spermy v andrologicheskoi praktike. Vestnik urologii 2019;7(1):7–11. DOI: 10.21886/2308-6424-2019-7-1-7-11
16. Cho C.L., Agarwal A., Majzoub A., Esteves S.C. Clinical utility of sperm DNA fragmentation testing: concise practice recommendations. Transl Androl Urol 2017;6(Suppl 4):S366–S73. DOI: 10.21037/tau.2017.07.28
17. Esteves S.C., Santi D., Simoni M. An update on clinical and surgical interventions to reduce sperm DNA fragmentation in infertile men. Andrology 2020;8(1):53–81. DOI: 10.1111/andr.12724
18. Boeri L., Capogrosso P., Ventimiglia E. et al. Heavy cigarette smoking and alcohol consumption are associated with impaired sperm parameters in primary infertile men. Asian J Androl 2019;21(5):478–85. DOI: 10.4103/aja.aja_110_18
19. Sharma R., Harlev A., Agarwal A., Esteves S.C. Cigarette smoking and semen quality: a new meta-analysis examining the effect of the 2010 World Health Organization laboratory methods for the examination of human semen. Eur Urol 2016;70(4):635–45. DOI: 10.1016/j.eururo.2016.04.010
20. Mostafa R.M., Nasrallah Y.S., Hassan M.M. et al. The effect of cigarette smoking on human seminal parameters, sperm chromatin structure and condensation. Andrologia 2018;50(3):e12910. DOI: 10.1111/and.12910
21. Fraga C.G., Motchnik P.A., Wyrobek A.J. et al. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res 1996;351(2):199–203. DOI: 10.1016/0027-5107(95)00251-0
22. Gunes S., Metin Mahmutoglu A., Arslan M.A., Henkel R. Smokinginduced genetic and epigenetic alterations in infertile men. Andrologia 2018;50(9):e13124. DOI: 10.1111/and.13124
23. Ranganathan P., Rao K.A., Thalaivarasai Balasundaram S. Deterioration of semen quality and sperm-DNA integrity as influenced by cigarette smoking in fertile and infertile human male smokers – a prospective study. J Cell Biochem 2019;120(7):11784–93. DOI: 10.1002/jcb.28458
24. Vande Loock K., Ciardelli R., Decordier I. et al. Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage. Mutagenesis 2012;27(5):573–80. DOI: 10.1093/mutage/ges022
25. Aboulmaouahib S., Madkour A., Kaarouch I. et al. Impact of alcohol and cigarette smoking consumption in male fertility potential: looks at lipid peroxidation, enzymatic antioxidant activities and sperm DNA damage. Andrologia 2018;50(3):e12926. DOI: 10.1111/and.12926
26. Lee K.M., Ward M.H., Han S. et al. Paternal smoking, genetic polymorphisms in CYP1A1 and childhood leukemia risk. Leuk Res 2009;33(2):250–58. DOI: 10.1016/j.leukres.2008.06.031
27. Kumar S.B., Chawla B., Bisht S. et al. Tobacco use increases oxidative DNA damage in sperm – possible etiology of childhood cancer. Asian Pac J Cancer Prev 2015;16(16):6967–72. DOI: 10.7314/apjcp.2015.16.16.6967
28. Verhaeghe F., Di Pizio P., Bichara C. et al. Cannabis consumption might exert deleterious effects on sperm nuclear quality in infertile men. Reprod Biomed Online 2020;40(2):270–80. DOI: 10.1016/j.rbmo.2019.11.002
29. Radwan M., Jurewicz J., Merecz-Kot D. et al. Sperm DNA damage-the effect of stress and everyday life factors. Int J Impot Res 2016;28(4):148–54. DOI: 10.1038/ijir.2016.15
30. Schmid T.E., Eskenazi B., Baumgartner A. et al. The effects of male age on sperm DNA damage in healthy non-smokers. Hum Reprod 2007;22(1):180–7. DOI: 10.1093/humrep/del338
31. Jurewicz J., Hanke W., Radwan M., Bonde J.P. Environmental factors and semen quality. Int J Occup Med Environ Health 2009;22(4):305–29. DOI: 10.2478/v10001-009-0036-1
32. Lafuente R., García-Blàquez N., Jacquemin B., Checa M.A. Outdoor air pollution and sperm quality. Fertil Steril 2016;106(4):880– 96. DOI: 10.1016/j.fertnstert.2016.08.022
33. Radwan M., Jurewicz J., Polańska K. et al. Exposure to ambient air pollution – does it affect semen quality and the level of reproductive hormones? Ann Hum Biol 2016;43(1):50–6. DOI: 10.3109/03014460.2015.1013986
34. Rubes J., Selevan S.G., Evenson D.P. et al. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod 2005;20(10):2776–83. DOI: 10.1093/humrep/dei122
35. Jeng H.A., Pan C.H., Chao M.R. et al. Sperm quality and DNA integrity of coke oven workers exposed to polycyclic aromatic hydrocarbons. Int J Occup Med Environ Health 2016;29(6):915–26. DOI: 10.13075/ijomeh.1896.00598
36. Rubes J., Selevan S.G., Sram R.J. et al. GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res 2007;625(1–2):20–8. DOI: 10.1016/j.mrfmmm.2007.05.012
37. Evenson D.P., Wixon R.L. Environmental toxicants cause sperm DNA fragmentation as detected by the Sperm Chromatin Structure Assay (SCSA®). Toxicol Appl Pharmacol 2005;207(2 Suppl);532–7. DOI: 10.1016/j.taap.2005.03.021
38. Jamal F., Haque Q.S., Singh S., Rastogi S.K. The influence of organophosphate and carbamate on sperm chromatin and reproductive hormones among pesticide sprayers. Toxicol Ind Health 2016;32(8):1527–36. DOI: 10.1177/0748233714568175
39. Miranda-Contreras L., Cruz I., Osuna J.A. et al. [Effects of occupational exposure to pesticides on semen quality of workers in an agricultural community of Merida state, Venezuela (In Spanish)]. Invest Clin 2015;56(2):123–36.
40. Sánchez-Peña L.C., Reyes B.E., López-Carrillo L. et al. Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers. Toxicol Appl Pharmacol 2004;196(1):108–13. DOI: 10.1016/j.taap.2003.11.023
41. Gandhi J., Hernandez R.J., Chen A. et al. Impaired hypothalamicpituitary-testicular axis activity, spermatogenesis, and sperm function promote infertility in males with lead poisoning. Zygote 2017;25(2):103–10. DOI: 10.1017/S0967199417000028
42. Zhou D.D., Hao J.L., Guo K.M. et al. Sperm quality and DNA damage in men from Jilin Province, China, who are occupationally exposed to ionizing radiation. Genet Mol Res 2016;15(1):gmr.15018078. DOI: 10.4238/gmr.15018078
43. Zhu W.J., Qiao J. [Male reproductive toxicity of bisphenol A (In Chinese)]. Zhonghua Nan Ke Xue 2015;21(11):1026–30.
44. Jurewicz J., Hanke W. Exposure to phthalates: reproductive outcome and children health. A review of epidemiological studies. Int J Occup Med Environ Health 2011;24(2):115–41. DOI: 10.2478/s13382-011-0022-2
45. Bujan L., Walschaerts M., Brugnon F. et al. Impact of lymphoma treatments on spermatogenesis and sperm deoxyribonucleic acid: a multicenter prospective study from the CECOS network. Fertil Steril 2014;102(3):667–74.e.3. DOI: 10.1016/j.fertnstert.2014.06.008
46. O’Flaherty C., Vaisheva F., Hales B.F. et al. Characterization of sperm chromatin quality in testicular cancer and Hodgkin’s lymphoma patients prior to chemotherapy. Hum Reprod 2008;23(5):1044–52. DOI: 10.1093/humrep/den081
47. Smit M., van Casteren N.J., Wildhagen M.F. et al. Sperm DNA integrity in cancer patients before and after cytotoxic treatment. Hum Reprod 2010;18(8):77–83. DOI: 10.1093/humrep/deq104
48. Ståhl O., Eberhard J., Jepson K. et al. Sperm DNA integrity in testicular cancer patients. Hum Reprod 2006;21(12):3199–205. DOI: 10.1093/humrep/del292
49. Korneev I.A., Matsueva I.A. Muzhskoe besplodie, metabolicheskii sindrom i ozhirenie. Urologicheskie vedomosti 2021;11(2):153–62. DOI: 10.17816/uroved61509
50. Faure C., Dupont C., Baraibar M.A. et al. In subfertile couple, abdominal fat loss in men is associated with improvement of sperm quality and pregnancy: a case-series. PLoS One 2014;9(2):e86300. DOI: 10.1371/journal.pone.0086300
51. Jurewicz J., Radwan M., Sobala W. et al. Dietary patterns and their relationship with semen quality. Am J Mens Health 2018;12(3):575–83. DOI: 10.1177/1557988315627139
52. Morrison C.D., Brannigan R.E. Metabolic syndrome and infertility in men. Best Pract Res Clin Obstet Gynaecol 2015;29(4):507–15. DOI: 10.1016/j.bpobgyn.2014.10.006
53. Sharma R., Agarwal A., Harlev A., Esteves S.C. A meta-analysis to study the effects of body mass index on sperm DNA fragmentation index in reproductive age men. Fertil Steril 2017;108(3):e138–e9. DOI: 10.1016/j.fertnstert.2017.07.417
54. Cho C.L., Esteves S.C., Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl 2016;18(2):186–93. DOI: 10.4103/1008-682X.170441
55. Agarwal A., Hamada A., Esteves S.C. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol 2012;9(12):678–90. DOI: 10.1038/nrurol.2012.197
56. Hamada A., Esteves S.C., Agarwal A. Insight into oxidative stress in varicocele associated male infertility: part 2. Nat Rev Urol 2013;10(1):26–37. DOI: 10.1038/nrurol.2012.198
57. Zini A., Dohle G. Are varicoceles associated with increased deoxyribonucleic acid fragmentation? Fertil Steril 2011;96(6):1283–7. DOI: 10.1016/j.fertnstert.2011.10.016
58. Esteves S.C., Gosálvez J., López-Fernández C. et al. Diagnostic accuracy of sperm DNA degradation index (DDSi) as a potential noninvasive biomarker to identify men with varicocele-associated infertility. Int Urol Nephrol 2015;47(9):1471–7. DOI: 10.1007/s11255-015-1053-6
59. Lira Neto F.T., Roque M., Esteves S.C. Effect of varicocelectomy on sperm deoxyribonucleic acid fragmentation rates in infertile men with clinical varicocele: a systematic review and meta-analysis. Fertil Steril 2021;116(3): 696–712. DOI: 10.1016/j.fertnstert.2021.04.003
60. Roque M., Esteves S.C. Effect of varicocele repair on sperm DNA fragmentation: a review. Int Urol Nephrol 2018;50(4):583–603. DOI: 10.1007/s11255-018-1839-4
61. Cantoro U., Polito M., Muzzonigro G. Reassessing the role of subclinical varicocele in infertile men with impaired semen quality: a prospective study. Urology 2015;85(4):826–30. DOI: 10.1016/j.urology.2015.01.015
62. Kim H.J., Seo J.T., Kim K.J. et al. Clinical significance of subclinical varicocelectomy in male infertility: systematic review and metaanalysis. Andrologia 2016;48(6):654–61. DOI: 10.1111/and.12495
63. García-Peiró A., Ribas-Maynou J., Oliver-Bonet M. et al. Multiple determinations of sperm DNA fragmentation show that varicocelectomy is not indicated for infertile patients with subclinical varicocele. BioMed Res Int 2014;2014:181396. DOI: 10.1155/2014/181396
64. Ni K., Steger K., Yang H. et al. A comprehensive investigation of sperm DNA damage and oxidative stress injury in infertile patients with subclinical, normozoospermic, and astheno/oligozoospermic clinical varicocele. Andrology 2016;4(5):816–24. DOI: 10.1111/andr.12210
65. Agarwal A., Rana M., Qiu E. et al. Role of oxidative stress, infection and inflammation in male infertility. Andrologia 2018;50(11):e13126. DOI: 10.1111/and.13126
66. Borovets S.Yu., Rybalov M.A., Gorbachev A.G., Al'-Shukri S.Kh. Vliyanie preparata «Prostatilen® ATs» na fragmentatsiyu DNK spermatozoidov pri lechenii patsientov s khronicheskim abakterial'nym prostatitom i soputstvuyushchimi narusheniyami reproduktivnoi funktsii. Andrologiya i genital'naya khirurgiya 2017;18(3):54–8. DOI: 10.17650/2070-9781-2017- 18-3-54-58
67. Rogozin D.S. Muzhskaya fertil'nost': obzor literatury yanvarya – marta 2021 goda. Vestnik urologii 2021;9(2):142–9. DOI: 10.21886/2308-6424-2021-9-2-142-149
68. Buck Louis G.M., Sundaram R., Schisterman E.F. et al. Semen quality and time to pregnancy: the longitudinal investigation of fertility and the environment study. Fertil Steril 2014;101(2):453–62. DOI: 10.1016/j.fertnstert.2013.10.022
69. Carlini T., Paoli D., Pelloni M. et al. Sperm DNA fragmentation in Italian couples with recurrent pregnancy loss. Reprod Biomed Online 2017;34(1):58–65. DOI: 10.1016/j.rbmo.2016.09.014
70. Ryzhkov A.I., Shormanov I.S., Sokolova S.Yu. Fragmentatsiya DNK spermatozoidov. Est' li svyaz' s osnovnymi parametrami spermy i vozrastom? Eksperimental'naya i klinicheskaya urologiya 2020;4:58–64. DOI: 10.29188/2222-8543-2020-13-4-58-64
71. Evenson D.P., Djira G., Kasperson K., Christianson J. Relationships between the age of 25,445 men attending infertility clinics and sperm chromatin structure assay (SCSA®) defined sperm DNA and chromatin integrity. Fertil Steril 2020;114(2):311–20. DOI: 10.1016/j.fertnstert.2020.03.028
72. Sakkas D., Alvarez J.G. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 2010;93(4):1027–36. DOI: 10.1016/j.fertnstert.2009.10.046
73. Rima D., Shiv B.K., Bhavna C. et al. Oxidative stress induced damage to paternal genome and impact of meditation and yoga – can it reduce incidence of childhood cancer? Asian Pac J Cancer Prev 2016;17(9):4517–25.
74. De Iuliis G.N., Thomson L.K., Mitchell L.A. et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2’-deoxyguanosine, a marker of oxidative stress. Biol Reprod 2009;81(3): 517–24. DOI: 10.1095/biolreprod.109.076836
75. Muratori M., Tamburrino L., Marchiani S. et al. Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol Med 2015;21(1):109–22. DOI: 10.2119/molmed.2014.00158
76. Agarwal A., Parekh N., Panner Selvam M.K. et al. Male Oxidative Stress Infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J Mens Health 2019;37(3):296–312. DOI: 10.5534/wjmh.190055
77. Chengyong W., Man Y., Mei L. et al. GSTM1 null genotype contributes to increased risk of male infertility: a meta-analysis. J Assist Reprod Genet 2012;29(8):837–45. DOI: 10.1093/humrep/del338
78. Majzoub A., Agarwal A., Esteves S.C. Understanding sperm DNA fragmentation. Trans Androl Urol 2017;6(Suppl 4):S535–S8. DOI: 10.21037/tau.2017.04.27
79. Champroux A., Torres-Carreira J., Gharagozloo P. et al. Mammalian sperm nuclear organization: resiliencies and vulnerabilities. Basic Clin Androl 2016;26:17. DOI: 10.1186/s12610-016-0044-5
80. Gosálvez J., López-Fernández C., Fernández J.L. et al. Unpacking the mysteries of sperm DNA fragmentation: ten frequently asked questions. J Rep Biotech Fertil 2015;4. DOI: 10.1177/2058915815594454
81. Oleszczuk K., Augustinsson L., Bayat N. et al. Prevalence of high DNA fragmentation index in male partners of unexplained infertile couples. Andrology 2013;1(3):357–60. DOI: 10.1111/j.2047-2927.2012.00041.x
82. ESHRE Guideline Group on RPL, Bender Atik R., Christiansen O.B., Elson J. et al. ESHRE guideline: recurrent pregnancy loss. Hum Reprod Open 2018;2018(2):hoy004. DOI: 10.1093/hropen/hoy004
83. Robinson L., Gallos I.D., Conner S.J. et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod Open 2012;27(10):2908–17. DOI: 10.1093/humrep/des261
84. McQueeni D.B., Zhang J., Robins J.C. Sperm DNA fragmentation and recurrent pregnancy loss: a systematic review and metaanalysis. Fertil Steril 2019;112(1):54–60.e3. DOI: 10.1016/j.fertnstert.2019.03.003
85. Tan J., Taskin O., Albert A., Bedaiwy M.A. Association between sperm DNA fragmentation and idiopathic recurrent pregnancy loss: a systematic review and meta-analysis. Reprod Biomed Online 2019;38(6):951–60. DOI: 10.1016/j.rbmo.2018.12.029
86. Zidi-Jrah I., Hajlaoui A., Mougou-Zerelli S. et al. Relationship between sperm aneuploidy, sperm DNA integrity, chromatin packaging, traditional semen parameters, and recurrent pregnancy loss. Fertil Steril 2016;105(1):58–64. DOI: 10.1016/j.fertnstert.2015.09.041
87. Ribas-Maynou J., Benet J. Single and double strand sperm DNA damage: different reproductive effects on male fertility. Genes (Basel) 2019;10(2):105. DOI: 10.3390/genes10020105
88. Vandekerckhove F.W., De Croo I., Gerris J. et al. Sperm chromatin dispersion test before sperm preparation is predictive of clinical pregnancy in cases of unexplained infertility treated with intrauterine insemination and induction with clomiphene citrate. Front Med 2016;3:63. DOI: 10.3389/fmed.2016.00063
89. Chen Q., Zhao J.Y., Xue X., Zhu G.X. The association between sperm DNA fragmentation and reproductive outcomes following intrauterine insemination, a meta-analysis. Reprod Toxicol 2019;86:50–5. DOI: 10.1016/j.reprotox.2019.03.004
90. Borovets S.Yu., Al'-Shukri S.Kh., Belousov V.Ya. Prognosticheskaya znachimost' fragmentatsii DNK spermatozoidov v otnoshenii iskhodov vspomogatel'nykh reproduktivnykh tekhnologii. Urologicheskie vedomosti 2015;5(1):39. DOI: 10.17816/uroved5139-39
91. Sugihara A., Van Avermaete F., Roelant E. et al. The role of sperm DNA fragmentation testing in predicting intra-uterine insemination outcome: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 2020;244:8–15. DOI: 10.1016/j.ejogrb.2019.10.005
92. Zhao J., Zhang Q., Wang Y., Li Y. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil Steril 2014;102:998–1005. e1008 DOI: 10.1016/j.fertnstert.2014.06.033
93. Xie P., Keating D., Parrella A. et al. Sperm genomic integrity by TUNEL varies throughout the male genital tract. J Urol 2020;203(4):802–8. DOI: 10.1097/JU.0000000000000659
94. Gawecka J.E., Boaz S., Kasperson K. et al. Luminal fluid of epididymis and vas deferens contributes to sperm chromatin fragmentation. Hum Reprod 2015;30(12):2725–36. DOI: 10.1093/humrep/dev245
95. Ambar R.F., Agarwal A., Majzoub A. et al. The use of testicular sperm for intracytoplasmic sperm injection in patients with high sperm DNA damage: a systematic review. World J Mens Health 2020;39(3):391–8. DOI: 10.5534/wjmh.200084
96. Korshunov M.N., Korshunova E.S., Darenkov S.P. Sposob lecheniya muzhskogo besplodiya pri vysokom pokazatele DNK-fragmentatsii eyakulyatornykh spermatozoidov. Patent RU 2685797C1 ot 23.04.2019.
97. Aitken R.J. DNA damage in human spermatozoa; important contributor to mutagenesis in the offspring. Trans Androl Urol 2017;6(Suppl 4):S761–S4. DOI: 10.21037/tau.2017.09.13
98. Bungum M., Bungum L., Lynch K.F. et al. Spermatozoa DNA damage measured by sperm chromatin structure assay (SCSA) and birth characteristics in children conceived by IVF and ICSI. Int J Androl 2012;35(4):485–90. DOI: 10.1111/j.1365-2605.2011.01222.x
99. Koppen G., Azqueta A., Pourrut B. et al. The next three decades of the comet assay: a report of the 11th International Comet Assay Workshop. Mutagenesis 2017;32(3):397–408. DOI: 10.1093/mutage/gex002
100. Sharma R.K., Sabanegh E., Mahfouz R. et al. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology 2010;76(6):1380–6. DOI: 10.1016/j.urology.2010.04.036
101. Feijó C.M., Esteves S.C. Diagnostic accuracy of sperm chromatin dispersion test to evaluate sperm deoxyribonucleic acid damage in men with unexplained infertility. Fertil Steril 2014;101(1):58–63.e3. DOI: 10.1016/j.fertnstert.2013.09.002
102. Pratap H., Hottigoudar S.Y., Nichanahalli K.S., Chand P. Assessment of sperm deoxyribose nucleic acid fragmentation using sperm chromatin dispersion assay. J Pharmacol Pharmacother 2017;8(2):45–9. DOI: 10.4103/jpp.JPP_187_16
103. Evenson D.P. Sperm Chromatin Structure Assay (SCSA(®)) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim Reprod Sci 2016;169:56–75. DOI: 10.1016/j.anireprosci.2016.01.017
104. Majzoub A., Agarwal A., Cho C.L., Esteves S.C. Sperm DNA fragmentation testing: a cross sectional survey on current practices of fertility specialists. Transl Androl Urol 2017;6(Suppl 4):S710–S9. DOI: 10.21037/tau.2017.06.21
105. Dahan M.H., Mills G., Khoudja R. et al. Three hour abstinence as a treatment for high sperm DNA fragmentation: a prospective cohort study. J Assist Reprod Genet 2021;38(1):227–33. DOI: 10.1007/s10815-020-01999-w
106. Esteves S.C. Interventions to prevent sperm DNA damage effects on reproduction. Adv Exp Med Biol 2019;1166:119–48. DOI: 10.1007/978-3-030-21664-1_8
107. Pini T., Makloski R., Maruniak K. et al. Mitigating the effects of oxidative sperm DNA damage. Antioxidants (Basel) 2020;9(7):589. DOI: 10.3390/antiox9070589
108. Kopa Z., Keszthelyi M., Sofikitis N. Administration of antioxidants in the infertile male: when it may have a beneficial effect? Curr Pharm Des 2020;27(23):2665–8. DOI: 10.2174/1381612826666200303115552
109. Gamidov S.I., Ovchinnikov R.I., Popova A.Yu. i dr. Ad\"yuvantnaya antioksidantnaya terapiya u bol'nykh besplodiem pri varikotsele. Urologiya 2017;2(Suppl):64–72. DOI: 10.18565/urol.2017.2-supplement.64-72
110. Gual-Frau J., Abad C., Amengual M.J. et al. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients. Hum Fertil (Camb) 2015;18(3):225–9. DOI: 10.3109/14647273.2015.1050462
111. Colacurci N., De Leo V., Ruvolo G. et al. Recombinant FSH improves sperm DNA damage in male infertility: a phase II clinical trial. Front Endocrinol (Lausanne) 2018;9:383. DOI: 10.3389/fendo.2018.00383
События
-
Журнал «Современная наука и инновации» принят в DOAJ >>>
28 июл 2025 | 08:36 -
К платформе Elpub присоединились 4 журнала КФУ >>>
24 июл 2025 | 08:39 -
Журнал «Advanced Engineering Research (Rostov-on-Don)» вошел в Russian Science Citation Index >>>
23 июл 2025 | 08:38 -
Журнал «Літасфера» присоединился к Elpub! >>>
22 июл 2025 | 11:00 -
К платформе Elpub присоединился журнал «Труды НИИСИ» >>>
21 июл 2025 | 10:43